thermal modeling

26
Analytical Modeling of Laser Moving Sources

Upload: wagner-peres

Post on 15-Dec-2015

60 views

Category:

Documents


3 download

DESCRIPTION

Thermal Modeling

TRANSCRIPT

Page 1: Thermal Modeling

Analytical Modeling of Laser

Moving Sources

Page 2: Thermal Modeling

Contains:

• Heat flow equation

• Analytic model in one dimensional heat flow

• Heat source modeling

– Point heat source

– Line heat source

– Plane heat source

– Surface heat source

• Finite difference formulation

• Finite elements

Page 3: Thermal Modeling

Heat flow equation For developing basic heat flow equation,

consider the differential element .

Heat balance in element is given by,

Heat in – Heat out + Heat generated

= Heat accumulated

Heat in and out rates depends on conduction

and convection.

Heat flow through differential

element

2

p p

Tk T C C U T H

tρ ρ

∂∇ − − ∇ = −

Page 4: Thermal Modeling

Analytic model in one dimensional heat flow:

If the heat flow in only one direction and there is no convection or heat

generation, the basic equation becomes

where α = diffusivity, t = time.

It is assumed that there is constant thermal properties, with no radiant

heat loss or melting, then the BC ‘s are

The solution is,

Page 5: Thermal Modeling

Heat source modelling:

Introduction:• Why modeling?

1. Semi-quantitative understanding of the process mechanism for the

design of experiments.

2. Parametric understanding for control purpose. E.g. statistical charts.

3. Detailed understanding to analyse the precise process mechanisms

for the purpose of prediction, process improvement .

Types of heat sources:

Point heat source.

Line heat source.

Plane heat source. (e.g. circular , rectangular)

Page 6: Thermal Modeling

1.Instantaneous point heat source:

The differential equation for the conduction of heat in a stationary

medium assuming no convection or radiation, is

This is satisfied by the solution for infinite body,

δq = instantaneous heat generated, C = sp. heat capacity, α = diffusivity, ρ

= Density, t = time, K = thermal conductivity.

gives the temperature increment at position (x, y, z) and time t due to an

instantaneous heat source δq applied at position (x’, y’, z’) and time t’.

( )

( )

2 2 2

3

2

2 2 2

3

2

( ') ( ') ( ')' , , , exp[ ]

4 ( ')(4 ( '))

inf

2 ( ') ( ') ( ')' , , , exp[ ]

4 ( ')(4 ( '))

q x x y y z zdT x y z t

a t tC a t t

sem i inite

q x x y y z zdT x y z t

a t tC a t t

δ

ρ π

δ

ρ π

− + − + −= −

−−

− + − + −= −

−−

Page 7: Thermal Modeling

Results:1. When (x, y, z) = (0,0,0) and (x’, y’, z’) = (0,0,0)

T = 473.3379

2. When (x, y, z) = (0.5,0.5,0) and (x’, y’, z’) = (0,0,0)

T = 413.0811

3. When (x, y, z) = (2,2,0) and (x’, y’, z’) = (0,0,0)

T = 53.5792

For temperature over entire surface

consider heat source at (0,0,0)

and workpiece have dimension

50 X 50. Temperature distribution

Is shown in figure.

Page 8: Thermal Modeling

2. Continuous point heat source in infinite body:

If the heat is liberated at the rate dQ= P.dt’ from t = t’ to t = t’+ dt’ at the

point (x’, y’, z’), the temperature at (x, y, z) at time t is found by

integrating above equation, and C = sp. heat capacity, α = diffusivity,

ρ = Density. From the point heat source solution,

now integrating w. r. t. Time t’ from 0 to t.

where Q is in Watts. As steady state temperature distribution occurs given by

2 2 2

3

2

( ') ( ') ( ')exp[ ]

4 ( ')(4 ( '))

q x x y y z z

a t tC a t t

δ

ρ π

− + − + −−

−−

T =P

4 π k Hx − x'L2 + Hy − y'L2 + Hz − z'L2

Page 9: Thermal Modeling
Page 10: Thermal Modeling

( )2 2 2

3

2

2 ( ' ') ( ') ( ')' , , , exp[ ]

4 ( ')(4 ( '))

q x vt x y y z zdT x y z t

a t tC a t t

δ

ρ π

− − + − + −= −

−−

( )2 2 2

3

2

2 ( ') ( ') ( ')' , , , exp[ ]

4 ( ')(4 ( '))

q X x Y y Z zdT x y z t

a t tC a t t

δ

ρ π

− + − + −= −

−−

In moving coordinate system:

In fixed coordinate system:

'q Pdtδ =

Moving point heat source in semi-infinite body

Note that

Page 11: Thermal Modeling

Moving point heat source:Consider point heat source P heat units per unit time moving with velocity v on semi-

infinite body from time t’= 0 to t’= t. During a very short time heat released at the

surface is dQ = Pdt’. This will result in infinitesimal rise in temperature at point (x, y, z)

at time t given by,

The total rise in of the temperature can be obtained by

integrating from t’=0 to t’= t

( )' 2 2 2

3

' 0 2

2 ' ( ' ') ( ') ( ')' , , , exp[ ]

4 ( ')(4 ( '))

t t

t

Pdt x vt x y y z zdT x y z t

a t tC a t tρ π

=

=

− − + − + −= −

−−

Page 12: Thermal Modeling

Line heat source in infinite body:Temperature for the line heat source can be obtained directly by integrating the solution of the

moving point source in the moving coordinate system.

• Moving line source in moving coordinate:

Line source parallel to z-axis and passing through point (x’ , y’). The temperature

obtained by integrating , where C = sp. heat capacity, ρ = Density, K = thermal

conductivity. Here Ql = heat per unit length

For infinite body

X= x-vt’, Y=y and Z=z

• Moving line heat source in fixed coordinates: Fig. keyhole model (W. Steen)

( )2 2 2

3

2

( ') ( ') ( ')' , , , exp[ ]

4 ( ')(4 ( '))

q X x Y y Z zdT x y z t

a t tC a t t

δ

ρ π

− + − + −= −

−−

( )2 2 2

3

2

( ') ( ') ( ')' , , exp[ ]

4 ( ')(4 ( '))

lq X x Y y Z zdT x y t dz

a t tC a t tρ π

−∞

− + − + −= −

−−

Page 13: Thermal Modeling

Plane heat source:

Surface heat source:

• Area (circular, rectangular heat source)

• Applied on x-y plane.

• Temperature depends on intensity.

• Application: surface hardening,

surface cladding etc.

Page 14: Thermal Modeling

Gaussian moving circular heat source:Gaussian heat source intensity

In moving coordinate system,

Moving heat source.

Where P = laser power, σ = beam radius, v = scanning velocity, a = diffusivity, t =time.

( )2 2 2

3

2

2 ( ') ( ') ( ')' , , , exp[ ]

4 ( ')(4 ( '))

q X x Y y Z zdT X Y Z t

a t tC a t t

δ

ρ π

− + − + −= −

−−

2 2 2

3

2

2 ' ( ') ( ') ( ')' ( ', ') ' 'exp[ ]

4 ( ')(4 ( '))

dt X x Y y Z zdT I x y dx dy

a t tC a t tρ π

− + − + −= −

−−

3

2 2

2 2 2 2 2 2 2

2

4 ''( )

(4 ( '))

2 ' 2 ' ' 2( ) ' ( ) ' 2 '' 'exp[ ( )]

4 ( ')

PdtdT t

C a t t

x y x X x X y Yy Y Zdx dy

a t t

πσ ρ π

σ

∞ ∞

−∞ −∞

= ×

+ − + + − + +− +

−∫ ∫

Page 15: Thermal Modeling

Rewriting the solution for fixed coordinate system,

2 2 2 2

3 2 22 2

4 ' 4 ( ') 2(( ') )'( ) exp[ ]

8 ( ') 8 ( ') 4 ( ')(4 ( '))

Pdt a t t x vt y zdT t

a t t a t t a t tC a t t

πσ

σ σπσ ρ π

− − += − −

+ − + − −−

Rewriting the solution for fixed coordinate

system,

' 0.5 2 2 2

0 2 2

' 0

4 '( ') 2(( ') )exp[ ]

8 ( ') 8 ( ') 4 ( ')4

t t

t

P dt t t x vt y zT T

a t t a t t a t tC a σ σρ π π

= −

=

− − +− = − −

+ − + − −∫

Similarly circular heat source can be found

out.

Page 16: Thermal Modeling

Modeling Gaussian heat source:

Material and process parameters: for EN18 steel

Laser power = 1300W Diffusivity = 5.1mm^2/sec

Scanning velocity = 100/6 mm/sec Density = 0.000008 kg/mm^3

Interaction time = 0.18sec. Sp. Heat capacity = 674 J/kg k

Beam Radius = 1.5mm

Temperature distribution X-Y plane Temperature along X-Z plane.

