the pyv plasmid of yersinia encodes a lipoprotein,

Upload: bernard-china

Post on 01-Jun-2018

217 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    1/10

    icrobiology (1990) 4(9), 158 5-1593

    YV plasm id of

      Yersinia

     encodes a l ipop rotein,

    B. China, T. Michiels and G. R. ComelJs*

    Unite de f>/licrobioiogie. Universite Catholique de

    Louvain. U.C.L 5 4-90. 54 Avenu e Hippocrate,

      B-1200

    Brussels, Belgium.

    Summary

    A series of lipoproteins w as detec ted   n the membrane

    fraction of

      Yersinia enterocolitica

      W227, a typical

    strain from serotype 0:9. At least two of them, YlpA

    and YIpB, are encoded by the pYV plasmid. The

    sequence of

      ylpA

      reveals the presence of a typical

    lipoprotein signal peptide. The mature YtpA protein

    would be 223 residues long with a calculated molecu-

    lar weight of 23798 for the proteic moiety of the

    molec ule. YlpA shares 88 identical residues with the

    TraT protein encoded by plasmid pED208, 80

    identity with TraT proteins encoded by plasmids R100

    and F, and 77 identity with the TraT protein encoded

    by the virulence plasmid of

     Salmonella typhimurium.

    Th e  ylpA  gene hybridized with the pYV plasmid of

    Yersinia pseudotubercutosis

    suggesting that this

    gene is conserved among

      Yersinia

      spp. The produc-

    tion of YlpA is controlled by

      virF

      and only occurs at

    37 C in the absence of Ca^' ions. This co-regu lation

    with the

      yo p

      genes suggests that

      ylpA

      is a virulence

    determinant. However, mutations  n ylp clearly a ffect

    neither the resistance to human serum nor the

    virulence for intravenously inoculated mice.

    Introduction

    Pathogenic strains of  Yersinia   harbour closely related

    70kb plasnnids involved in virulence designated pYV

    {Gemski ef  ai .   1980; Zink et ai,   1980; Biot and Cornelis,

    1988). The pYV plasmids specify several temperature-

    dependent properties. These include a Ca^

     *

      requirement

    for growth at 37°C, the secretion of large amounts of

    plasmid-encoded proteins called Yops and the pro-

    duction of an outer membrane protein called PI (Bolin  e t

    ai

    1982; for review see Straley, 1988; Cornelis   et

      ai

    1989a).

    Received 3 January, 1990; revised 17

     ApnI.

      1990. 'For correspondence.

    Tel.

     (2) 7645488; Fax (2)

     7645481;

     Earn/Bitnet CORNELIS at

     BUCLLN11.

    The secretion of Yops occurs in growth-restriction

    con ditions , i.e. at 37°C in the absence of Ca^* ions. Both

    phenomena are controlled by a ±2 0k b region of the PYV

    plasmid called the 'calcium region'. This region contains

    several transcription units designated  virA. virB.  wrCand

    virF  in  Yersinia enterocolitica   and  IcrA. B. C   and  F   in

    Versin/a pesf/s (Goguen  et al.,  1984; Cornelis

     etai,

      1986;

    Yother   et al.,   1986). The  virF/lcrF   locus of the calcium

    region encodes a DNA-bind ing protein respon sible for the

    transcriptional activation of  yo p  genes at 37^C (Yother  et

    ai ,  1986; Cornelis

     etai.

      1987; 1989b). Vop proteins

      are

    thought to be involved in the resistance of yersiniae

    towards host immune defences but little is known about

    their individual role. Yop2 b from  Yersinia  pseudotubercu-

    /os/s(thecounterpartofYop51 from

     Y.

     e nterocolitica)   has

    been reported to be involved in phagocytosis inhibition

    (Rosqvist  et ai,   1988) while Yo pM from V.  pestis   (the

    counterpart of Yop48 from

     Y.

     enterocolitioa)  was found to

    share homology vi/ith the a-chain of the human platelet

    membrane glycoprotein Ib, which suggests that this

    protein might interfere with blood coagulation (Leung and

    Straley, 1989).

    In contrast to Yops, the membrane protein P l, encoded

    by gene  yopA.  is produ ced at 37''C irrespective of the

     Ca^

    concentration and independently of the presence of VirF

    (Bolin ef  ai ,   1982; Bolin and Wo lf-Watz, 1984; Skurnik,

    1985;

     Cornelis

     etai.

      1986), This protein has been reported

    to be involved in autoag glutination(Sk umik efa/. . 1984), in

    the intestinal colonization of mice (Kapperud  et ai,   1987),

    in the bindin g of collagen fibres (Emody ef  a i.   1989) and in

    resistance to the bactericidal activity of human serum

    (serum resistance) (Balligand  e t ai,   1985). A clone d  yopA

    gene can restore the serum resistance of a yopA  mutant ot

    y.  e nterocolitica   but not that of a pYV strain, suggesting

    that serum resistance in

     Y.

     enterocolitica   is multi-factorial

    (Balligand ef  al.,   1985). In contrast, Martinez showed

    recently (1989) that Escherichia  co//strain MM294 prod uc-

    ing PI from a cloned y.   enterocolitica   gene became

    serunn-resistant.

