the natural logarithm and exponential functions · 2014. 1. 31. · exponential function...

151
The Natural Logarithm and Exponential Functions Bander Almutairi General Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General Logarithm Functions Derivative of General Logarithmic Function The Natural Logarithm and Exponential Functions Bander Almutairi King Saud University 26 Sept 2013

Upload: others

Post on 04-Sep-2020

10 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

The Natural Logarithm and ExponentialFunctions

Bander Almutairi

King Saud University

26 Sept 2013

Page 2: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

1 General Exponential Function

2 Derivatives of General Exponential Function

3 Integration of General Exponential Functions

4 General Logarithm Functions

5 Derivative of General Logarithmic Function

Page 3: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a is positive, then a function f (x) = ax is called theexponential function with base a and x called the exponent.

The function f (x) is also called general exponential function.Examples: f (x) = 2x , g(x) = 6x .* If the exponent is a rational number r , then

ax = e ln(ar ) = er ln(a), a > 0.

* Relation between general and natural exponential is

ax = ex ln(a), a > 0, x ∈ R.

Page 4: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a is positive, then a function f (x) = ax is called theexponential function with base a and x called the exponent.

The function f (x) is also called general exponential function.

Examples: f (x) = 2x , g(x) = 6x .* If the exponent is a rational number r , then

ax = e ln(ar ) = er ln(a), a > 0.

* Relation between general and natural exponential is

ax = ex ln(a), a > 0, x ∈ R.

Page 5: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a is positive, then a function f (x) = ax is called theexponential function with base a and x called the exponent.

The function f (x) is also called general exponential function.Examples: f (x) = 2x , g(x) = 6x .

* If the exponent is a rational number r , then

ax = e ln(ar ) = er ln(a), a > 0.

* Relation between general and natural exponential is

ax = ex ln(a), a > 0, x ∈ R.

Page 6: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a is positive, then a function f (x) = ax is called theexponential function with base a and x called the exponent.

The function f (x) is also called general exponential function.Examples: f (x) = 2x , g(x) = 6x .* If the exponent is a rational number r , then

ax = e ln(ar ) = er ln(a), a > 0.

* Relation between general and natural exponential is

ax = ex ln(a), a > 0, x ∈ R.

Page 7: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a is positive, then a function f (x) = ax is called theexponential function with base a and x called the exponent.

The function f (x) is also called general exponential function.Examples: f (x) = 2x , g(x) = 6x .* If the exponent is a rational number r , then

ax = e ln(ar ) = er ln(a), a > 0.

* Relation between general and natural exponential is

ax = ex ln(a), a > 0, x ∈ R.

Page 8: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a is positive, then a function f (x) = ax is called theexponential function with base a and x called the exponent.

The function f (x) is also called general exponential function.Examples: f (x) = 2x , g(x) = 6x .* If the exponent is a rational number r , then

ax = e ln(ar ) = er ln(a), a > 0.

* Relation between general and natural exponential is

ax = ex ln(a), a > 0, x ∈ R.

Page 9: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a is positive, then a function f (x) = ax is called theexponential function with base a and x called the exponent.

The function f (x) is also called general exponential function.Examples: f (x) = 2x , g(x) = 6x .* If the exponent is a rational number r , then

ax = e ln(ar ) = er ln(a), a > 0.

* Relation between general and natural exponential is

ax = ex ln(a), a > 0, x ∈ R.

Page 10: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Laws of Exponents:

Let a > 0 and b > 0. If u and v are anyreal numbers

(i) auav = au+v .

(ii) au/av = au−v .

(iii) (au)v = auv .

(iv) (ab)u = aubu.

(v) (a/b)u = au/bu.

Page 11: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Laws of Exponents: Let a > 0 and b > 0. If u and v are anyreal numbers

(i) auav = au+v .

(ii) au/av = au−v .

(iii) (au)v = auv .

(iv) (ab)u = aubu.

(v) (a/b)u = au/bu.

Page 12: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Laws of Exponents: Let a > 0 and b > 0. If u and v are anyreal numbers

(i) auav = au+v .

(ii) au/av = au−v .

(iii) (au)v = auv .

