the nature of remote sensing - university of arizonadial/ece531/nature_of...agriculture near yuma,...

29
1 ECE/OPTI 531 – Image Processing Lab for Remote Sensing Fall 2005 The Nature of Remote Sensing Reading: Chapter 1 Fall 2005 The Nature of Remote Sensing 2 The Nature of Remote Sensing • Introduction Remote Sensing Systems Remote Sensing Physics Sensor Parameters Display and Data Systems

Upload: others

Post on 23-Mar-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

1

ECE/OPTI 531 – Image Processing Lab for Remote Sensing Fall 2005

The Nature of RemoteSensing

Reading: Chapter 1

Fall 2005The Nature of Remote Sensing 2

The Nature of Remote Sensing

• Introduction• Remote Sensing Systems• Remote Sensing Physics• Sensor Parameters• Display and Data Systems

Page 2: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

2

Fall 2005The Nature of Remote Sensing 3

Definitions

• Remote Sensing =“Measurement at aDistance”

• This course is aboutEarth remote sensing– Airborne or satellite

platforms– Optical region of the

spectrum• visible (400–700nm) to

thermal (long-wave)infrared wavelengths(8 to 12mm)

Fall 2005The Nature of Remote Sensing 4

Definitions (cont.)• Remote sensing requires

– Active or passive source– Target– Medium (typically lossy)– Sensor (optics, detector)

• Source radiation modeledas a traveling wave– Time-harmonic– c = λν

• C = 2.998 x 108 m/s• λ is the wavelength• ν is the frequency

– Also, wavenumber 1/λ cm-1

• EM spectrum is infiniteand continuous

• Energy interacts with matter– Reflection (Scattering)– Transmission– Absorption (Re-emmitted)

• Sensor characteristics– Spatial (Ground Sample

Interval)– Spectral (Range and width)– Temporal (Revisit time)– Radiometric (Precision)

Page 3: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

3

Fall 2005The Nature of Remote Sensing 5

Applications

• Environmental assessment and monitoring• Global change detection• Agriculture• Nonrenewable resources• Renewable resources• Meteorology• Mapping• Military surveillance and reconnaissance• News media• Further reading: Remote sensing tutorial

http://rst.gsfc.nasa.gov

Fall 2005The Nature of Remote Sensing 6

Types of Sensors and Sensing

• Multiangle Imaging SpectroRadiometer (MISR)sensor on NASA Terra satellite (http://www-misr.jpl.nasa.gov/)

Page 4: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

4

Fall 2005The Nature of Remote Sensing 7

• Single, broad spectral band,typically 400nm wide in thevisible spectrum

• Often called “panchromatic”• Large number of photons

collected, which allows smallerdetectors, i.e. greater spatialresolution

• Corona was the first globalsatellite reconnaissance mission– high resolution camera– photographic film returned to

Earth in re-entry capsule

Broadband Sensors

Corona photograph ofDolon airfield, USSR,August 20, 1966

(http://www.nro.gov/corona/imagery.htm)

Fall 2005The Nature of Remote Sensing 8

Heat Capacity Mapping Mission (HCMM)

• One-of-a-kind NASA sensor– First Applications

Explorer Mission AEM-1– April 26, 1978 -

September 30, 1980• Demonstrated relatively

high resolution (600m)thermal remote sensingfrom satellites

• Heat capacity refers toretention and release ofthermal energy bygeologic materialsduring the diurnal cycle

HCMM image of eastern US, 3AM on June 11, 1978

Baltimore

Washington, D.C.