    In this work, we report that the pYV plasmid directs the

    produ ction of at least two lipo proteins. One of

     them,

     YlpA,

    is related to TraT, a protein kn own to be involved in surface

    exclusion during conjugation (Achtman   et ai.   1977) but

    also in serum resistance (Moll ef  ai ,   1980) and in the

    inhibition of phagocytosis by macrophages (Aguero ef   ai ,

    1984).

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    2/10

    1586 S, China,

     T.

      Michiels and

     G.

     R. Cornelis

    Y l p A

    Y I p B

    3 0 -

    2 0 -

    1 4 -

    L P S

    L PP

    Fig,  1.1 den 11 fi cat on of lipoproteins encod ed by  Yersinia W22703 or

    W22708 (serotype 0:9) pH)-palm ittc acid-labe lled memb ranes extracted

    trom   Y. enterocolitica   W227 strains were analysed by SDS-PAGE and

    fluorography. Lane  1, W22703(pWe22 7) (pBC5) incubated at 3 7 C   In

    BHIo., lane 2. W22708(pYL4) incubated at 37 C in BH b. ; lane 3.

    W22703(pYVe227) incubated at 37 C in BHIr,.; lane 4, W22703

    incubaled at 37-C in BHIo.; lane 5, W22703(pYVe227) incubated at 25' C

    in BHIo., lane 6, W22703(pYVe227) incubated at 37 X in BHica; lane 7,

    W22703(pYVe2?7) incubated at 37''C in BHIo.. Two proteins, YlpA and

    YIpB,  produced by the wild-type strain incubated at 3 r C in BHIo< (lanes

    3 and 7) were not detected when the strain was grown at 25 C (lane 5) or

    in the presence of Ca^ ions (lane 6). The broad band labelled LPS

    probably corresponds to the lipopolysaccharide since it did not

    disappear upon 1 h incubation at 37 C with up lo  1  mg rnl ' pronase or

    proteinase K (data not shown). Lpp identities an abundant, low

    molecular-weight lipoprotein inferred to correspond to the ma|Or E.   coli

    fipoprotein. 30. 20 and 14 are molecular m ass markers (kD).

    Results

    identification of ptasmid-encoded tipoproteins

    The lipoproteins of

     Y.

     e nterocolitica  W227 03 were labelled

    in  vivo with [^H]-palmitic acid and analysed by SDS -PAG E

    and fluorography (Fig. 1). This typical O:9 strain produ ced

    several lipoproteins, two of which appeared in higher

    amo unts on the gels. These were a 19 kD protein and a low

    molecular-weight (

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    3/10

    YlpA.  a pYV-encoded lipoprotein   of Yersinia 1587

    B a s a

    I I

    He Me

    E4 (9.4  kb i

    pQCS

    DBC4

    g . 2. Genetic map of pYVe227 and cloned fragments.

    p ot pYVe227 integrating previous data (see Mulder e(a (.. 1989): yop are the genes of the released proteins; yo pfl enc odes protein P I:  vi r

     repBA-oriR   is the replication region and   incD  is the stabilization region (Vanooteghem and Cornelis, 1990). Arrows

      fTnflf^,

     mini-Mu diac or  Jr\2S07)  inserted into pYV.  M .  operon fusion

      {cat  o r  lacZ)  at 37 X , • I, lack of transcription,  •^.   weak transcription.

    ISR or pBC19R den vat ves carrying subfragments of fragment EcoRI 4 cf pYV439 80 and used to sequence th e/Ip A gene; restriction sites are B,

     E, EcoRI; He, HincW a nd H, H/ndlll. Only the Hi nd i and the Hin dlll sites used for cloning are shown.

     No copy of ylpA  was detected on the chromoso me

    W22 703 by Southern blot hybridization

    a not shown).

     ylpA

     1), which suggests that it is regulated by   virF  like th e

    p genes (Cornelis ef a/. , 1989b). In order to confirm this

    onitored the expression of ylpA  in a pair

     virF ^

     an d

     virF~

     strains. The wr f mutant was constructed

      virF

     {C.

     Lambert

     at.,

      in preparation). As show n in Fig. 5, both

    pB disappe ared in the virF~ strain.

      ylpA   and   yIpB   are members of the  yo p

    In order to check whether  ylpA   is transcribed from its

    33, a yop20 insertion mutant of pYVe227 (Mulder et

    ,  1989). As show n in Fig. 5, YlpA was still produc ed by

     ylpA   do not

    Searching for homologies

    Four genes were foun d to share significant hom ology w ith

    gene  yIpA.  These were the fra fge ne s of plasmid pED208

    from   Satmonella   fyp/j/(Finlay and Paranehych, 1986), of

    plasm ids RIOO (Ogata et ai.   1982) and F (Jalajakumari ef

    ai ,  1987) and of the virulence-as sociated plasm id of S,

    typhimurium   (Sukupolvi ef  ai .   1990). The homology to

    ylpA  was 76 % for fr a ff ro m pED208 (fra7 pED208) and 6 8%

    fo r

      traTf,

      traTp^oo   a n d  traTs. typhimunum-   The s imi lar i ty was

    even more pronounced when the amino acid sequences of

    mature proteins were compared (Fig. 6). The five TraT

    proteins aligned without gaps. Only 26 out of 223 amino

    acids differed between YlpA and TraTpEopoa (88%

    identity). The number of divergent residues was higher for

    the other TraT proteins: 44/223 for TraTpioo

     (80%

      identity),

    45/223 for TraTp (80% identity) and 51/223 for

    TraJs.,ypt,,mtjr.ijm  (77% iden t i t y ) .

