the pamela silicon tracker

37
Firenze, 06 October 2005 - RD05 Lorenzo Bonechi The The PAMELA PAMELA Silicon Tracker Silicon Tracker Lorenzo Bonechi - PAMELA collaboration Lorenzo Bonechi - PAMELA collaboration INFN Sezione di Firenze - Dipartimento di Fisica dell’Universita’ di Firenze INFN Sezione di Firenze - Dipartimento di Fisica dell’Universita’ di Firenze INTRODUCTION INTRODUCTION MAGNETIC SPECTROMETER MAGNETIC SPECTROMETER PERMANENT MAGNET PERMANENT MAGNET SILICON TRACKING SYSTEM SILICON TRACKING SYSTEM ( ( MECHANICS MECHANICS ) ) PERFORMANCES of the tracking PERFORMANCES of the tracking system system CONCLUSIONS CONCLUSIONS

Upload: bracha

Post on 22-Feb-2016

76 views

Category:

Documents


0 download

DESCRIPTION

The PAMELA Silicon Tracker. Lorenzo Bonechi - PAMELA collaboration INFN Sezione di Firenze - Dipartimento di Fisica dell’Universita’ di Firenze. INTRODUCTION MAGNETIC SPECTROMETER PERMANENT MAGNET SILICON TRACKING SYSTEM ( MECHANICS ) PERFORMANCES of the tracking system CONCLUSIONS. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

TheThe PAMELAPAMELA Silicon TrackerSilicon Tracker

Lorenzo Bonechi - PAMELA collaborationLorenzo Bonechi - PAMELA collaborationINFN Sezione di Firenze - Dipartimento di Fisica dell’Universita’ di FirenzeINFN Sezione di Firenze - Dipartimento di Fisica dell’Universita’ di Firenze

INTRODUCTIONINTRODUCTION MAGNETIC SPECTROMETERMAGNETIC SPECTROMETER

PERMANENT MAGNETPERMANENT MAGNET SILICON TRACKING SYSTEMSILICON TRACKING SYSTEM ((MECHANICSMECHANICS))

PERFORMANCES of the tracking PERFORMANCES of the tracking systemsystem

CONCLUSIONSCONCLUSIONS

Page 2: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The PAMELA experiment

Page 3: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Earth observation 350 / 610 km Inclination = 70.4o

Soyuz 2 launcher Baikonur Cosmodrome Launch date = end 2005 3 year mission

350 - 610 km

Pamela operationalDuring launch / orbital manoeuvres

Housed in an atmospheric pressure vessel Temperature = 5oC ÷ 35oC All subsystems must withstand launch vibrations! Electronics must withstand up to ~3 krad

Resurs DK1Resurs DK1

Total mass ~ 470kg / 345W power budget

Satellite and orbit

Page 4: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The PAMELA subdetectors

Page 5: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The permanent magnet

Page 6: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

• Double Sided (x & y view)• Double Metal on the n side (No Kapton

Fanout)• AC Coupled (No external chips)• Produced by HamamatsuGeometrical Dimensions 70.0 x 53.3 mm2

Thickness 300 mLeakage Current < 3 ADecoupling Capacitance > 20 pF/cmTotal Defects < 2%

p sideImplant Pitch 25.5 mReadout Pitch 51 mBiasing Resistance (FOXFET) > 50 MInterstrip Capacitance < 10 pF

n sideImplant Pitch 67 mReadout Pitch 50 mBiasing Resistance (PolySilicon) > 10 MInterstrip Capacitance < 20 pF

DESCRIPTION of the SILICON SENSORS

The silicon tracking system

Page 7: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

“ ”

“ ”

Page 8: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Request to Hamamatsu: Defects < 2%Defects: Short Circuit of AC coupling (Most common, not destructive)

Short between adjacent stripsOpen circuit on metal lines

0

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8 1

1.2

1.4

1.6

1.8 2

Mor

e

# total defects

It seems to be ‘ perfect ’

BUT…The first batch was OK (Prototype ladders were ‘perfect’, bad strip <

2%)We started the mass production… Huge number of bad strips

(>10%)!!!!!After a big ‘fight’ we discovered in many sensors short circuits

between adjacent strips at the level of implantation (p side).Hamamatsu replaced all the bad sensors (few months of delay)

Silicon sensors defects

Page 9: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Implantation procedure problems!

