the reservoir: mechanistic model politecnico di milano nrmlec08 andrea castelletti

51
The reservoir: mechanistic model Politecnico di Mi NRM NRM Lec08 Lec08 Andrea Castelle

Upload: corey-underwood

Post on 28-Dec-2015

217 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

The reservoir:mechanistic model

Politecnico di Milano

NRMNRMLec08Lec08

Andrea Castelletti

Page 2: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

2

Itaipu dam on the Parana river

Spillways in action

Dam

Penstocks and turbine hall

Page 3: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

3

Three Gorges dam (China)

Page 4: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

4

Typical Localization

Clan canyon damColorado river

Page 5: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

5

penstock

Longitudinal section

barrier

water surface level

storage

intake tower

intakes

minimum intake level

surface spillway

maximum storagebottom outlet

Page 6: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

6

Surface spillways

Page 7: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

7

Bottom outlet

Loch Lagghan damScozia

Page 8: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

8

surface spillway penstock

Page 9: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

9

Dam-gate structures

Gates: a) rising sector b) vertical rising c) radial

Page 10: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

10

Piave - S.Croce system

Hydropower reservoirs are often interconnected to form a network

Reservoir network

Page 11: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

11

Features of reservoirs

• the active (or live) storage;

• the global stage-discharge curve of the spillways;

• the stage-discharge curve of the intake tower;

By the management point of view a reservoir is characterized by:

Page 12: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

12

Stage-discharge curve (morning glory)

Page 13: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

13

Causal network

1ts 1t

r tu

1th

ts

1ta

st = storage volume at time t

at+1 = inflow volume in [t ,t+1)

rt+1 = effective release volume in [t , t+1)

Page 14: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

14

Causal network

tS

1tE1te

1ts 1t

a 1tr t

u

1th

ts

What is missed?

- evaporation

- r depends on a and e

Page 15: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

15

Mechanistic model

tS

1tE1te

1ts 1t

a 1tr t

u

1th

ts

What is missed?

- evaporation

- r depends on a and e

tt sSS surface

Page 16: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

16

Mechanistic model

tS

1tE1te

1ts 1t

a 1tr t

u

1th

ts

tt sSS surface

ttt sSeE 11 evaporation

Page 17: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

17

Mechanistic model

tS

1tE1te

1ts 1t

a 1tr t

u

1th

ts

ttt sSeE 11 evaporation

tt sSS surface

1111 ttttt rEass storage

Page 18: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

18

Mechanistic model

tS

1tE1te

1ts 1t

a 1tr t

u

1th

ts

ttt sSeE 11 evaporation

tt sSS surface

1111 ttttt rEass storage

tt shh level

Page 19: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

19

Mechanistic model

tS

1tE1te

1ts 1t

a 1tr t

u

1th

ts

ttt sSeE 11 evaporation

tt sSS surface

1111 ttttt rEass storage

tt shh level

111 ,,, tttttt EausRrrelease

11111 ,,, tttttttttt eausRsSeass

Page 20: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

20

Balance equation

Sean ttt 111 net inflow

11111 ,,, tttttttttt eausRsSeassbalance

111 ,, ttttttt nusRnss balance

111 ,, ttttttt nusRssnnet inflow estimator

Simplification: the storage is a cylinder S(st) = S

Pros

Cons

Using it when the storage is not actually a cylinder generates an error.

Page 21: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

21

Storage-level relationship

By inverting h(.) one obtains the value of the storage by measuring the level, i.e. the only measurable quantity

There exist a biunivocal relationship between the level measured in a point and the storage.

tt shh Implicit assumption:

the water surface is always horizzontal.

Example: if the storage is a cylinder

arbitary constant

A negative storage represents the missing volume required to bring the water surface up to the level corresponding to the zero storage.

infh s s S

infshSs

tt shh

Page 22: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

22

Storage-level relationship

By inverting h(.) one obtains the value of the storage by measuring the level, i.e. the only measurable quantity

There exist a biunivocal relationship between the level measured in a point and the storage.

tt shh Implicit assumption:

the water surface is always horizzontal.

tt shh

Non-cylindrical storage

batimetry of the reservoir (DEM)

The identification of h(.) can be performed in different ways, depending on which one of the following is known:

numerical computation point by point

interpolation tt sh ,historic time series

Page 23: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

23

Examples of storage-level relationships

Campotosto reservoir (Italy)

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

1304 1306 1308 1310 1312 1314 1316 1318Level [m a.s.l.]

Sto

rag

e[1

03m

3]

Historic series

Regression line

Campotosto reservoir (Italy)

60,000

80,000

100,000

120,000

140,000

160,000

180,000

200,000

220,000

1304 1306 1308 1310 1312 1314 1316 1318Level [m a.s.l.]

Sto

rag

e[1

03m

3]

Historic series

Regression line

Page 24: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

24

Examples of storage-level relationships

Piaganini reservoir (Italy)

0

100

200

300

400

500

600

700

800

387 388 389 390 391 392 393 394 395 396 397Level [m a.s.l.]