    Role of YlpA in pathogenicity

    We mo nitored the virulence for the m ouse of Y. enterocoli-

    tica W22703(pYVe227) and of the   ylpA  mutant W22708-

    (pYL4). The mice were inoculated intravenously (i.v.), as

    was done previously, to assess the virulence of yo p2 0 and

    yop48 mutants (Mulder ef ai .   1989). As shown in Fig, 7,

    the bacterial coun ts in the spleen and the liver did not differ

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    4/10

    1588 e.  China. TMichiels and

     G.

      R. Cornelis

    HetGluAspAspMetLysLys

    CTGGATCCCATTTTGGTCAACCGTGGCTATGGGAGGTGCCATGCCCTGTTTTAAATGGAAGATGATAreAAGAAA

    1960 Hindi

      .

      2000

    AsnMetLysLeul leAlal lfThrAUValLeuS«>rS TValLeuValLeuSerGlyCysr.l>AIaMetScrThr

    AACATCAAGTTAATAGCAATAACTGCCGTACTGTCCTCAGTGTTAGTCCTCTCCGGCTGTGGTGCGATGAGCACA

    Z

    AlalleLysLysArgAsnLeuGluValLysThrGlnMetSerGluThrlleTrpLeuGluCroSerSerGlnlys

    GCAATCAAAAAACGTAATCTGGAAGTGAAAACGCAGATGAGTGAAACGATTTGGTTAGAGCCGTCTTCACAGAAA

    ThrValTyrLeuGlnllrLysAsnThrSerAspLysAsnMetLeuGlyLeuAlaProLyslleThrLysAlaVal

    ACCGTTTATCTACAGATAAAAAATACCTCAGATAAAAATATGCTTGGCTTAGCCCCCAAAATCACAAAAGCTGTG

    2200

      . .

    GlnAapLysGlyTyrThrValThrScrSerProGluAspAlaHisTyrTrpl icIilnAlaAsnValLpuLjsAla

    CAGGATAAGGGGTATAtCGTGACATCGTCCCCAGAAGATGCACATTACTGGATCCAGGCTAATGTCCTGAAAGCC

    2300  aMl

    AspLyaMetAspLeuArgGluAlaGluGlyPheLeuSerGlnGlyTyrGlnGlyAiaAULeuGlyAlaAiaLeu

    GATAAAATGGATTTGCGTGAAGtTGAAGGATTTCTGAGTCAGGGGTATCAGGGGGCTGCGCTGGGGGCCGCATTA

    2400

    GlyAlnGIyl leThrGlyTyrAsnScrAKiiScrAlaGlyAiaSprl.ciitilyVulrilyLcuAlnAlaGiyl.PuVal

    GGGGCTGGTATTACAGGCTACAACTCTAACTCAGCGGGAGCrTCGTTAGGAGTTGGATTGGfGGrTGGTCTTGTT

    GlyHetValAUAspAlaMetValGluAspIleAsnTyrThrMetValThrAspValGlnl leSerGluLysThr

    GGGATGGTCGCGGATGCGATGGTCGAGGACATCAATTATACTATGCTGACGGATGTCCAGATTTCCGAGAAAACG

    2500  . . . . .

    AspThrProLeuGlnThrAspAsnValAIaAlaLeuLyaGlnGlyThrSerGlyTyrLysValGlnThrSerThr

    GACACCCCCCTACAGACTGACAATGTGGCGGCGCTGAAGCAAGGCACCTCTGGCTATAAAGTTCAGACCAGCACA

    2600

    G l n Th rG l y A s n L y s H i s G l n Ty rG l n Th rA rg V a l V a l S e rS e rA l a A s n l . y s V a l A s n L e u L y s P h e G l u G l u

    CAGACGGGtAACAAACATCAATACCAGACTCGCGTGGTTTCTTCGGCTAACAAGQTtAACCTGAAATTTGAAGAA

    .Hindi . 2700

    AlaGlnProValLeuGluAspGlnLeuAlaLyBSerlleAlaAsnlleLeu

    GCCCAGCCGCTTCTGGAAGACCAGCTAGCGAAGTCTATCGCCAATATCCTGTAAGTCATAAGCATCCTGGTATGA

    . 277fi

    Fig. 3, Sequence of the ylpA  gene from pYVe

    80 and of (fs gene prod uct. The 875 bp

    sequenced fragment corresponds to c o-ordin

    ±7.1 to

     6.2kb

     of the pYV plasmid (see Fig. 2

    This sequence was numbered from nucleofid

    1952 to nucleotide 2776 to allow an easy

    connection w ith the immediately p receding

    sequence containing gene /o p 20 and presen

    elsewhere (T Michiels  et al..   submitted for

    publication).   ylpA   starts about 500bp

    downstream of the end of yop20   an d is

    transcribed in the same onentation. The large

    open reading frame (249 codons) starts at

    nucleotide 2006 and ends at nucleotide 2752

    the sequence. The actual ylpA   gene presuma

    starts at the second ATG (underlined twice).

    Cleavage by signal peptidase II would occur

    the Leu-Ser-Gly  v  Cys sequence (underlined

    typical of TraT proteins. Bam HI and Hincll

    restriction sites are indicated. These sequenc

    data will appear in the EMBL'GenBan k/DDBJ

    Nucleotide Sequence Data Libranes under th

    accession number X52753  (ylpA).

    significantly between both strains.