Transverse ‘cuts’ on the junction sidereduce the interstrip resistance

Page 10: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Requirements:Requirements:• 1 plane made by 3 ladders• no material above/below the plane (1 plane = 0.3% X0!!!)• survive to the launch phase (7.4 grms, 50 g shocks!!!)• good alignment precision• thermal stresses (5-35 0C)

Solution:Solution: Carbon fibers stiffeners glued laterally to the sensors• very high Young module carbon fiber (300 Gpa)• pultrusion technology

Elastic + Rigid gluing

A very thin (2.5 m) Mylar foil is glued on the plane to increasethe safety of the whole spectrometer during integration and flight phases

No coating on the bonding

The mechanical assembly

Page 11: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The first silicon plane

Page 12: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Mylar film protecting the plane

Page 13: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Test plane lodging on the magnet

Page 14: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The flight model of the magnetic

spectrometer

Page 15: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Detector performances (1)

<SIG>GOOD = 9.2 <SIG>GOOD = 4.4

Page 16: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

x = (2.77 ± 0.04) m

y = (13.1 ± 0.2) m

Detector performances (2)

Page 17: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Momentum resolution

Page 18: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

On-ground muon results

Page 19: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Conclusions

Page 20: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

--------------------------------------------------------------

Page 21: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The The PAMELAPAMELA experiment experiment

• fluxes measurement• Search for light Antinuclei

• Modulation of GCR’s in the Heliosphere• Solar Energetic Particles (SEP)• Earth Magnetosphere• …

spectra 80spectra 80 MeV/c … 190MeV/c … 190 GeV/cGeV/cee++ spectra 50 spectra 50 MeV/c … 270MeV/c … 270

GeV/cGeV/c

MAIN TOPICSMAIN TOPICS::

SECONDARY TOPICSSECONDARY TOPICS::

Antiproton fluxAntiproton fluxPositron charge ratioPositron charge ratiope /

p

Page 22: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Particle Number (3 yrs)

Energy Range

Protons 3.108 80 MeV – 700 GeVAntiprotons >3.104 80 MeV – 190 GeVElectrons 6.106 50 MeV – 2 TeVPositrons >3.105 50 MeV – 270 GeVHe 4.107 80 MeV/n – 700 GeV/nBe 4.104 80 MeV/n – 700 GeV/nC 4.105 80 MeV/n – 700 GeV/nAntihelium Limit

7.10-8 80 MeV/n – 30 GeV/n

•‘Semi-Polar’ orbit (700) Low energy particles•Wide energy range + 3 years mission Reliable measurements

Expected Fluxes in 3 YearsExpected Fluxes in 3 Years

Page 23: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

TRD• Threshold device. Signal from e±, no signal from p,p• 9 planes of Xe/Co2 filled straws (4mm diameter). Interspersed with carbon fibre radiators crude tracking.• Aim: factor 20 rejection e/p (above 1GeV/c) (2. 105 with calorimeter)Si Tracker + magnet• Measures rigidity • 5 Nd-B-Fe magnet segments (0.4T)• 6 planes of 300m thick Si detectors• ~3m resolution in bending view demonstrated, ie: MDR = 740GV/c •+/-10 MIP dynamic range

Time-of-flight• Trigger / detects albedos / particle identification (up to 1 GeV/c) / dE/dx • Plastic scintillator + PMT• Timing resolution = 120ps

Si-W Calorimeter• Measures energies of e±. E/E = 15% / E1/2 + 5%• Si-X / W / Si-Y structure.• 22 Si / 21 W 16X0 / 0.90

• Imaging: EM - vs- hadronic discrimination,longitudinal and transverse shower profile

Anticoincidence system• Defines acceptance for tracker• Plastic scintillator + PMT

Pamela SubdetectorsPamela Subdetectors

Acceptance ~20.5 cm2sr

1.2 m

Mass ~450 kg

Pamela SubdetectorsPamela Subdetectors

Page 24: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The PAMELA Magnetic Spectrometer• Magnetic SystemMagnetic System

– It produces an intense magnetic field region where charged particles follow curved trajectories

• Tracking SystemTracking System– It allows to determine six points in the high field region

to reconstruct the particle trajectory and so its momentum and charge sign

ee++BB

• Momentum p m v• Charge sign (e+/e-)

(p/p)

If B uniform and perpendicular to p, then qBrp

Page 25: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

A glossary of magnetic spectrometersfor cosmic rays studies

ee++BB

• Momentum p = qBr (r=radius of curvature)• Rigidity R = p/q = Br• Deflection = 1/R = q/p

• R/R = = R ( = constant point’s measurement error)

• Maximum Detectable Rigidity (MDR) : 1

RR

MDRR

spatial spatial resolutionresolution

Page 26: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

• 5 magnetic modules• permanent magnet assembled

in an aluminum mechanics– Nd-Fe-BNd-Fe-B alloy

• magnetic cavity sizes:– (132 x 162)(132 x 162) mmmm22 x 445 x 445 mmmm

• field inside the cavity:– 0.48 T0.48 T at the center

• places for detector planes and electronics boards lodging

• Geometric Factor: 20.5 cm20.5 cm22srsr

• Black IR absorbing painting (not shown in the picture!)