Sto

rag

e[1

03

m3]

Historic series

Piaganini reservoir (Italy)

0

100

200

300

400

500

600

700

800

387 388 389 390 391 392 393 394 395 396 397Level [m a.s.l.]

Sto

rag

e[1

03

m3]

Historic series

Page 25: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

25

Examples of storage-level relationships

Piaganini reservoir (Italy)

0

100

200

300

400

500

600

700

800

387 388 389 390 391 392 393 394 395 396 397Level [m a.s.l.]

Sro

rag

e[1

03

m3]

Data from 1988 to 1992

Data from 1993 to 2001

Data of February 19933rd February 1993

Piaganini reservoir (Italy)

0

100

200

300

400

500

600

700

800

387 388 389 390 391 392 393 394 395 396 397Level [m a.s.l.]

Sro

rag

e[1

03

m3]

Data from 1988 to 1992

Data from 1993 to 2001

Data of February 19933rd February 1993

Page 26: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

26

Surface-storage relationship t tS S s

Can be determined with similar techniques.

Page 27: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

27

Continuous-time model of reservoir

( ) , , ,ds t

a t i t s t e t S s t r t s t p tdt

s(t) = storage volume at time t [m3]

a(t) = inflow rate at time t [m3/s]

e(t) = evaporation per surface area unit at time t [m/s]

i(t,s(t)) = infiltration [m3/s]

S(s(t)) = surface area [m2] r(t,s(t),p(t)) = release when the dam gate are open of p [m3/s]

Page 28: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

28

It depends on the storage-discharge functions and the

position p of the intake sluice gates

It depends on the storage-discharge functions and the

position p of the intake sluice gates

( ) , , ,ds t

a t i t s t e t S s t r t s t p tdt

Simplifications

Cylindric reservoir n(t) = a(t)-e(t)S net inflow

i = 0 almost always true, at least in artificial reservoirs

n(t)

Page 29: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

29

Instantaneous storage-discharge relationships

• s min , s max : bounds of the regulation range• s* : storage at wich spillways are activated

s min s max s*

spillway

open gates

maximum release

minimum release

s(t)

limited

min,norN

maxN

max,norN

minN

max, maximum allowed release norN min, minimum allowed release norN

( )r t

Page 30: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

30

Example of storage-discharge relationship

flow

ra

te [

m3/s

]

storage [Mm3]

N max (•)

N min (•)

~

~

Page 31: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

31

Modelling for managing

The continuos-time model can not be used for managing:

• decision are taken in discrete time instants• data are not always collected continuously

discretize

Page 32: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

32

st+1 = st +nt+1 -rt+1

nt+1 = net inflow volume in [t ,t+1)

+nt+1

Discrete model of a reservoir

t t +1

nt+1= net inflow volume in [t , t+1)

nt+1

we assume it uniformly distributed

st = storage volume at time t

st

rt+1 = volume actually released in [t , t+1)

-rt+1

( )n t

Page 33: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

33

The release function

rt+1 = Rt (st ,nt+1 ,ut)

1

1max,, ,t t t

tnor

t

V s n N s d

Maximum dischargeable

volume in [t , t+1)

1

1min,, ,t t t

tnor

t

v s n N s d

Minimum dischargeable

volume in [t , t+1)

rt+1

nt+1

ut

ut

rt+1given st & ut

given st, & nt+1

Vt

vt

45°

release decision

with

min,( ) ( ) ( , ( ))

( ) [ , 1)

n r

t

os n s

s t s t t

N

      

max,( ) ( ) ( , ( ))

( ) [ , 1)

nor

t

s n s

s t s t t

N

with

Page 34: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

34

An example of minimum and maximum release (Campotosto, Italy)

n = 50 m3/s

n = 0 m3/s

flow

ra

te [

m3/s

]

storage [Mm3]

Page 35: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

35

Set of feasible controls U(st)

feasible control

U(st)flo

w r

ate

[m

3/s

]

storage [Mm3]

depends on the inflow!

1 1min( ) : ( , ) ( ma, x )t t tt tt t t t tU n ns u v s u V s 1 1min( ) : ( , ) ( ma, x )t t tt tt t t t tU n ns u v s u V s

Page 36: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

36

ut

st given

Vt (st,min{nt+1})

vt(st,min{nt+1})

rt+1

45°

Vt (st,max{nt+1})

vt(st,max{nt+1})

U(st)

Set of feasible controls U(st)

Page 37: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

37

Remarks

If nt+1 is known

Alternative ways of formulating the mass balance equation

rt+1 = ut

1 1

1

t t

t t

n rh h

S S

ht = level at time t rt+1 = Rt(st ,nt+1 ,ut) = Rt (ht ,nt+1 ,ut) actual release in [t , t +1)

1 1 1t t t th h n r nt+1= net inflow in terms of level

rt+1= actual release in terms of level

vt(st ,nt+1) rt+1 Vt(st ,nt+1)

vt(st ,nt+1) ut Vt(st ,n t+1)

constraint already included in Rt(•)