(iv) (ab)u = aubu.

(v) (a/b)u = au/bu.

Page 13: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Laws of Exponents: Let a > 0 and b > 0. If u and v are anyreal numbers

(i) auav = au+v .

(ii) au/av = au−v .

(iii) (au)v = auv .

(iv) (ab)u = aubu.

(v) (a/b)u = au/bu.

Page 14: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Laws of Exponents: Let a > 0 and b > 0. If u and v are anyreal numbers

(i) auav = au+v .

(ii) au/av = au−v .

(iii) (au)v = auv .

(iv) (ab)u = aubu.

(v) (a/b)u = au/bu.

Page 15: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Laws of Exponents: Let a > 0 and b > 0. If u and v are anyreal numbers

(i) auav = au+v .

(ii) au/av = au−v .

(iii) (au)v = auv .

(iv) (ab)u = aubu.

(v) (a/b)u = au/bu.

Page 16: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Laws of Exponents: Let a > 0 and b > 0. If u and v are anyreal numbers

(i) auav = au+v .

(ii) au/av = au−v .

(iii) (au)v = auv .

(iv) (ab)u = aubu.

(v) (a/b)u = au/bu.

Page 17: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then

d

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 18: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 19: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 20: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax)

=d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 21: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)

= ex ln(a).d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 22: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 23: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a)

= ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 24: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 25: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 26: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 27: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 28: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x)

= 3√2x ln(3)

(1

2√x

).

Page 29: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, thend

dx(ax) = ax . ln(a).

Proof:

d

dx(ax) =

d

dx

(ex ln(a)

)= ex ln(a).

d

dx(x ln(a))

= ex ln(a). ln(a) = ax . ln(a)

Examples:

(a) ddx (5x) = 5x ln(5).

(b) ddx

(3√2x)

= 3√2x ln(3) d

dx (√

2x) = 3√2x ln(3)

(1

2√x

).

Page 30: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1,

then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 31: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,

therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 32: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 33: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 34: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 35: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1,

then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 36: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0,

therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 37: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 38: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 39: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

* If a > 1, then ln(a) > 0,therefore,

d

dx(ax) = ax ln(a) > 0.

Hence f (x) = ax is increasing function on the interval (1,∞).

* If 0 < a < 1, then ln(a) < 0, therefore,

d

dx(ax) = ax ln(a) < 0.

Hence f (x) = ax is decreasing function on the interval (0, 1)

Page 40: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 41: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 42: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x)

= 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 43: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 44: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 45: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 46: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x)

= 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 47: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)

= 71−2x5

ln(7)(−10x4).

Page 48: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Find f ′(x) in each of the following:

(a) f (x) = 5√x3 .

f ′(x) = 5√x3 ln(5)

d

dx

(√x3)

= 5√x3 ln(5).

3x2

2√x3.

(b) f (x) = 71−2x5.

f ′(x) = 71−2x5

ln(7)d

dx

(1− 2x5

)= 71−2x

5ln(7)(−10x4).

Page 49: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

(c) f (x) = (2x + 2−x)9.

f ′(x) = 9(2x + 2−x)8.d

dx(2x + 2−x)

= 9(2x + 2−x)8.

[d

dx(2x) +

d

dx(2−x)

]= 9(2x + 2−x)8

[2x ln(2)

d

dx(x) + 2−x ln(2)

d

dx(−x)

]= 9(2x + 2−x)8

[2x ln(2)− 2−x ln(2)

].

Page 50: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

(c) f (x) = (2x + 2−x)9.

f ′(x)

= 9(2x + 2−x)8.d

dx(2x + 2−x)

= 9(2x + 2−x)8.

[d

dx(2x) +

d

dx(2−x)

]= 9(2x + 2−x)8

[2x ln(2)

d

dx(x) + 2−x ln(2)

d

dx(−x)

]= 9(2x + 2−x)8

[2x ln(2)− 2−x ln(2)

].

Page 51: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

(c) f (x) = (2x + 2−x)9.

f ′(x) = 9(2x + 2−x)8.d

dx(2x + 2−x)

= 9(2x + 2−x)8.