     It is

      noteworthy that

    only one mouse out of 13 inoculated with the  ylpA   strain

    exhibited abcesses on the liver 96 hours after inocu lation,

    whereas these abcesses occurred

     in

     13/13 m ice inocu -

    lated with the  ylpA *  strain.

    Discussion

    Plasmid pYV from   Y. enterocolitica  0:9 encodes at least

    two lipoproteins designa ted YlpA (29kD) and YIpB  27 kD).

    As  in the case of most pYV-encoded functions, these

    proteins were found to be produced at 37''C only in the

    absence ot Ca^* ions.

    According   to the nucleo tide seque nce analysis, the

    YlpA lipoprotein of  Y. enterocolitica  is closely related to

    the TraT proteins encoded by the conjugative plasmids

    pED208, RIOO

      and F as

      well

      as by the

     virulence-

    associated plasmid of S.   typhimurium   (Finlay and Paran-

    ehych,

      1986; Ogata

     ef

     ai

    1982; Jalajakukumari

     ef

     ai.

    1987;

      Sui

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    5/10

    YlpA, a pYV-en coded lipoprotein o f yersinia 1589

    y/p/i

    4.9 kb

    14.9 kb

    3.6 kb

    B2( 13.6 kb)

    B

    ^

      ^ Q

    i >

    a.  a. a.

    14 9

    13 6

    3.6

     4. Mapping of the  I n3   insertion in pYL4 and detection of  ylpA  in

      Y pseudotubercutosis.

      no. 2 |82) of pYVe2 27, (ii) transpo son T n3, and {IIMV) the two

     Hinc\\-BamH\  300bp

     ylpA  gene. The probe

    give nse to two S amHI fragments of pVL4. hybridizing with

    the probe hybndized with two fragments ot 3,6 and

     ylpA

    This is the case for TraT proteins from plas mids R l 00 (also

    known as NR1) (Reynard and Beck, 1976; Taylor and

    Hughes, 1978), R6-5 (Moll

     ef ai

    1980), and from the

    virulence plasmid

      of S.

      typhimurium   LT2 (Rhen

      and

    Sukupolvi,

      1988: Sukupolvi

     et ai

    1990). However, the

    deletion  of the region enco ding TraT  in plP135G,  the

    virulence plasmid of S.   typhimurium  C52, did not have a

    significant effect on the virulence for orally infected mice

    as estimated by bacterial growth in the spleen (Michiels ef

    ai ,  1987),

    Plasmid pYV-encoded components are known  to be

    involved in the resistance of   Yersinia   to human serum at

    37X (Heesemann

      et ai

    1983; Pai and DeStephano,

    1982). Protein PI has been shown to participate in that

    activity since mutants lacking PI were rapidly killed upon

    incubation in 5% human serum , irrespective of the grow th

    temperature (Balligand   et al.,   1985). Furthermore, E. coli

    MM294 expressing protein

      PI

      was reported

      to

      resist

    human serum (Martinez, 1989). However, the production

    of protein

      PI

     from

     a

     cloned gene restored the serum

    resistance of a pYV* yers/n/a strain mutated in P I b ut did

    not confer serum resistance to a pYV strain (Balligand ef

    ai ,  1985). This suggests that

      at

      least one additional

    plasmid-encoded factor is involved in serum resistance.

    The YlpA protein is a likely candidate in view of its high

    homology with TraT, However, Balligand  et

     al.

     (1985) did

    not detect

      any

     difference betwee n

      Y.

      enterocolitica

    W22708 strains carrying either the wild-type plasmid

    pYVe227 or the  ylpA  mutant plasmid pYL4 with respect to

    their ability to resist human  serum. This sugge sts that YlpA

    is not essential for resistance to human serum , at least in

    the experimental conditions used by these authors.

    Production

     of

     YlpA appeared to be regulated by

     virF.

    -^  igkD

    -•YIpB

    19kD

    Fig.

     5. Expression of YlpA and YIpB in  virF  and

    yop2 0 mutants. Lipcprcteins were analysed by

    SOS-PAGE and fluorography after incorporation

    ot pH|-palmitic ac id during incubation at 37 X in

    BHIo,. Unes 1-3, 16% SDS-PAGE analysis of

    total cell proteins from   Y. enterocolitica:

    W22708(pYL4}. the  ylpA   muta nt {lane 1);

    W22703(pBC6), the   virF   mutan t (lane 2):

    W22703(pYVe227), the wild-type strain (lane

     31.

    Both YlpA and YIpB disappear in the  virF

    mutant, while the strain containing pYL4 only

    lacks YlpA Lanes 4-7 . i d % SDS-PAGE analysis

    of pHlpalmitic acid-labelled outer-membrane

    proteins extracted from W22703, the plasm d ess

    derivative (lane 4); W 22703(pYVe227), the

     wild-

    type strain (lane 5}; W22708(pYL4), the   ylpA

    mutant (lane 6); and U'22703(pBM33), the yop20

    mutant (lane 7). YlpA was not detected in the

    ylpA  mutant pYL4 (lane 6), but was detected in

    the  yop20  mutant, pBM33 (lane 7), indicating that

    yop20  and ylpA  are net part ot a single operon.

    Note that a chromosome -encoded protein

    migrates nearly to the same position as YlpA on

    this 14% acrylamide gel, while this protein was

    separated from YlpA on the 16% acrylamide gel.