NO releases of interest)( ttt sUu

Page 38: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

38

CONCLUSIONS

1 1 1 1 1

1 1 1

1 1

( , , , )

( , , , )

( )

t t t t t t t t t t

t t t t t t

t t

t t

t t t

t t

s s a e S s R s u a e

r R s u a e

h h s

S S s

E e S s

u U s

Model of a reservoir in operation

outputs

feasible controls

state transition

Page 39: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

39

CONCLUSIONS

1 1 1 11

1 1 1

1 1

( , , , , ) if

0 if

( ,

>0

=0

, , , )

( , )

t t t t t t t t tt

t t t t t t

p p

p

p

p

p

t t

t t

t t t

t t

p

s a e S s R s u a es

r R s u a e

h h

u u

u

u

u

s

S S

u

s

E e S s

u U s

U

Model of a reservoir to be constructed

1 1( , , , , )t t t tp

tR u a es u

Page 40: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

40

Natural lakeh

e

s

a r

hmin

n t a t e t

r

s

(s - smin)

0 if ssmin

N(s) =

s t n t r t

N(s(t))

net or effective inflow

Stage-discharge function( ) ( ( ))r t N s t

smin

Page 41: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

41

min min

1 +

s s s s e n

t

e d

t

s t n t N s t (s - smin)

Remark: s(t+1) depends on s(t) only if = .

T is the so-called time constant of the reservor.

Linearization and time constant

r

ssmin

t t+1

Linear continuos system

( )s t As t Bn t

0

(0) t

A tAts t e s n e d

Lagrange formula

Page 42: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

Remark: s(t+1) depends on s(t) only if = .

T is the so-called time constant of the reservor.

42

min min

1 +

s s s s e n

t

e d

t

s t n t N s t (s - smin)

Linearization and time constant

r

ssmin

t t+1

Meaning of T

By assuming =T=1/ one gets

T is the time required for the storage to reach 1/3 of its initial value.

1min min1s t s s t s e

min min

1 +

s s s s e n

t

e d

t

Page 43: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

43

min min

1 +

s s s s e n

t

e d

t

s t n t N s t (s - smin)

Linearization and time constant

r

ssmin

t t+1

An accurate modelling does require Shannon’s or Sampling theorem

An accurate modelling does require Shannon’s or Sampling theorem

Remark: s(t+1) depends on s(t) only if = .

T is the so-called time constant of the reservor.

Page 44: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

44

LAKE S T=

[km2] [daysi]

Maggiore 212.0 7.4Lugano 48.9 8.7Varese 15.0 34.7Alserio 1.5 8.0Pusiano 5.2 15.0Como 146.0 7.7Iseo 61.0 7.8Garda 370.0 86.6

The modelling time-step for lakes with T = 8 is about 1 day.

For ll these lakes the catchment areas is relatively small compared to the lake surface.

The outlet mouth has not yet reached an equilibrium condition.

For most of the lakes T is nearly 8 days.

Time constant and the Lombardy lakes

Page 45: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

45

dB1/T

• Incoming waves whose frequency is smaller than 1/T are not smoothed.

E.g.: flood waves from snow melt.

• Waves with frequency greater than 1/T are smoothed.E.g.: flood waves from storms.

Bode diagram

Buffering effecti.e. low-pass filtering

Page 46: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

46

The modelling time-step depends upon the state

Non-linear model: T is not defined

It would be useful to have models with a time-step that changes with s, however this is not possible with the algorithms nowadays available.

Solution: use models with different at different time steps.

changes with s

T changes with the value s around which the system is linearized

Linearization of the system

To be sure that the system is well

represented by the model: 0,1* T

Page 47: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

47

r

h

Comparison between two lakes

min

nh h

2 >1 12h h

12h t h t

Average level

2

2

1

10 0h h

.

min n t

h h hS S

1) ( )

2) 0

n t n.h

hmax

h

t

Page 48: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

48

Lake shore inhabitants

*

minmax 0t

n Ph t h h

S

Downstream users *

t

TPr t n e

S

happy with lake 2 ( T small)

Happy with lake 1 ( T big )

Comparison between two lakes:impulsive flood

CONFLICTCONFLICTh

t

r

t

*

min 0t

Tn Ph t h e t

S

Average levelAverage level*

min

nh

*

min

nh

Impulse response Impulse response

t

TPe

S

t

TPe

S

n

t

n*

P

Page 49: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

49

Lake shore population big

Downstream users small

Which compromise ?

Natural lake Regulated lake

Different stage-discharge

functions in different time

instants

Natural regime curve

Natural curve

Curves for different gate positions

r

h

Lake regulation

Page 50: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

50

Downstream users

Months

t

t

Lake popul.

h(t)

r

Lake regulation

t

t

Page 51: The reservoir: mechanistic model Politecnico di Milano NRMLec08 Andrea Castelletti

Readings

IPWRM.Theory Ch.5