Page 17: Thermal Modeling

Uniform intensity:• Uniform circular moving heat source:

In the Uniform heat source, Q is defined by the magnitude

q and the distribution parameter σ. The heat distribution, Q,

is given by, Where A = π*σ2

for circular heat source integrating with space variables,

Now final temperature equation is obtained by integrating with time from 0 to t,

2 2

2 2

2

3

2 2

'2 2

'

2 '( ) exp[ ]

4 ( ')8 ( ( '))

( ') ( ')exp[ ] ' exp[ ] '

4 ( ') 4 ( ')

x

x

Pdt ZdT t

a t tC a t t

X x Y ydx dy

a t t a t t

σ σ

σ σ

ρ πσ π

− − −

= − ×−

− −− −

− −∫ ∫

Page 18: Thermal Modeling

•Uniform rectangular moving heat source:

Rectangular heat source of dimension –l < x < l and –b < y < b i.e. for semi-infinite body

moving with constant velocity v from time t’ = 0 to t’ = t.

Heat intensity I is given by, where A = 4*b*l

Integrating with the space variables,

Results can be obtained by numerical integration with respect to time.

2

3

2

2

2 '( ) e x p [ ]

4 ( ')4 ( 4 ( ') )

( ( ') ') ( ') 2e x p [ ] ' e x p [ ] '

4 ( ') 4 ( ')

l b

l b

P d t zd T t

a t tb l C a t t

x v t x y yd x d y

a t t a t t

ρ π

− −

= −−

− − −− −

− −∫ ∫

Page 19: Thermal Modeling

Comparison of Gaussian and uniform heat

source: for EN 18 steel

No

1

2

3

4

5

Fig. Comparison of

width/depth of hardened

zone[13]

Results:

Page 20: Thermal Modeling

Finite difference formulation:

• Nodal points

• Nodal network

• Regular or irregular

• Types - coarser

- fine

……Temperature at time interval ∆t

Page 21: Thermal Modeling

Finite Element Models

02/08/10

Page 22: Thermal Modeling

Thermal Modeling

– Heat generated in workpiece due to cutting is small compared to the heat generated by the laser

– A scaled model (5mm x 2mm x 2mm) is used

– The Gaussian distribution of laser power intensity Px,y is given by:

– The average absorptivity of incident irradiation is determined experimentally

– Temperature dependent thermophysical properties are used

−=

2

2

2

22

bb

toty,x

r

rexp

r

PP

π

Page 23: Thermal Modeling

Mathematical Formulation

x

TVc

t

TcQ

z

Tk

zy

Tk

yx

Tk

xpp

.

∂+

∂=+

∂+

∂+

∂ρρ

The 3-D transient heat conduction equation is given by,

T(x, y, z, 0) = T0

0)()(4

04

0 =−+−+−∂

∂TTTThq

n

Tk σε

Initial condition,

Natural boundary condition on front face,

00 =−+−∂

∂)TT(hq

n

Tk e

61131042 .

e T.h ε−×=where, (Frewin et al., 1999)

Page 24: Thermal Modeling

Mathematical Formulation

• Average measured temperatures are used for boundary

conditions on remaining external surfaces

• Half symmetry used at bottom face

0=bottomq

Page 25: Thermal Modeling

Case Study- Thermal Model

• Mapped dense mesh (25 µm x 12.5 µm x 20µm)

• An 8 noded 3-D thermal element (Solid70) is used

• Gaussian distribution of heat flux applied to a 5x5 element matrix which sweeps the mesh on the front face

1

X

YZ

JUL 19 2006

14:52:01

ELEMENTS

MAT NUM Natural B.C. on front face

Symmetry B.C. on bottom face

X

Z

Y

Page 26: Thermal Modeling

Temperature Simulation

1

MX

150

341.827

533.653

725.48

917.307

1109

1301

1493

1685

1876

JUL 20 2006

10:37:08

NODAL SOLUTION

STEP=41

SUB =10

TIME=6

TEMP (AVG)

RSYS=0

SMN =150

SMX =1876

(Laser scan direction)

X

Y

1

MX

150

341.827

533.653

725.48

917.307

1109

1301

1493

1685

1876

JUL 20 2006

10:37:08

NODAL SOLUTION

STEP=41

SUB =10

TIME=6

TEMP (AVG)

RSYS=0

SMN =150

SMX =1876

(Laser scan direction)

X

Y

Simulated temperature distribution for H-13 steel (10 W laser power, 10

mm/min scan speed and 110 µm spot size)