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    6/10

    1590

      S.

     China,

      T.

     Michiels

     and

     G .

     R . Cornells

    pVV*.439-B0

    pK[)2U8

    ^

    Riao

    .S .

     (

     1 phimuri   UBl

    - 2 0 - 1 0

    MKKNMKLIAITAVLSSVLVLSG

    - - » - • • •

    M M l i i -

    H K - -

    MK - -

    • - M - M

    •K l .HMV -LV -

    • K L M M \ - L V -

    KLMMVTLV-

    • - T - A - - -

    • - T - A

    • - T - A

    pYVp439-80

    ptD20fl

    RIOO

    1  10 20 30 10 50

    rGAHSTAIKKRNLb:\KT9MSETIWLEPSS(JhTVVLalKNTSDKNMLGLAPKITKAV8DKG

    A-tN--F D-S--wr.--AI)--KA--

    W-^-HD-\-fB--*>--\ I)-SD-WSL-A-DI-A--

    70  KO

      30 100 110 120

    pVVe4 39-H0 VTVTSSi EDAHVl. IWANVLKADKMllLKKAFCFLSQGYWCAAl.CAAl GAGITGVNMNSAGA

    pEDZOB  1  DS T-tt F--IA S

    F  -«-VT--DK->  Sg W-NR--E:---\  -G

    RiOO  -«-\T--DK-V  S« li NH t  V

    S.

     t.vptiimurium

      VT--DK-V Sg-y>-NH--E--LS

      A- --

    pED208

    F

    RIOO

    S.

      ip/ji

    pED20B

    RIOO

    5 t

     yph

      mtir

    1.10  no 150 160 170 180

    SLGVGLAAGLVGHVADAMVEDI WTHVTIlVal St:KTDTPLWTDM\ ,VALK«GTSGYKVgTS

    T  A -- [  TASV--  - - -

    T

      A V I

      A-H-KATVT

      R A-1

    T

      A  \  [

      A-R-KATVT

      R A-1

    T

      A 1

      R-KAT\T

      R A-I

    l y d  ZOO  210  22a

    TeTGNKliaY8TRV\ SSANKVNl,KFFEA«F Vl.EDyLAKSl ANI L

    9-K

      1 K \

     E---a-K

      -J K - - - -

    -K---a-K  S K

    -K  y -h --N K K-

    IDENTITY

    197/223

    178/223

      79/223

    172/223

    Fig.

     6 .

     Similarities between TraT proleins.

     T

    amtno acid sequence  of Yip A trom PYVe43

    js aligned with those

     of

     TraT from p6 D20e

    and Pafanchych, 1986], F (Jalaiakuman

     et

     a

    J986),R100 (Ogata e(aA, 1982).

     and S,

    typhimurium   (Sukupoivi

     el

     ai..  1990). The a

    adds

     are

     numbe red from ifie c ysteine that

    conslitLrtes  the first residue of the mature p

    Dashes symbolize residues identical

     to

     thos

    YipA. Divergent residues are indicated.

    like the production of  the Yops. This co-regulation sug-

    gests that, like Yop s, YlpA could

     be

     involved

     in

      pathogen-

    icity. However, our observations with i.v.-inoculated mica

    did not support this hypothesis. The i.v,-inoculated mouse

    model was selected because

     tt

     allowed us to dem onstrate

    the role

     of

     yop20

      and

     yop48

      in

     virulence (Mulder

      ef

      al..

    1989). This model may not be the best one to piri-point the

    influence of a com ponen t involved in com pleme nt neutral-

    ization because normal mouse serum has been shown  to

    have a poor bactericidal effect against   E.  coli  (Vaara ef

     ai.

    1984), Thus

     our

     result sugg esting that YlpA

     is not a

     clear

    virulence factor must

     be

     interpreted c autiously.

    Alternatively, the presence of YlpA on the pYV plasm id

    could simply be an evolutionary vestige of  this p lasmid.

    Indeed, the

     replication fun ction

     of

     pYV

     is

     related

     to

     that

     of

    plasmid RIOO (Vannooteghem

     and

     Cornells, 1990) while

    the partition

     and

     stabilization fu nction of

     pYV is

     homolo-

    gous

     to

     that of

     F

     (Bakour

     ef ai.

     1983; Biot

     and

     Cornells,

    1988), both plasmids containing

     a

     fra fg en e. However,

    one argument contradicts this hypothesis: ylpA  is not part

    of  a  transfer op eron  in pYV  (Bakour  ef at.. 1983) while  in

    both RIOO and

     F

     traTis   included in

     the

     ra

     operon.

    Experimental procedures

    Bacteriat strains and plasmids

    Y.

     enterocolitica   W22703 (nalidixic acid-resistant) and

      Y.

     en

    colitica  W22708 (slreptomycin-resistant)

      are

     derivatives  o

    same Res Mod   mutant

     of Y.

     enterocolitcaVJ227  (serotyo

    (Cornells  and  Colson, 1975).  Y.  enterocotitica   439-80

    wild-type

      0:9

      strain.

     The pYV

     plasmids of

     all

      these strain

    indistinguishable

      by

      SamHI,  EcoRI  or  Ss fll res triction ana

    (Laroch eefa/., 1984).

    E.  coliJM^ 01 (Yanisch-Perron

     etal..

     1985)and LK111  (rec

    from

      M.