Chesapeake Bay

Cape Hatteras

Page 5: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

5

Fall 2005The Nature of Remote Sensing 9

Multispectral Sensors• Co–registered images in

several relatively narrowspectral bands– typically 50–100nm wide

in the visible spectrum,wider at longerwavelengths

• Landsat Series (1–7)– 1972 – date– Landsat 6 failed to

achieve orbit, 5 and 7 stilloperating

– various multispectralsensors

• Multispectral ScannerSystem (MSS): 4 bands,VNIR 80m

• Thematic Mapper (TM): 7bands, VNIR/SWIR 30m,TIR 120m

• Enhanced ThematicMapper (ETM+): 8 bands,PAN 15m, VNIR/SWIR 30mand TIR 60m

TM multispectral image of desert andagriculture near Yuma, Arizona

TM1 TM2 TM3 TM4

TM5 TM6 (TIR) TM7

Fall 2005The Nature of Remote Sensing 10

Multispectral Display• Visualize spectral content with 3-

band color composites

• Example: color infrared (CIR)– red channel assigned to near IR

sensor band– green channel assigned to red sensor

band– blue channel assigned to green

sensor band• vegetation appears red,

soil appears yellow – grey,water appears blue – black

TM color infrared (CIR) compositeof Imperial Valley, California

Page 6: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

6

Fall 2005The Nature of Remote Sensing 11

Airborne Sensors

Positive Systems, ADAR System 5500, single frameColor infrared (CIR) composite of Tanque Verde Wash, Tucson

Fall 2005The Nature of Remote Sensing 12

Hyperspectral Sensors• Multispectral sensor with relatively

high spectral resolution (typically 5– 10 nm) and large number(typically 200) of nearly-contiguousbands– high spectral resolution potentially

allows high discrimination of surfacefeatures

• Typically acquired with an imagingspectrometer over the wavelengthrange 400 to 2400nm– mostly airborne systems– Airborne Visible/Infrared Imaging

Spectrometer (AVIRIS)(http://makalu.jpl.nasa.gov/aviris.html): 224 bands, 5–20m

– Hyperion is first satellitehyperspectral sensor, on NASA EO-1satellite(http://eo1.gsfc.nasa.gov/Technology/Hyperion.html): 220 bands, 30m

AVIRIS hyperspectral image cube of LosAlamos, NM (courtesy Chris Borel, LANL)

Page 7: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

7

Fall 2005The Nature of Remote Sensing 13

0

500

1000

1500

2000

2500

400 800 1200 1600 2000 2400

soil

grass

building

water

DN

wavelength (nm)

spectral Signatures

grass water

soil

building

AVIRIS CIR composite image of Palo Alto, CA

Fall 2005The Nature of Remote Sensing 14

Multitemporal Image Series

AUG 22, 1972 NOV 15, 1973 JUN 1, 1974 NOV 14, 1975 MAY 30, 1976

JUN 30, 1977 OCT 11, 1978 JUL 13, 1983 JUN 14, 1985

Landsat Multispectral Scanner System (MSS) 13-year image seriesof copper mine expansion near Tucson, AZ

Page 8: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

8

Fall 2005The Nature of Remote Sensing 15

Global Composites• Images from a single

sensor, acquired overa long period of time(e.g., days or weeks)

• “Cloud-free” pixelcomposite

• Mosaiced• Projected in a single

map projection forthe whole earth

May 1–10, 1992

June 1–10, 1992

Fall 2005The Nature of Remote Sensing 16

Non-Optical Sensors

• Acquired in non-optical spectralregions, e.g.microwave

• Synthetic ApertureRadar (SAR)

• Measure differentsurface propertiesthan optical images

• E.g. microwave cansense soil moistureand surface roughness

Shuttle Imaging Radar (SIR-C) imageof volcano in Galapagos Islands

Rough lava

Smooth lava

Page 9: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

9

Fall 2005The Nature of Remote Sensing 17

The Nature of Remote Sensing

• Introduction• Remote Sensing Systems• Remote Sensing Physics• Sensor Parameters• Display and Data Systems

Fall 2005The Nature of Remote Sensing 18

1

10

100

1000

1 10 100 1000 104

HSIP

num

ber

of

spec

tral

ban

ds

GIFOV (m at nadir)