[d

dx(2x) +

d

dx(2−x)

]= 9(2x + 2−x)8

[2x ln(2)

d

dx(x) + 2−x ln(2)

d

dx(−x)

]= 9(2x + 2−x)8

[2x ln(2)− 2−x ln(2)

].

Page 52: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

(c) f (x) = (2x + 2−x)9.

f ′(x) = 9(2x + 2−x)8.d

dx(2x + 2−x)

= 9(2x + 2−x)8.

[d

dx(2x) +

d

dx(2−x)

]

= 9(2x + 2−x)8[

2x ln(2)d

dx(x) + 2−x ln(2)

d

dx(−x)

]= 9(2x + 2−x)8

[2x ln(2)− 2−x ln(2)

].

Page 53: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

(c) f (x) = (2x + 2−x)9.

f ′(x) = 9(2x + 2−x)8.d

dx(2x + 2−x)

= 9(2x + 2−x)8.

[d

dx(2x) +

d

dx(2−x)

]= 9(2x + 2−x)8

[2x ln(2)

d

dx(x) + 2−x ln(2)

d

dx(−x)

]

= 9(2x + 2−x)8[2x ln(2)− 2−x ln(2)

].

Page 54: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

(c) f (x) = (2x + 2−x)9.

f ′(x) = 9(2x + 2−x)8.d

dx(2x + 2−x)

= 9(2x + 2−x)8.

[d

dx(2x) +

d

dx(2−x)

]= 9(2x + 2−x)8

[2x ln(2)

d

dx(x) + 2−x ln(2)

d

dx(−x)

]= 9(2x + 2−x)8

[2x ln(2)− 2−x ln(2)

].

Page 55: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then

∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 56: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 57: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:

We know that ddu (au) = au ln(a). Integrating both sides∫

d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 58: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au)

= au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 59: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a).

Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 60: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides

∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 61: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du

=

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 62: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 63: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 64: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 65: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence

∫audu =

1

ln(a).au + c .

Page 66: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Theorem

If a > 0, then ∫audu =

1

ln(a).au + c .

Proof:We know that d

du (au) = au ln(a). Integrating both sides∫d

du(au)du =

∫au ln(a)du,

so we get

au + c = ln(a)

∫audu.

Hence ∫audu =

1

ln(a).au + c .

Page 67: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples:

Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 68: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.

[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 69: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx

=

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 70: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 71: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]

=124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 72: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 73: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 74: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x),

so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 75: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du

= sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 76: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx

= 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 77: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx .

Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 78: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 79: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx

=

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 80: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu

=1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 81: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c

=1

ln(5)5tan(x) + c.

Page 82: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Examples: Evaluate the following integrals.[1]∫ 0

−35xdx =

[1

ln(5)5x]0−3

=1

ln(5)

[1− 5−3

]=

124

125 ln(5).

[2] ∫5tan(x)

cos2(x)dx .

Put = tan(x), so du = sec2(x)dx = 1cos2(x)

dx . Hence,

∫5tan(x)

cos2(x)dx =

∫5udu =

1

ln(5)5u + c =

1

ln(5)5tan(x) + c.

Page 83: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3]

∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x − 3−x

ln(3)+ c .

Page 84: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx

=

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x − 3−x

ln(3)+ c .

Page 85: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x − 3−x

ln(3)+ c .

Page 86: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x − 3−x

ln(3)+ c .

Page 87: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x − 3−x

ln(3)+ c .

Page 88: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)

+ 2x − 3−x

ln(3)+ c .

Page 89: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x

− 3−x

ln(3)+ c .

Page 90: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x − 3−x

ln(3)

+ c .

Page 91: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

[3] ∫(3x + 1)2

3xdx =

∫ ((3x)2 + 2(3x) + 1

)23x

dx

=

∫ [(3x)2

3x+

2(3x)

3x+

1

3x

]dx

=

∫ [3x + 2 + 3−x

]dx

=3x

ln(3)+ 2x − 3−x

ln(3)+ c .

Page 92: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax ,

then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 93: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y

is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 94: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x)

and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 95: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a.