     Zabeau)

      are

     F .  /acZ delta

      M15

     strains. Strain

      S

    containing a copy

     of

     RP4 integrated into

     its

     chromosom e (S

    etal.,  1983). was used

     to

     mobilize onT-containing plasmids

    Phasmids pT Zi8R

      and

     pTZ19R

      are

     from Pharmacia, pT

    (similar   to  pTJS81)  is a

     pUC

      derivative containing

      the

     tra

    origin   (oriT)   from piasmid

      RK2

     (Schmidhauser

      and

      Hel

    1985).

    Construction

      of

     mobilizable derivatives ofpTZtSR

      an

    pTZ19R

    In order

     to

     facilitate

     the

     introduction

     of

      recombinant plasm

    yersiniae, we constructed mobilizable denvatives of   the ver

    cloning vectors pTZ18R

      and

     PTZ19R. A  ±760bp  Hinc\\-S

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    7/10

    YlpA,

     a pYV-encoded tipoprotein of \ersm\a   1591

    o

    7

    6

    5

    3

     

    A

    r

    i ^ ^ ^

    ^ ^

    O pYV*

    D pVL4

    1 I I I

    0 6 12  18  24 30 36 42 48 54 60 66 7? 78 84 90 96

    0 6 12 18 24 30 364 2485 460 66 72 78 84 90 96

    Hours

     7. Growth of strains K   enterocolitica   Vi/22703(pYVe227) and

     yipA   derivative, in the spleen (A) and the liver (B) of

    v. with 5 x 10' bad eria (arrow).

     a  4-day

     Each point was the mean value of a group of four mice;

     XUe

    . pYVe227 ' bacteria; L], pYL 4' bacteria.

    plasmid pTJS 82, containing the transfer origin of

     {oriT)   was cloned into pTZ19R linearized by partial

     I

     dige stion. The recom binants ca rrying the o/'/7 fragment were

      E. coli   S17.1 as

     E.

     co / /SI

     7.1:

    i) all thelranstorm ants, selected on am piciflin, were collected  m a

     Y .

     W22703; (iii) the transfer of mobilizable derivatives

    contain

    fragm ent inserted in the Dral site at co-ordinate 1372 of

    aced the 346 bp   PvuU  fragment containing the multicloning

    e of pBO l 9R with that of pTZ I 8R. The constructed mobilizable

    on analysis, pBC I 8R lost the D ral site at co-ordinate 1353

    ty to be pa ckaged as single-stranded

    7, to complemen t the /acZ delta M l5 mutation or to be

     E. coli   S17.1.

    pH]-patmitic acid tabelling of tipoproteins

    Yersinia strains were inoculated to an optical density ot 0.1  ODsoo

    in 5-1 0m l of brain heart infusion broth

     fBHI,

     Difco) supplem ented

    with 0,4% (w/v) glucose as well as either 5mM OaCtz (BHIca) or

    200mM Na oxalate and 200mM MgClp (BHIoJ. After 2h

      incu-

    bation at room temperature with shaking, 250-500[iCi of [9.10-

    ^H]-palmitic acid (30Ci mmol ', from Dupont-NEN) was added to

    the culture and bacteria were further incubated at either 37 C or

    25°C for 4h . Membrane proteins were prepared acco rding to

    Achtman ef al.  (1978). Proteins were analysed by SDS-PAGE, on

    gels containing 14% or 16% of 29/1 (w/w) acrylamide/bisacryl-

    amide (Serva). The gel was treated with En^Hance (Dupont-NEN)

    for fluorography as recommended by the manufacturer. Auto-

    radiography was performed over 2-10 days at -7 0°C using FUJI

    NIF X-ray films.

    Infection of mice

    Specific pathogen-free BAL8/c female mice (bred at the Uni-

    versity of Louvain) 6 weeks old were given (intraperitoneally)

    0.5ml of saline (NaCI 0.15M) containing 20 mg m l ' desferriox-

    amine (Desteral, Ciba-Geigy). Twenty-four hours later, mice were

    inoculated intravenously (i.v.) with 0.5ml of a V.  enterocolotica

    suspension in saline. Bacterial challenges were prepared from

    overnight cultures at room temperature in tryptic soy broth,

    wash ed onc e and then susp ende d in saline. Grovt̂ h of bacteria in

    the spleen and liver of animals was followed in relation to time

    after the i.v. injection. Groups of four mice were sacrificed by ether

    anaesthesia and the organs were removed aseptically and

    hon^iogenized separately in saline: 0.1-nnl volumes of serial

    10-fold dilutions in saline were spread on McConkey agar and

    colonies we re counted after inc ubation for 4 8h at 28°C. Minimal

    detectable limits were 50 bacteria per organ. Results were

    expressed as the log,o of bacterial counts.

    Proteinase treatment of membrane fractions

    In order to discriminate between lipoproteins and other lipid-con-

    taining components, membrane tractions were incubated with

    increasing quantities (10fi.g ml ' to 1 mg ml ')o f either pronase

    (Serva) or proteinase K (Serva). After 30 min incuba tion at 3 7 X ,

    membranes were either pelleted by a 60 min centrifugation at

    15000

     r.p.m.

     or were precipitated by the ad dition of

     4

     vol. acetone

    and subsequently harvested by centrifugation.

