the ’t hooft-loop in coulomb gauge - institut für...

25
The ’t Hooft-Loop in Coulomb Gauge Dominik Epple [email protected] Eurograd Workshop Todtmoos 2007

Upload: ngohanh

Post on 25-Apr-2018

227 views

Category:

Documents


6 download

TRANSCRIPT

The ’t Hooft-Loop in Coulomb Gauge

Dominik Epple

[email protected]

Eurograd Workshop Todtmoos 2007

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Contents

� Coulomb Gauge Yang-Mills Theory

� The ’t Hooft Loop as confinement criterion

� Dependency of the ’t Hooft Loop behaviour on the Yang-Mills

vacuum

� Results for the ’t Hooft Loop

� Summary

arXiv:0706.0175 [hep-th]; Accepted for publication in Phys.Rev. D

Dominik Epple Page 1

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Coulomb Gauge Yang-Mills Theory

� Hamiltonian formulation of Yang-Mills Theory

� Weyl gauge: A0 = 0, D.O.F are cartesian coordinates Aai (x),

canonically conjugated momenta Πai (x) = δ

iδAai (x),

ETCRs[Aa

i (x),Πbj(y)

]= iδabδijδ(x − y),

Hamiltonian H =∫

dxΠ2(x) + B2(x)

� Gauss’ Law DiΠi|Ψ〉 = ρm|Ψ〉 guarantees invariance of the

wave functional under small gauge transformations

� chose Coulomb Gauge ∂iAi(x) = 0 to resolve Gauss’ Law

Dominik Epple Page 2

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Coulomb Gauge ∂iAi(x) = 0

� eliminates unphysical degrees of freedom,

� change of coordinates from cartesian to curvilinear ones,

� introduces Jacobian (Fadeev-Popov determinant)

J [A] = det(−∂iDi),

� new physical degrees of freedom are A⊥ai (x).

Dominik Epple Page 3

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Coulomb Gauge Yang-Mills Hamiltonian

H =12

∫d3x

[J−1ΠaiJΠa

i + Bai Ba

i

]+

g

2

∫d3x

∫d3x′J−1ρa(x)F ab(x,x′)J ρb(x′)

Physically motivated ansatz for the vacuum wave functional

(strongly peaked at the Gribov Horizon J = 0)

Ψ[A] = J−12N exp(−1

2

∫d3xd3x′A⊥a

i ω(x,x′)A⊥ai (x′))

Dominik Epple Page 4

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Find solutions for the Yang-Mills Schrodinger equation for the

lowest energy eigenstate form the variational principle

〈Ψ|H|Ψ〉〈Ψ|Ψ〉 → min .

� coupled set of integral equations (Dyson-Schwinger equations),

to be solved numerically1.

1C. Feuchter and H. Reinhardt, Phys. Rev. D70 (2004) 105021

Dominik Epple Page 5

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Quantities which are computed self-consistently are

� Gluon form factor ω(q),〈ω|Aa

i (q)Abj(q

′)|ω〉 = 12(2π)3tij(q)δabδ(q − q′)ω−1(q)

� Ghost form factor d(q), Gω(q) = G0(q)d(q)/g,

G0(x,x′) = 〈x|(−∂2)−1|x′〉 = 14π|x−x′|

� Curvature χ(q), represents the ghost-loop part of the gluon

self-energy,

χ = −12〈δ2 lndet(−D∂)

δAδA 〉,J [A] = det(−D∂) = exp(− ∫

AχA)

Dominik Epple Page 6

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

The following IR behaviour holds to leading order:

ω(q) = χ(q) = A · k−α, d(q) = B · k−β, 2β − α = 1

The existence of two kinds of solutions has been predicted:

� One with α ≈ 0.795 (Found by C. Feuchter 2004)

� One with α = 1

We have been able to obtain also the solution with α = 1. Very

careful and elaborate numerics is required for it.

Dominik Epple Page 7

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

1

10

100

1000

0.001 0.01 0.1 1 10 100 1000

k [σ1/2]

ω(k) [σ1/2]χ(k) [σ1/2]

1

10

100

1000

10000

0.001 0.01 0.1 1 10 100 1000

k [σ1/2]

d(k)

Figure 1: (left) The Gluon dressing function ω(q) and the curvature χ(q), calculated by

minimizing the vacuum energy functional with a gaussian ansatz for the wave functional.

These curves are from the α = 1 solution. (right) Ghost dressing function d(q) from the

same calculation.

Phys.Rev.D75:045011,2007; hep-th/0612241

Dominik Epple Page 8

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

-5

0

5

10

15

20

25

0 2 4 6 8 10 12 14 16 18 20x/x0

[V(r)-V(1)]/k0Linear fit

Figure 2: The Coulomb Potential (quark-antiquark-Potential), computed with the form factors

from the solution with α = 1. We find a linear rising potential within excellent precision

(numerical error < 1%).

Dominik Epple Page 9

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

The ’t Hooft Loop as confinement criterion

The Wilson loop W [A(C)] = tr P exp(− ∮dxμAμ)

� Gauge-invariant quantity

� Measures magnetic flux through surface (for abelian theories)

Temporal Wilson Loop: Order parameter for Yang-Mills Theory

〈W [A(C)]〉 ={

exp(−σ · Area(C)), confined phase

exp(−κ · Perimeter(C)), deconfined phase

Dominik Epple Page 10

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Spatial ’t Hooft loop V (C): defined via spatial Wilson Loop

V (C1)W (C2) = ZL(C1,C2)W (C2)V (C1)

with Z = −1 for SU(2) and L = Gaussian linking number.

’t Hooft loop behaviour:

〈V [A](C)〉 ={

exp(−κ · Perimeter(C)), confined phase

exp(−σ · Area(C)), deconfined phase

� dual to the Wilson loop’s behaviour.