HSIV,S

WiFSV

HYDICE2,V,S

TIMS1

AVIRISV,S

SPOTV

ETMP

MSSV

ASTERS, TM

V,S

ASTERV

AVHRR/2V,S,T

MODISV

TMT

ASTERT

AVHRR/1V,S,T

MODISV,S,T

13.2 km altitude

26.1 km altitude

Ppanchromatic

Sshortwave infrared

Tthermal infrared

Vvisible/near infrared

MODISV,S

MISRV

IRS-1CP

LISS-IIIV

SPOTP

LISS-IIIS

Sensor Parameter Space

Page 10: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

10

Fall 2005The Nature of Remote Sensing 19

Case Study: MODIS

• Limit-of-the-artmultispectralwhiskbroom system

• 36 spectral bandsfrom visible tothermal on 4 focalplanes

• 3 spatial resolutions:250m, 500m, 1000m

• Diverse applications:land, oceans,atmosphere

NASA EOS MODerate resolution ImagingSpectrometer (MODIS)

Fall 2005The Nature of Remote Sensing 20

Case Study: MODIS (cont.)

1000405 – 420438 – 448483 – 493526 – 536

891011

chlorophyll observationsOcean color

546 – 55612sediments

662 – 67213sediments, atmosphere673 – 68314cholorophyll flourescence743 – 75315aerosol properties

862 – 87716aerosol/atmosphereproperties

890 – 920931 – 941915 – 965

171819

cloud/atmosphereproperties

Atmosphere/clouds

500459 – 479545 – 5651230 – 12501628 – 16522105 – 2155

34567

soil, vegetation differencesgreen vegetationleaf/canopy propertiessnow/cloud differencesland and cloud properties

Land/cloudproperties

250620 – 670841 – 876

12

vegetation chlorophyllcloud and vegetation

Land/cloudboundaries

SpecificGeneralGIFOV(m)

Spectral range(nm)Band

Geophysical variables

Page 11: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

11

Fall 2005The Nature of Remote Sensing 21

Case Study: MODIS (cont.)

13.185 – 13.48513.485 – 13.78513.785 – 14.08514.085 – 14.385

33343536

cloud height and fractioncloud height and fractioncloud height and fractioncloud height and fraction

10.78 – 11.2811.77 – 12.27

3132

cloud/surface temperaturecloud/surface temperature

9.58 – 9.8830total ozone

6.535 – 6.8957.175 – 7.4758.4 – 8.7

272829

mid-troposphere humidityupper-troposphere humiditysurface temperature

Thermal

1.36 – 1.3926cirrus cloudsAtmosphere/clouds

4.433 – 4.4984.482 – 4.549

2425

troposphere temp/cloud fractiontroposphere temp/cloud fraction

10003.66 – 3.843.929 – 3.9893.929 – 3.9894.02 – 4.08

20212223

sea surface temperaturesforest fires/volcanoescloud/surface temperaturecloud/ surface temperature

Thermal

SpecificGeneralGIFOV(m)

Spectral range(µm)Band

Geophysical variables

Fall 2005The Nature of Remote Sensing 22

Commercial Systems

60/6010/202.5,5/10,20

SPOT 1–4SPOT 5

http://www.spot.com/homeSPOTImageFrance

156.6KOMPSAT-1http://spaceflightnow.com/taurus/kompsat/991220kompsat.html

-SouthKorea

12.516

1.80.82

EROS-AEROS-B

http://www.imagesatintl.comImageSatIsrael

8 x 81/4OrbView-3http://www.orbimage.comOrbitalImaging

22 x 22,22 x 200

0.6/2.4QuickBirdhttp://www.digitalglobe.comDigitalGlobe

13 x 13,11 x 1000

1/4IKONOShttp://www.spaceimaging.comSpaceImaging

USA

GFOV (km)GSI (m)pan/multi

SensorWWW addressCompanyCountry

Page 12: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

12

Fall 2005The Nature of Remote Sensing 23

Then and Now

IKONOS-P (1m) SPOT-P (10-m)simulated

ETM-P (15-m)simulated

Ronald Reagan Washington National Airport (courtesy Space Imaging Inc.)