    Southern blot analysis

    DNA was dige sted, electrophoresed on a 1 % agarose gel,

    denatured and transferred into a nylon membrane (Hybond-N,

    Amersham) by standard methods (Maniatis er   al..   1982). The

    probe was electroeluted from a polyacryiamide gel and labelled

    with p^Pj-dATP (D upont-NEN, lOOOCi mm ol ') by nick trans-

    lation (M aniatis et a(., 1982).

    Nucieotide sequence and sequence analysis

    The nucleotide sequence was determined by the method of

    Sanger ef  al .   (1977), using T7 DNA polymerase for eiongation

    (Sequenase, from USB). Single-stranded DNA was obtained from

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    8/10

    1592 a   China, T. Michiets and

     G.

      R. Cornetis

    strains LK111 or JM101 overinfected with the M13K07 helper

    phage.

    DNA and protein sequences were analysed on a Micro Vax

    Computer (Digital Equipment Corp.) with the program packag e of

    Claverie (1984) and the FASTN, FASTP (Lipman and Pearson.

    1985), ALIGN, and NAQ software from the Protein Identification

    Resource program package.

    Acknowledgements

    We acknowledge L. Houdmont for skilful help in testing the

    virulence in mice. We thank H. Wolf-Watz for the gift of V.

    pseudotuberculosis VPIII. and  H. Makela  fo r   discussion. This

    work was supported by the Belgian Ministry for Sciences (Action

    Concertee 86/91686) and by the Belgian Fund for Medical

    Research (FRSM — co nven tion 3.4514.83). B.O. is a fellow of the

    Belgian Institute for Scientific Research applied to Industry and

    Agriculture (IRSIA). T.M, is Senior Research Assistant of the

    Belgian National Fund for Scientific Research (FNRS).

    References

    Achtman.

      M., Kennedy, N., and Skurray, R. (1977) Cell-oell

    interactions in conjugating  Esche richia  coli: role of fraTprotein

    in surface exclusion. Proc Natl Acad Sci  USA  74 :  5104-5108.

    Achtman,  M., Schwuchow, S., Helmuth, R., Morelli, G.. and

    Manning,  P.A. (1978) Cell-cell interactions in conjugating

    Escherichia  coli:  Con mutan ts and stabilization of mating

    aggregates. Mo/Gen Genef 164:  171-183.

    Aguero, M .E., Aron, L., DeLuca,

     A.G.,

     Timmis, K.N., and Cabello,

    F.C. (1984) A plasmid-encod ed outer membrane protein, TraT,

    enhances resistance of Esc herichia coliio  phagocytosis. Infect

    Immun 46 : 740-746.

    Bakour, R., Laroche, Y., and Cornelis, G. (1983) Study of the

    incompatibility and replication of the 70-kb virulence piasmid ot

    Yersinia. Ptasniid \Q: 279-289.

    Baliigand,  G., Laroche, Y., and Cornelis, G. (1985) Genetic

    analysis of virulence plasmid from a serogroup 9   Yersinia

    enterocolitica   strain: role of outer membrane protein PI in

    resistance to fiuman serum and autoagglutination.   Infect

    tmmun 48: 782-786.

    Biot, T., and Cornelis, G. (1988) The replica tion, partition a nd   yop

    regulation of the pYV plasmids are highly conserved in  Yersinia

    enterocolitica and Y. pseudotuberculosis. J  Gen Microbioi ̂ 34•.

    1525-1534.

    Bolin,  I., and Wolf-Watz, H. (1984) Molecular cloning of the

    temperature-inducible outer m embrane protein 1 of  Yersinia

    pseudotuberculosis. Infect Immun  43: 72-78.

    Bolin,  I., Norlander, L., and Wolf-Watz, H, (1982) Temperature-

    inducible outer m embrane protein of  Yersinia  pseudotubercu-

    losis and Yersinia  enterocolitica  is associated with the virulence

    plasmid.

      Intect Immun  37: 506-512.

    Claverie, J.M. (1984) A common philosophy and FORTRAN 77

    software package lor implementing and searching sequence

    data base.

     NucI

     Acids Res  12: 397-40 7.

    Cornelis, G.R., and Colson C. (1975) Restnction ot DNA in

    Yersinia enterocolitica  detected by recipient ability for a

    derepressed R tactor from

     E.  coli.

     J  Gen  Microbiol87:285-291.

    Cornells. G.. Sory, M.P., Laroche, Y., and Derclaye, I. (1986)

    Genetic analysis of the plasmid region controlling virulence in

    Yersinia enterocolitica  0:9 by mini-Mu insertions and la c  gene

    fusions.  Microb Pathogen  1 : 349-359.

    Cornelis, G.. Vanooteghem , J.C., and Sluiters, C. (1987) Tr

    cription of the   yop   regulon from  Y. enteroco litica   requ

    Irans-acting pYV and chromosomal genes. Microb Pathog

    367-379.

    Cornelis, G.R., Biot, T., Lambert de Rouvroit, C , Michiels

    Mulder. B,. Sluiters, C , Sory,

     M.-P.,

     Van Bouchaute, M.,

    Vanooteghem, J.-C. (1989a) The   Yersinia yop   regulon.

    Microbioi 3:  1455-1459.

    Cornelis, G., Sluiters, C , Lambert de Rouvroit, C , and Micbie

    (1989b) Homology between VirF, the transcriptional activa

    the   Yersinia  virulence reguion, and AraC, the E scherichia

    arabinose operon regulator. J Bacteriol  171:  254-262.