(G. ’t Hooft, Nucl. Phys. B138 (1978) 1)

Dominik Epple Page 11

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

’t Hooft loop creates a Center Vortex (A(C) denotes a center

vortex field, W [A(C1)](C2) = ZL(C1,C2)):

V (C)Ψ[A] = Ψ(A + A)

Continuum Representation:

(H. Reinhardt, Phys. Lett. B577 (2003) 317-323)

V (C) = exp[i

∫d3xA(C)(x)Π(x)

]

Dominik Epple Page 12

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

The ’t Hooft Loop in Coulomb GaugeTo one-loop order, one can calculate

〈V (C)〉 =∫

DA det(−D∂)Ψ∗(A)Ψ(A + A)

= exp(−S(C)), S(C) := S(R)

S(R) = 4πR

∞∫0

dx K(x

R

)︸ ︷︷ ︸physics

π/2∫0

dα (1 − 2 sin2 α) f(2x sin α)

︸ ︷︷ ︸=:A(x), geometry

where f(z) = j0(z) − j′′0(z), j0(z) = sin z

z .

Dominik Epple Page 13

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

The geometrical integral A(x)

A(x) =

π/2∫0

dα (1 − 2 sin2 α) f(2x sinα)

4

1∫−1

dz(1 + z2)J2(2xz)

4x

[2xJ0(2x) + πx

(J1(2x)H0(2x) − J0(2x)H1(2x)

) − 2J1(2x)]

− 3π2

16x2

[J2(2x)H1(2x) − J1(2x)H2(2x)

]

Dominik Epple Page 14

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

The geometrical integral A(x)

0.001

0.01

0.1

1

0.1 1 10 100

A(x

)

x

Numerical value

Dominik Epple Page 15

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

The geometrical integral A(x)Asymptotical properties:

� x → 0: A(x) = 2π15x2 − π

35x4 + O

(x6

)� x → ∞: A(x) = π

4x +√

π2 cos

(2x + π

4

)1√x3

+ O(

1√x5

)

0.001

0.01

0.1

1

0.1 1 10 100

A(x

)

x

Numerical valueIR expansion

UV seriesTaylor expansion around x=2

Dominik Epple Page 16

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

The geometrical integral A(x)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5 6 7 8 9 10

A(x

)

x

Numerical valueIR expansion

UV seriesTaylor expansion around x=2

Dominik Epple Page 17

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Physics: K(q)

K(q) = [ω(q) − χ(q)][1 − 1

2[ω(q) − χ(q)]

ω(q)

]

=12ω(q)

[1 −

(χ(q)ω(q)

)2]

Asymptotic behavior:

� IR: K(q) IR= [ω(q) − χ(q)] ≈ c0 + c1 q + . . .

� UV: K(q) UV= 12ω(q) ≈ 1

2(q + a0) + . . .

Dominik Epple Page 18

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Discussion of S(R)/R

S(R) = 4πR

∫dxK

(x

R

)A(x)

� Integral for S(R) linearly and logarithmically UV-divergent

� Large-R-behavior of S(R) tests IR-behavior of K(q)

� need to renormalize by subtraction of UV-leading parts in K(q)

Crucial: do not spoil IR-behavior!

Dominik Epple Page 19

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Parametrize ω(q) = A/q + a0 + q.

Replace K(q) → K(q) − K0(q) = K(q):

K(q) =12ω(q)

[1 −

(χ(q)ω(q)

)2]

K0(q) =12(q + a0)

[1 −

(χ(q)ω(q)

)2]

K(q) =A

q

[1 −

(χ(q)ω(q)

)2]

Dominik Epple Page 20

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

This subtraction has the following properties:

� We do not spoil the IR behavior

� Subtract all terms creating UV divergencies in S(R)

� Subtract also terms creating UV-finite contributions to S(R),however, these are contributions are neglegible

� Renormalized ’t Hooft loop exponent S(R).

S(R) = 4πR

∫dx

A

q

[1 −

(χ(q)ω(q)

)2]

A(x), q = x/R

Dominik Epple Page 21

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Behaviour of the ’t Hooft Loop for differentsolutions of the YM vacuum

Using the asymptotic behavior of A(x), one can show that:

� A finite c0 leads to a logarithmically diverging S(R)/R

� c0 = 0 leads to S(R → ∞)/R → const., which corresponds to

a perimeter law for the ’t Hooft Loop.

These points can be verified numerically also with the full A(x).

Dominik Epple Page 22

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Result for the ’t Hooft Loop

0

1

2

3

4

5

6

7

8

9

0 2 4 6 8 10 12 14 16 18 20

Sba

r(R

)/R

[G

eV]

R [fm]

ξ0=0, ξ= 0.15625ξ0=0, ξ= 0ξ0=0, ξ=-0.15625ξ0=1.44, ξ= 0.15625ξ0=1.44, ξ= 0ξ0=1.44, ξ=-0.15625

Figure 3: The S(R)/R function, calculated numerically using the full expression for A(x)

and the renormalized K(q) as described in the text. The YM-Solution has the property

ω(q) − χ(q) → 0 for q → 0. We see a behaviour of S(R → ∞)/R = const., which

means a perimeter law for the ’t Hooft loop, which corresponds to a confined theory.

Dominik Epple Page 23

The ’t Hooft Loop in Coulomb Gauge Eurograd Workshop Todtmoos 2007

Summary

� We have been able to obtain solutions for the Yang-Mills

vacuum which show a exact linear Coulomb potential.

� We can show a perimeter-law for the ’t Hooft Loop, i.e.

confinement, for a special solutions of the Yang-Mills vacuum.

Dominik Epple Page 24