Fall 2005The Nature of Remote Sensing 24

The Nature of Remote Sensing

• Introduction• Remote Sensing Systems• Remote Sensing Physics• Sensor Parameters• Display and Data Systems

Page 13: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

13

Fall 2005The Nature of Remote Sensing 25

Spectral Regions• Determined by:

– "windows" where atmospheric transmittance is relatively high– wavelength regions where detector sensitivity is relatively

high

Temperature(passive)roughness (active)

thermal (passive)artificial (active)

1mm-1mMicrowave, Radar

temperaturethermal8–9.510–14

Thermal Infrared(TIR)

reflectance,temperature

solar, thermal3–44.5–5

Mid-WaveInfrared (MWIR)

reflectancesolar1.1–1.351.4–1.82–2.5

Short-WaveInfrared (SWIR)

reflectancesolar0.7–1.1Near Infrared(NIR)

reflectancesolar0.4–0.7Visible (V)

Surface Propertiesof Interest

Radiation SourceWavelengthRange (µm)

Name

Fall 2005The Nature of Remote Sensing 26

0

0.2

0.4

0.6

0.8

1

2.5 4.5 6.5 8.5 10.5 12.5 14.5

tran

smit

tance

wavelength (µm)

H2O

O3

CO2,

H2O

CO2

CO2

MWIR TIR (LWIR)VNIR SWIR

0

0.2

0.4

0.6

0.8

1

0.4 0.8 1.2 1.6 2 2.4

tran

smit

tance

wavelength (µm)

CO2

H2O

H2O

H2O

H2O

CO2

CO2

CO2,

H2O

CO2,

Atmospheric Transmittance

• Atmospheric “windows” result from energyabsorption by air molecules– Water vapor (H20)– Carbon dioxide (C02)– Ozone (O3)– Others to a lesser extent

Page 14: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

14

Fall 2005The Nature of Remote Sensing 27

Radiation Sources

• Approximately equal at the top-of-the-atmosphere (TOA) in the Mid-Wave IR (MWIR)

MWIR

1

10

100

1000

104

1

10

100

1000

104

0.1 1 10

solar irradiance

earth emission

irra

dia

nce

(W

-m-2

-µm

-1)

radian

t exitan

ce (W-m

-2- µm

-1)

wavelength (µm)

Fall 2005The Nature of Remote Sensing 28

Human Vision

• Sensitive over very small range of total solarspectrum

0

500

1000

1500

2000

2500

0

0.2

0.4

0.6

0.8

1

400 900 1400 1900 2400

solar irradiance

daylight sensitivity

sola

r ir

radia

nce

(W

-m-2

-µm

-1)

relative sen

sitivity

wavelength (nm)

solar spectrum and human visual sensitivity

Page 15: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

15

Fall 2005The Nature of Remote Sensing 29

Spectral Signatures

• Vegetation spectral reflectance has severaldistinguishing features– “red edge” at 720 – 780nm caused by cellular structure– Low reflectance in the blue and red caused by

chlorophyll absorption; slightly higher reflectance inthe green

– Water absorption features at 1400nm and 1900nm

0

0.1

0.2

0.3

0.4

0.5

0.6

400 800 1200 1600 2000 2400

WheatSugar BeetsOats

refle

ctanc

e

wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

400 800 1200 1600 2000 2400

Kentucky Blue GrassRed Fescue GrassPerennial Rye Grass

refle

ctanc

e

wavelength (nm)

“red edge”

Fall 2005The Nature of Remote Sensing 30

Spectral Signatures (cont.)