MAGNETIC SYSTEMMAGNETIC SYSTEM

The PAMELA Magnetic Spectrometer

Geometry of a magnetic block

Permanent magnet elements

Aluminum frame

The “Magnetic TowerMagnetic Tower”

Base Plate prototype

Page 27: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The PAMELA Magnetic System

Magnetic field Magnetic field measurementmeasurement

• Gaussmeter F.W. Bell equipped with 3-axis probe mounted on a motorized positioning device (0.1mm precision)

• Measurement of the three components in 6736767367 points 5mm apart from each other

• Average field along the central axis of the magnetic cavity: 0.43 T0.43 T

• Good uniformity !Good uniformity !

Main field component along the Main field component along the cavity axis cavity axis

Main field component for z=0 (I) Main field component for z=0 (I) Main field component for z=0 (II)Main field component for z=0 (II)

Page 28: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

The PAMELA Tracking System

• 6 detector planes

• each plane: composed by 3 “ladders”

• the “ladder”: 2 microstrip silicon sensors + 1 hybrid circuit with front-end electronics (VA1 chip)

• silicon sensors: double sided; double metalization; integrated decoupling capacitance

• resolutions:

• MDR > 740 (GV/c)740 (GV/c)

The TRACKERThe TRACKER TheThe detector planesdetector planesTheThe “ladder”“ladder”

TheThe silicon sensorsilicon sensor

m13 m,3 yx

Page 29: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

RequirementsRequirements::

• Very small power consumption (60 W all included for 36864 readout channels)

• Very low noise (3 m resolution required!!!!)

• Redundancy and safety (satellite experiment)

• Protection against highly ionizing cosmic rays (Mainly Single Event Effect tests)

• Very big data reduction (4 GB/day of telemetry, 5 Hz trigger rate, 30 GB/day of data, >90% reduction is mandatory)

SolutionsSolutions::

• CMOS low power analog and digital electronics

• VA1 chips: ENC = 185 e- + 7.5 e- C(pF)Small input Capacitance (<20pF)Decoupling between front-end and read-out

• Big modularity, hot/cold critical parts

• Selection of components (dedicated tests)Limiting circuits on the power linesArchitectural `tricks’ (error correction codes, majority logic etc.)

• 12 dedicated DSP (ADSP2187) with highly efficient compression alghoritm

Few words on the electronics….

Page 30: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Tracker front-end: thermal test

Page 31: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Silicon gluing pointsSiliconic glue

Page 32: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

First resonance frequency: 340 Hz!!!!Test plane survived to +6db spectrum (10.4 g rms) and repeated 50 g/5 ms + 40g/1 ms shocks

Vibrations tests in Galileo (Florence)

Page 33: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

No Zero Suppression (Losses of particles in case of bad strips or change in the pedestals!!!)

We use a reversible alghoritm (Zero Order Predictor, ZOP)

eventstripADC event

strip - PEDstrip - CNevent

eventstripis distributed around 0

First word is transmittedFollowing word is transmitted if above/below n A word is transmitted with the corresponding address if the preceding one was not transmitted

If a cluster is identified (eventstrip > N )

+/- 2 strips are transmitted

ZOP compression algorithm

Page 34: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

Compression

time<1ms

Compression

factor>96%

First Plane

Last Plane

• Decompressed data o Non compressed data

Signal/Noise

• Decompressed data o Non compressed data

Resolution x (m)

Some results on the compression…

Page 35: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

2002: production of flight model detector planes2002: production of flight model detector planesPerformances obtained with cosmic rays in Firenze : s/n for MIP

Page 36: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

July 2000: CERN SPSJuly 2000: CERN SPSSpatial resolutionSpatial resolution

(July 2000 beam test with 5 ladder prototype MS)

50/

04.077.2

nsmx

20/

2.01.13

nsmy

• FINAL LADDERS

• FINAL ELECTRONICS

• SMALLER MAGNETIC SYSTEM

DISTRIBUTIONDISTRIBUTIONR q p

p/p versus pp/p versus p

Page 37: The PAMELA Silicon Tracker

Firenze, 06 October 2005 - RD05 Lorenzo Bonechi

SignalSignalnon bending view bending view

Signal/NoiseSignal/Noises/n 26 s/n 52300 GeV/c Electron event300 GeV/c Electron event

non bending view bending view

During the last test (June 2002) the spectrometer flight model has been tested to determine the performances

July 2002: CERN SPSJuly 2002: CERN SPS