therapeutic techniques to improve balance in neurological and developmental conditions

78
University of the Philippines Manila College of Allied Medical Professions PT 154: Therapeutic Exercise III Ms. Mary Grace M. Jordan, PTRP December 8, 2009

Upload: charleigh-edwards

Post on 31-Dec-2015

44 views

Category:

Documents


1 download

DESCRIPTION

University of the Philippines Manila College of Allied Medical Professions PT 154: Therapeutic Exercise III Ms. Mary Grace M. Jordan, PTRP December 8, 2009. Therapeutic techniques to improve balance in neurological and developmental conditions. Balance deficits…. - PowerPoint PPT Presentation

TRANSCRIPT

University of the Philippines ManilaCollege of Allied Medical ProfessionsPT 154: Therapeutic Exercise IIIMs. Mary Grace M. Jordan, PTRPDecember 8, 2009

one of the most common problems treated by physical therapists.

are thought to be common after stroke, and they have been implicated in the poor recovery of activities of daily living (ADL) and mobility and an increased risk of falls.

Define balance Define terminologies Discuss the theoretical underpinnings of

balance Discuss the guidelines for training

balance in neurologic and developmental conditions

Identify techniques that can address impairments of balance in patients with neurologic and developmental conditions

“…the ability to maintain the body’s center of gravity over its base of support with minimal sway or maximal steadiness.”(Emery et.al, 2005)

a complex process involving the reception and organization of sensory inputs and the planning & execution of movement to achieve a goal requiring upright posture

is the set of functions which maintains man’s upright during stance and locomotion by detecting and correcting displacement of the line of gravity beyond the BOS.

Postural control – involves controlling the body’s position in space for the dual purposes of stability and orientation.

Postural orientation –The control of relative positions of the body parts by skeletal muscles with respect to gravity and each other.

Postural stability - The condition in which all the forces acting on the body are balanced such that the center of mass (COM)is with in the stability limits or boundaries of BOS

Normal anterior/posterior sway – 12 degrees from most posterior-anterior position.

Lateral sway - 16 degrees from side to side.If sway exceeds boundaries, compensation is

employed to regain balance.

Static balance - the base of support (BOS) remains stationary and only the body center of mass (COM) moves. The balance task in this case is to maintain the COM within the BOS or the limit of stability (the maximal estimated sway angle of the COM).

Maintaining a stable antigravity position while at rest such as when standing and sitting

Automatic postural reactions - maintaining

balance in response to unexpected external perturbations, such as standing on a bus that suddenly accelerates forward.

Dynamic balance - Maintaining balance when a person is moving from point A to point B, where both the BOS and COM are moving, and the COM is never kept within the BOS.

is stabilizing the body when the support surface is moving or when the body is moving on a stable surface such as sit-to-stand transfers or walking

• Reactive control - in response to external forces (perturbation).

• Proactive control – in anticipation of internal forces imposed on the body’s own movements.

Balance control is very complex and involves many different underlying systems.

Postural control results from a set of interacting systems that work cooperatively to control both orientation and stability of the body.

BALANCE

Anticipatory Mechanisms

(internal)

Proactive Mechanisms

(external)

ReactiveMechanisms

Sensory Systems

Body Schema

Neuro-muscular Synergies

Musculo-skeletal

Components

Joint range of motionSpinal flexibilityMuscle propertiesBiomechanical relationships among

linked body segments

Motor processes (neuromuscular response synergies)

Sensory processes ( visual, vestibular, and somatosensory systems)

Higher-level integrative processes • Mapping sensation to action• Ensuring anticipatory and adaptive aspects of

postural control

ADAPTIVE POSTURAL CONTROL

Involves modifying sensory and motor systems in response to changing task and environmental demands

ANTICIPATORY POSTURAL CONTROL

Involves preparing the sensory and motor systems for postural demands based on previous experience and learning

Body alignmentMuscle tonePostural tone

Minimize the effect of gravitational forces, which tend to pull us off center

The ideal alignment in stance allows the body to be maintained in equilibrium with the least expenditure of internal energy.

STANDING ALIGNMENT

Head balanced on level shoulders

Upper body erect, shoulders over hips

Hips in front of ankles Feet a few cm (10 cm)

apart

SITTING ALIGNMENT

Head balanced on level shoulders

Upper body erect Shoulders over hips Feet and knees a few

cm apart

The force with which a muscle resists being lengthened (Basmajian and De Luca, 1985)

Keeps the body from collapsing in response to the pull of gravity

Increased level of activity in antigravity muscles

Activation of antigravity muscles during quiet stance.