• Soil and geologic minerals show relativelysmooth spectral reflectance– water absorption features in soils at 1400nm and

1900nm– narrow molecular absorption features caused by

characteristic molecules

0

0.2

0.4

0.6

0.8

1

400 800 1200 1600 2000 2400

Alunite GDS84Buddingtonite GDS85Dolomite HS102Kaolinite CM9

refle

ctanc

e

wavelength (nm)

0

0.1

0.2

0.3

0.4

0.5

0.6

400 800 1200 1600 2000 2400

Dry Red Clay (5% water)Wet Red Clay (20% water)

refle

ctanc

e

wavelength (nm)

Page 16: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

16

Fall 2005The Nature of Remote Sensing 31

Myth of Spectral Signatures

• Idealized characteristic ofsurface materials is neverachieved in practice– natural variability– atmospheric variability– “mixing” of materials– shadows– bidirectional reflectance

distribution function(BRDF)

– sensor noise• Nevertheless, spectral

signatures are a usefulconcept

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100 120

DN

(S

PO

T3)

DN (SPOT2)

vegetation

soil/sand

asphalt

spectra of pixel samples from 3 materials

Fall 2005The Nature of Remote Sensing 32

The Nature of Remote Sensing

• Introduction• Remote Sensing Systems• Remote Sensing Physics• Sensor Parameters• Display and Data Systems

Page 17: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

17

Fall 2005The Nature of Remote Sensing 33

Multitemporal Parameters

• Meteorology requires frequent revisits (at leasthourly)

• Agriculture requires less frequent revisits(weekly)

• Geology requires infrequent revisits (every fewmillion years)– “events” such as volcanos and landslides are exceptions

30 minGOES

2 daysMODIS22 daysIRS-1A, B

26 days at nadir1, or 4–5 days pointing

SPOT

1 day or 7 hrsAVHRR16 daysLandsat 4–718 daysLandsat 1–3

Revisit IntervalSystem

Fall 2005The Nature of Remote Sensing 34

Scan Parameters

• Field-Of-View (FOV, radians): used by systemdesigners

• Ground-projected FOV (GFOV, km): used by datausers

GFOV

FOV cross-track

in-track

wavelengthdispersion

SPOTALIMTI

TMETM+MODISAVHRR HYDICE

Hyperion

1-D array pushbroom

whiskbroom 2-D array pushbroom

line

Page 18: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

18

Fall 2005The Nature of Remote Sensing 35

Scanner Types

In-track pushbroom Pointing pushbroom

Continuous coveragewhiskbroom scanner(MODIS)

Fall 2005The Nature of Remote Sensing 36

Pixel Parameters

• Instantaneous Field-Of-View (IFOV, mrads)

• Ground-projected IFOV(GIFOV, m)

• Ground Sample Interval(GSI, m)– Also called Ground Sample

Distance (GSD)• GIFOV and GSI determine

geometric “spatialresolution”– Defined at-nadir, “pixel

growth” occurs off-nadir– Instrument response also

affects spatial resolution

focal length f

altitude H

one detector element

GIFOV

width = w

optics

IFOV

image space

object space

earth’s surface

nadir

GSI

Instantaneous pixel geometry

Page 19: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

19

Fall 2005The Nature of Remote Sensing 37

Sensor Comparison

• Whiskbroom: Landsat Enhanced Thematic Mapper ETM+• Pushbroom: Earth Observer – 1 Advanced Land Imager ALI

Landsat ETM+ (November 2000) EO-1 ALI (December 2000)

Signal-to-Noise Ratio (SNR) – Alaska low-light image , both 30m GIFOV

Fall 2005The Nature of Remote Sensing 38

Sensor Comparison (cont.)

Landsat-7 ETM+ Level 1G band 1

EO-1 ALI Level 1R band 2

Local geometry – Maricopa, AZ, July 27, 2001

Page 20: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

20

Fall 2005The Nature of Remote Sensing 39

The Instrument Response

• Any measuring instrument is limited in thedegree of detail it can capture

• This limit is referred to as the instrument’s“resolution”– widely used, but often misused, term