So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 96: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 97: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32

⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 98: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 99: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52

⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 100: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 101: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53

⇐⇒ 3 = log5(125).

Page 102: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Definition

If a 6= 1 and y = ax , then the inverse function of y is denotedby loga(x) and is called logarithm function with base a. So

y = loga(x)⇐⇒x = ay .

Examples:

(i) 9 = 32 ⇐⇒ 2 = log3(9).

(ii) 25 = 52 ⇐⇒ 2 = log5(25).

(iii) 125 = 53 ⇐⇒ 3 = log5(125).

Page 103: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 104: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 105: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa

⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 106: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒

x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 107: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay

⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 108: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒

ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 109: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 110: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 111: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)

⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 112: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒

y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 113: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 114: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 115: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Note:

(i)

loga(x) =ln(x)

ln(a).

Proof:

y = logxa ⇒ x = ay ⇒ ln(x) = ln(ay )

⇒ ln(x) = y ln(a)⇒ y =ln(x)

ln(a).

(ii)ln(x) = loge(x).

(iii)log(x) = log10(x)

.

Page 116: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 117: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 118: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).

Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 119: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 120: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′

=1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 121: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 122: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 123: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have

y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 124: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y

= log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 125: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x))

= log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 126: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x))

= ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 127: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) .

Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 128: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 129: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′

=1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 130: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))]

=1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 131: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 132: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 133: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′

=1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 134: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)]

=1

log(x).

1

ln(10).1

x.

Page 135: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find y ′ in each of the following:

1 y = loga(x).

We know that loga(x) = ln(x)ln(a) = 1

ln(a) ln(x).Thus,

y ′ =1

ln(a)

1

x.

2 y = log(ln(x)).

We have y = log(ln(x)) = log10(ln(x)) = ln(ln(x))ln(10) . Hence,

y ′ =1

ln(10)

d

dx[ln(ln(x))] =

1

ln(10)

1

ln(x)

1

x.

3 y = ln(log(x)).

y ′ =1

log(x)

d

dx[log(x)] =

1

log(x).

1

ln(10).1

x.

Page 136: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .

We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 137: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 138: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)]

= ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 139: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]

= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 140: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 141: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x)

= (4 + x2)d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 142: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 143: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 144: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x)

=

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 145: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Q: Find f ′(x) if f (x) = x4+x2 .We take ln for both sides, we get

ln[f (x)] = ln[x4+x2

]= (4 + x2) ln(x).

Now we differentiate with respect to x ,

1

f (x)f ′(x) = (4 + x2)

d

dx[ln(x)] + ln(x)

d

dx[4 + x2]

= (4 + x2)1

x+ ln(x)(2x)

Therefore,

f ′(x) =

[4 + x2

x+ ln(x)(2x)

]x4+x2 .

Page 146: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Exercises: Find y ′ for the following:

1 y = ππ.

2 y = x4.

3 y = xπ.

4 y = πx .

5 y = x2x .

Page 147: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Exercises: Find y ′ for the following:

1 y = ππ.

2 y = x4.

3 y = xπ.

4 y = πx .

5 y = x2x .

Page 148: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Exercises: Find y ′ for the following:

1 y = ππ.

2 y = x4.

3 y = xπ.

4 y = πx .

5 y = x2x .

Page 149: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Exercises: Find y ′ for the following:

1 y = ππ.

2 y = x4.

3 y = xπ.

4 y = πx .

5 y = x2x .

Page 150: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Exercises: Find y ′ for the following:

1 y = ππ.

2 y = x4.

3 y = xπ.

4 y = πx .

5 y = x2x .

Page 151: The Natural Logarithm and Exponential Functions · 2014. 1. 31. · Exponential Function Derivatives of General Exponential Function Integration of General Exponential Functions General

The NaturalLogarithm andExponentialFunctions

BanderAlmutairi

GeneralExponentialFunction

Derivatives ofGeneralExponentialFunction

Integration ofGeneralExponentialFunctions

GeneralLogarithmFunctions

Derivative ofGeneralLogarithmicFunction

Exercises: Find y ′ for the following:

1 y = ππ.

2 y = x4.

3 y = xπ.

4 y = πx .

5 y = x2x .