Muscles that are tonically active during quiet stance: gastrocsoleus, tibialis anterior, gluteus medius, TFL, iliopsoas, and erector spinae

Ankle strategyHip strategyStepping strategy

Used when displacements are small. Displaces COG by rotation about the ankle joint. Posterior displacement of COG – Dorsiflexion at

ankle, contraction of anterior tibialis, quadriceps, abdominals.

Anterior COG displacement – Plantar flexion at ankle, contraction of gastrocnemius, hamstring, trunk extensors.

Employed when ankle motion is limited, displacement is greater, when standing on unstable surface that disallows ankle strategy.

Preferred when perturbation is rapid and near limits of stability.

Post. Displacement COG – Backward sway, activation of hamstring and paraspinals.

Ant Displacement COG – Forward sway, activation of abdominal and quadricep muscles.

If displacement is large enough, a forward or backward step is used to regain postural control

The maintenance of balance is based on an intrinsic cooperation between the Vestibular system Proprioceptive Vision

Postural control does not only depends on the integrity of the systems but also on the sensory integration with in the CNS, visual and spatial perception, effective muscle strength and joint flexibility

Provides information regarding:(1) The position of the head relative to the

environment; (2) The orientation of the head to maintain level

gaze; (3) The direction and speed of head movements

because as your head moves, surrounding objects move in the opposite direction.

Provide a reference for verticality Visual stimuli can be used to improve a person’s

stability when proprioceptive or vestibular inputs are unreliable by fixating the gaze on an object.

Since most individuals can keep their balance when vision is occluded

In addition, visual inputs are not always an accurate source of orientation information about self-motion.

Visual system has difficulty distinguishing between object motion, referred to as exocentric motion, and self-motion, referred to as egocentric motion.

Provides the CNS with position and motion information about the body with reference to supporting surfaces

Report information about the relationship of body segments to one another

Receptors: muscle spindles, Golgi tendon organs, joint receptors, and cutaneous mechanoreceptors

A powerful source of information for postural control

Provides the CNS with information about the position and movement of the head with respect to gravity and inertial forces, providing a gravitoinertial frame of reference.

Distinguish exocentric and egocentric motions

SEMICIRCULAR CANAL

Sense angular acceleration of the head

Sensitive to fast head movements ( those that occur during gait or imbalance such as slips, trips, and stumbles)

OTOLITH ORGANS

Signal linear position and acceleration

Source of information about head position with respect to gravity

Respond to slow head movements (those that occur during postural sway)

Vestibular, visual, and somatosensory inputs are normally combined seamlessly to produce our sense of orientation and movement.

Incoming sensory information is integrated

and processed in the cerebellum, basal ganglia, and supplementary motor area.

Somatosensory information has the fastest processing time for rapid responses, followed by visual and vestibular inputs

When sensory inputs from one system are inaccurate the CNS must suppress the inaccurate input and select and combine the appropriate sensory inputs from the other two systems.

Injury to or diseases of the structures (e.g. eyes, inner ear, peripheral receptors, spinal cord, cerebellum, basal ganglia, cerebrum)

Damage to Proprioceptors

Injury to or pathology of hip, knee, ankle, and back have been associated with increases postural sway and decreased balance

Lesions produced by tumor , CVA, or other insults that often produced visual field losses

Patients with muscle weakness and poor control lack effective anticipatory, ongoing, and reactive postural adjustments and therefore experience difficulty in: Supporting the body mass over the paretic

lower limb Voluntarily moving the body mass from one

lower limb to another Responding rapidly to predicted and

unpredicted threats to balance

Changing the base of supportRestricting movement of body massUsing hands for support

Wide BOSShuffling feet with inappropriate

steppingShifting on the stronger leg

Stiffening the body with altered segmental alignment Moving slowly Changing segmental alignment to avoid large shifts

in COG standing reaching forward - flexing at hips

instead of dorsiflexing ankles standing reaching sideways - flexing trunk

sideways instead of moving body laterally at hips and feet

sitting reaching sideways - flexing forward instead of to the side

in standing - not taking a step when necessary.

holding on to supportgrabbing

Balance cannot be trained in isolation from the actions which must be relearned.

▪ In training walking, standing up and sitting down, reaching and manipulation… postural adjustments are also trained, since acquiring skill involves in large part the fine tuning of postural and balance control.

Postural adjustments are specific to each action and the conditions under which it occurs. It cannot be assumed that practice of

one action will transfer automatically into improved performance in another.

Progressive complexity is added by increasing the difficulty under which goals must be achieved, keeping in mind the various complex situations in which the patients will find themselves in the environment in which they live, both inside and outside their homes, and the precarious nature of balance.

As control over balance and confidence improves, tasks are introduced which require a stepping response, and responses to external constraints such as catching a thrown object and standing on a moving support surface

Use a gait belt any time the patient practices exercises or activities that challenge or destabilize balance.