• Two aspects for remote sensors– spatial response– spectral response

Fall 2005The Nature of Remote Sensing 40

Spatial Response

• The total system response to a spatial “impulse”signal

• Larger than geometric GIFOV– time integration smear (cross-track for whiskbrooms,

in-track for pushbrooms)– optics blur– electronic filters (cross-track for whiskbrooms; not

common for pushbrooms)– detector electron diffusion, charge transfer

inefficiency (pushbrooms)• The net spatial response is the convolution of all

these factors, converted to a common spatialcoordinate system

Page 21: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

21

Fall 2005The Nature of Remote Sensing 41

optics GIFOV electronics

cross-track

in-track

Low-pass filter cross-track only

30m

30m

Imaging Simulation

• Example: simulation of Landsat TM imaging– Model TM spatial response components (at a common

scale)

Fall 2005The Nature of Remote Sensing 42

Imaging Simulation (cont.)TM spatial response components

Page 22: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

22

Fall 2005The Nature of Remote Sensing 43

Imaging Simulation (cont.)

rotated to align with TM orbit

and scan direction

scanned aerial photograph, GSI = 2m

High resolution aerial photography

Fall 2005The Nature of Remote Sensing 44

optics optics and GIFOV

optics, GIFOV and electronics

downsample

2m —> 30m GSI

Imaging Simulation (cont.)

• Apply each componentof the spatial responseand downsample to30m

Page 23: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

23

Fall 2005The Nature of Remote Sensing 45

Imaging Simulation (cont.)

• Compare to real TM of same area, acquired 4months later

simulated TM real TM

(contrast-adjusted)

real TM

Fall 2005The Nature of Remote Sensing 46

Spatial Resolution

• A “subpixel” object smaller than the GIFOV can bedetected, but not resolved

• Detectability of a subpixel object depends on:– object size relative to the sensor GIFOV– object radiance contrast to the surrounding background– scene noise (“clutter”)– sensor noise

Berkeley Pier: 7m wide, concrete and wood

– detection capabilitydepends on spectral band

Detection of a 7mobject in TM imagery

Page 24: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

24

Fall 2005The Nature of Remote Sensing 47

Detectability

• Low-contrast subpixeltargets must bebigger than high-contrast targets fordetection

50% target coverage of GIFOV

minimum-area detectable target

128 15

1 11

111

DN DN

! = 0.08! = 1

! = 0 ! = 0.04

Dependence of detectability on object size and contrast

Fall 2005The Nature of Remote Sensing 48

Sampling

• The measuredradiance of a sub-pixel object dependson the location of theobject relative to thepixel samples

15

20

25

30

35

40

45

6 8 10 12 14 16 18 20

DN

pixel

cba

a b c

Three scans across the Berkeley Pier

Page 25: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

25

Fall 2005The Nature of Remote Sensing 49

0

0.2

0.4

0.6

0.8

1

1200 1400 1600 1800 2000 2200 2400

Rel

ativ

e R

esponse

wavelength (nm)

TM5 TM7

0

0.2

0.4

0.6

0.8

1

400 500 600 700 800 900 1000 1100

Rel

ativ

e R

esponse

wavelength (nm)

TM1 TM2 TM3 TM4

Spectral Response

• Individual band spectral response determined by– detector responsivity– filter transmission (discrete spectral band sensors)– spectrometer slit width (hyperspectral sensors)

Example spectral response curves – Landsat Thematic Mapper (TM)

Fall 2005The Nature of Remote Sensing 50

Spectral Resolution

• As in the spatial case, the width of theinstrument spectral response determines itsability to record detail in the spectral signal

0

0.003

0.006

0.009

0.012

0.4 0.5 0.6 0.7 0.8 0.9 1wavelength (µm)

radia

nce

(W

-m-2

-sr-1

-µm

-1)

TM1 TM2TM3

TM4

Simulation of TM band measurements of a vegetation spectral signal

Page 26: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

26

Fall 2005The Nature of Remote Sensing 51

Spectral Resolution (cont.)