    Embdy, L., Heesemann, J., Wolf-Watz, H., Skurnik, M.,

    perud.  G ..

     O Joole.

      P., and Wadstrom, T (1989)  Bindin

    collagen by  Yersinia enterocolitica   an d  Yersinia  pseudotu

    culosis:  evidence for yop

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    9/10

    YtpA.

      a pYV-encoded tipoprotein of  Yerslnia   1593

    P.A. and T immis, K.N. (1980) Plasmid-deter-

    mined reistance to serum bacterial activity: a major outer

    membrane protein, the (raTgene product, is responsible for

    plasmid-specified serum resistance in  E scherichia

     coli.

      Infect

    /mmun 28: 359-367.

    s, T, Simmo net, M., Sory, M.-P., and Cornelis,

    G.R. (1989) Identification of additional virulance determinants

    on the pYV plasmid ot   Yersinia enterocolitica   W227.  Intect

    Immun 57: 2534-254^.

    , R.T., Winters , C , an d Levine, R.P. (1982) Nucleotide

    sequence analysis of the complement resistance gene from

    plasmid RIOO. J  Bacfeno/151: 819-827.

     N.B., and Minkley, E.G., Jr (1984) The product of the F

    sex factor

      (ra7

    surface exclusion gene is a lipoprotein.  J Biot

    Chem

    259:

      5357-5260.

      CH,, and DeStephano, L. (1982) Serum resistance associ-

    ated with virulence in

     Yersinia

      enterocotitica. tnfect Immun  35 :

    605-611 .

     A.M., and Beck, M.E. (1976) Plasmid-mediated resist-

    ance to the bactericidal effects of normal rabbit serum.   Intect

    Immun 14: 848-850.

     M., and Su kupoivi, S. (1988) The role of the f raf ge ne of the

    Salmonella typhimurium   virulence plasmid for serum resist-

    ance and growth within liver macrophag es. Microb Pathogen  5:

    275-285.

    phagocytosis in  Yersinia  p seudotuberculosis:   a virulence plas-

    mid-e ncod ed ability involving the Yop2b protein.   Intect immun

    56:2139-2134.

    , S., and  Coulson, A.R. (1977) DNA seque ncing

    with chain temiinating inhibitors.   Proc Natl Acad Sci USA  74 :

    5463-5467.

    Helinski, D.R. (1985) Regions of b road -

    host-range plasmid RK2 involved in replication and stable

    maintenance in nine species of gram-negative bacteria.   J

    Sacteno/164: 446-455.

     R., Priefer, U., and Puhier, A. (1983) A broad host range

    mobilization system for in vivo  genetic engineering: transpos on

    mutagenesis in Gram negative bacteria.   Biotechnology   1 :

    784-791.

    Skurnik, M. (1985) Expression ot antigens encoded by the

    virulence plasmid of  Yersinia enteroc olitica   under different

    growth condit ions,  intect immun   47: 183-190.

    Skurnik, M., Bolm, I,, Heikkinen, H., Piha, S., and Wolf-Watz, H.

    (1984) Virulence piasm id-associated autoagglutination in Yer-

    sinia spp. J Bacteriol 158: 1033-1036.

    Straley, S.C. (1988) The plasmid-encoded outer-membrane

    proteins of  Yersinia  pestis. Rev Infect Dis  10: S323-S326.

    Sukupoivi, S., Vuorio, R., Oi, S.Y.,

     O Connor,

      0., and Rhen, M.

    (1990) Characterization of the   traT   gene and mutants that

    increase outer membrane permeability from the   Salmonella

    typhimurium virulence plasmid. Mol M icrobiol4:   49-57 .

    Taylor, P.W., and Hughes, C (1978) Plasmid carriage and the

    serum sensitivity of enterobacteria.  Infect Imm un 22:   10-17.

    Tokunaga, M., Tokunaga, H. and Wu, H.C. (1982) Post-trans-

    lational modification and processing of Escherichia coli   pro-

    lipoprotein  in vitro. Proc Natt Acad Sci USA 79: 2255-2259.

    Vaara,

     M., Vitjanen, P., Vaara, T., and Makela H. (1984) An outer

    membrane-disorganizing peptide PMBN sensitizes   E. coli

    strains to serum bactericidal action.  J Immunol  132: 2582 -

    2589.

    Vanooteghem. J.C. and Cornelis, G.R. (1990) Structural and

    functional similarities between the replication region of the

    Yersinia   virulence plasm id and the RepFIIA replicons .  J

    Bacterion72: 3600-3608.

    Yanisch-Perron, C , Vieira, J., and M essing, J. (1985) Improved

    M13 phage cloning vectors and host strains: nucleotide

    sequences of the M13mp18 and pUC19 vectors.   Gene  3 3:

    103-119.

    Yother, J., Cham ness. T.W., and G oguen, J.D, (1986) Tempera-

    ture-controlled plasmid regulon associated with low calcium

    response in  Yersinia   pestis. J Bacteriol 165: 443-447,

    Zink, D.L., Feeley, J .C , W ells, J.G., Vand erzant, V., Vickery, C ,

    Roof,  W,D., and O'Donovan, G,A. (1980) Plasmid-mediated

    tissue invasiveness in   Ye rsinia enteroco litica. Nature   283:

    224-226.

  • 8/9/2019 The pYV plasmid of Yersinia encodes a lipoprotein,

    10/10