Stand slightly behind and to the side of the patient with one arm holding or near the gait belt and the other arm on or near the top of the shoulder (on the trunk, not the arm).

Perform exercises near a railing or in parallel bars to allow patient to grab when necessary.

Do not perform exercises near sharp edges of equipment or objects.

Have one person in front and one behind when working with patients at high risk of falling or during activities that pose a high risk of injury.

Check equipment to ensure that it is operating correctly.

Guard patient when getting on and off equipment (such as treadmills and stationary bikes).

Ensure that the floor is clean and free of debris.

A variety of mode can be used to treat balance impairment

Begin with weight shifts on a stable surface

Gradually increase swayIncrease surface challenges (mini-tramp, etc.)

Rehabilitation balls ,foam rollers ,foam surfaces are often used to

• Provide uneven or unstable surface for exercise

• Sitting balance ,trunk stability, and weight distribution can be trained on a chair, table, or therapeutic ball

Pool is an ideal palace for training balance

Awareness of posture and the position of the body in space is fundamental to balance trainingBegin in supine or seated positionOver sessions, use a variety of arm positions,unstable surfaces, single leg stances, etc.Training both Static posture & Dynamic

posture Mirrors can provide postural feedback –Visual

feedback

Adding movement patterns to acquired stable static postures increases balance challenge.

Add ant./post. sway to increase stability limits

Trunk rotations and altered head positions alter vestibular input.

Stepping back/forward assists in re-stabilization exercises.

From simple to complex involves• BOS – Advance from wide to narrow base• Posture – Stable to unstable posture (sway)• Visual – Closing of the eyes• COG – Greater disruption to elicit hip or stepping

strategy

Progress to more dynamic activities, unstable surfaces, and complex movement patterns

Frequency,intensity,and duration

Normal postural activity forms necessary background for normal movement and for functional skills

Flaccid stage – balance exercises in sitting

Stage of spasticity – practice symmetrical weight bearing in standing, weight shifting, bending of knees and hips

For stabilityCombination of isotonicsStabilizing reversalsRhythmic stabilization

Analysis of task• Individual• Task• Environment

Practice of missing components • Strategy training• Impairment and strategy level

Practice of whole task• Functional level

Transference of learning

Vary posturesVary support surface Incorporate external loads

Moving support surfacesMove head, trunk, arms, legsTransitional and locomotor activities

ReachingCatchingKickingLiftingObstacle course

Standing swayAnkle strategyHip strategyStepping strategyPerturbations

Reduce visual inputsReduce somatosensory cues

acute stage post-stroke Head and trunk movements Reaching actions

To progress: Increasing distance to be reached Varying speed Reducing thigh support Increasing object weight and size to involve both

upper limbs Adding an external timing constraint such as

catching or bouncing a ball

Head and body movementsReaching actionsSingle limb supportSideways walkingPicking up objects

The following main aspects should be developed: Antigravity support or weight bearing on the

feet Postural fixation of the head on the trunk and

on the pelvis in the vertical Counterposing Control of anteroposterior weight shift of the

child’s COG Control of lateral sway from one foot to the

other. Tilt reactions in standing Saving from falling (strategies)

Training should check: Equal distribution of weight on each foot Correction of abnormal postures Building up of the child’s stability by

decreasing support Delay training in standing and walking if

the child is not ready Weight shift leading to stepping Training lateral sway Training on different surfaces

Define balance Define terminologies Discuss the theoretical underpinnings of

balance Discuss the guidelines for training

balance in neurologic and developmental conditions

Identify techniques that can address impairments of balance in patients with neurologic and developmental conditions

Read Kisner’s Chapter on Techniques to improve balance.

Read Shumway-cook’s Chapter on interventions for postural control impairments

Adler SA, Beckers D, & Buck M (1993). PNF in practice. Berlin, Springer-Verlag.

Carr JH & Shepherd RB (2003). Stroke rehabilitation: Guidelines for exercise and training to optimize motor skill. Edinburgh, Butterworth-Heinemann.

Davies PM (1985). Steps to follow: A guide to the treatment of adult hemiplegia. Berlin, Springer-Verlag.

Kisner C & Colby LA (2007). Therapeutic exercise: Foundations and techniques (5th ed). Philadelphia, F. A. Davis Company.

Levitt S (2004). Treatment of cerebral palsy and motor delay (4th ed). Singapore, McGraw-Hill Inc.

Sawner K & LaVigne J (1992). Brunnstrom’s Movement Therapy in hemiplegia: A Neurophysiological Approach (2nd ed). Philadelphia, J.B. Lippincott Company.

Shumway-Cook, A & Woollacott, M. (2001). Motor control: Theory and practical applications (2nd ed.). Philadelphia: Lippincott Williams & Wilkins.