• Hyperspectral systemswith narrow spectralresponses (typicallyabout 10nm) areuseful for detectingfine spectral detail

0

0.2

0.4

0.6

0.8

1

0

0.1

0.2

0.3

0.4

0.5

1350 1400 1450 1500 1550

refl

ecta

nce

norm

alized sp

ectral responsiv

ity

wavelength (nm)

0

0.2

0.4

0.6

0.8

1

0

0.02

0.04

0.06

0.08

0.1

1350 1400 1450 1500 1550

refl

ecta

nce

norm

alized sp

ectral responsiv

ity

wavelength (nm)

Simulation of spectral doublet measurementwith two different spectral resolutions

TM (50-nm)

AVIRIS (10-nm)

Fall 2005The Nature of Remote Sensing 52

The Nature of Remote Sensing

• Introduction• Remote Sensing Systems• Remote Sensing Physics• Sensor Parameters• Display and Data Systems

Page 27: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

27

Fall 2005The Nature of Remote Sensing 53

Image Formats

lines1-8

bands1-7

lines

1-8

lines1-8

bands

1-7

bands 1-7

samples 1-8

BSQ: Band SeQuential

BIL: Band Interleaved-by-Line

BIS (BIP): Band Interleaved-by-Sample (-Pixel)

Fall 2005The Nature of Remote Sensing 54

File Formats

• raw– no header

• geoTIFF– variant of TIFF that includes geolocation information in

header (http://remotesensing.org/geotiff/geotiff.html)• HDF

– Hierarchical Data Format (http://hdf.ncsa.uiuc.edu/)– self-documenting, with all metadata required to read an

image file contained within the image file– variable length subfiles– NASA specific version: EOS-HDF

(http://hdf.ncsa.uiuc.edu/hdfeos.html)• NITF

– National Imagery Transmission Format(http://remotesensing.org/gdal/frmt_nitf.html)

– Department of Defense

Page 28: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

28

Fall 2005The Nature of Remote Sensing 55

Display Systems

• Digital Numbers (DNs) are image data• Grey Levels (GLs) are numerical display values• Look-Up Tables (LUTs) map DNs —> GLs and

change image brightness, contrast and colors– Actual displayed colors depend on the color response

characteristics of the display system

DN1 LUT GLR D/A

RGBDN2 LUT GLG D/A

DN3 LUT GLB D/A

R

G

B

spectral bands or other features

(255,0,0)

(0,255,0)

(0,0,255)

yellowmagenta

cyan

red

greenblue

black

white

GL3

GL2

GL1

(255,0,255)

(0,255,255)

(255,255,0)

(0,0,0)

(255,255,255)

Display system architecture

RGB color cube

Fall 2005The Nature of Remote Sensing 56

Color Composites

• Composite any three sensor bands into RGB• Color IR (CIR) mode approximates CIR film

spectral response– interpretation key:

• red = vegetation• grey, yellow = soils• blue, black = water

AnyGreenBlueBlue (B)AnyRedGreenGreen (G)AnyNIRRedRed (R)

FalseColor

Color IR(CIR)

TrueColor(TC)

Color ModeDisplayColor

51,27,173,2,14,3,24,2,1CIR27,17,7NA3,2,1NATC

AVIRISSPOTTMMSScomposite

generic composites

sensor-specific composites

Page 29: The Nature of Remote Sensing - University of Arizonadial/ece531/Nature_of...agriculture near Yuma, Arizona TM1 TM2 TM3 TM4 TM5 TM6 (TIR) TM7 The Nature of Remote Sensing 10 Fall 2005

29

Fall 2005The Nature of Remote Sensing 57

Color Composite Example

TM2 TM3 TM4 Color IR (CIR)

TM1 TM2 TM3 True Color (TC)

Fall 2005The Nature of Remote Sensing 58

Data Processing Systems

• “Standard” types of preprocessing– radiometric calibration– geometric calibration– noise removal– formatting

• Generic description– Level 0: raw, unprocessed sensor data– Level 1: radiometric (1R or 1B) or geometric processing

(1G)– Level 2: derived product, e.g. vegetation index

Generally, higher levelsof processing cost more!