this document has been reproduced from microfiche ... · gis package. however, statistical...

26
N O T I C E THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE https://ntrs.nasa.gov/search.jsp?R=19810007378 2020-05-05T19:30:19+00:00Z

Upload: others

Post on 06-May-2020

8 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

https://ntrs.nasa.gov/search.jsp?R=19810007378 2020-05-05T19:30:19+00:00Z

Page 2: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

NAS, ATechnical Memorandum 82031

Interfaces Between Statistical AnalysisPackages and the ESRI GeographicInformation System

Edward Masuoka(OASA-TM-82U31) INTERFACES BETWEEN N81- 15893STATISTICAL ANALYSIS PACKAGES AND THE ESRIGEOGRAPHIC INFURMATION SYSTEM (NASA) 26 P

HC AU3/M? A01 CSC:L U5Il UnclesG3/32 13149

OCTOBER 1980,̂4', - .^ v^v

ti

JAN 1x$1" x Ri

., :. ^ NAsg ^ ^ NFUNational Aeronautics ai +d , ACc'. AC/,Space Administration sQom,Goddard Space Flight CenterGreenbelt, Maryland 20771

Page 3: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

TM 8203

INTERFACES BETWEEN STATISTICAL ANALYSIS PACKAGES

AND THE ESRI GEOGRAPHIC INFORMATION SYSTEM

ELI ward

Nis,SA/Goddard Space Flight Centc.r

October 1980

GODDARD SPACE FLIGwr CENTERGreenbelt, Maryland

Page 4: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

INTERFACES BETWEEN STATISTICAL ANALYSIS PACKAGES

AND THE ESRI GEOGRAPHIC INFORMATION SYSTEM

Edward Masuoka

NA'"A/Goddard Spice Flight Center

Abstract

The Environmental Systems Research Institute (ESRI) geographic information system (GIS)

in use at Goddard Space Flight Center provides users with the means of combining remote sens-

in¢ data with ancillary data (soils maps, geologic maps, topographic maps, etc.) and performing

qualitative analyses on the resulting multivariable data base. However, statistical techniques such

as multiple regression, analysis of variance and spatial autocorrelation analyses are not available

in the GIS. This paper describes interfaces between ESRI's GIS data files and real valued data

files written to facilitate statistical analysis and display of spatially referenced multivariable data.

An example of data analysis which utilized the GIS and the Statistical Analysis System (SAS) is

presented to illustrate the utility of combining the analytic capability of a statistical package

with the data management and display features of the GIS.

PRECEDING PAGE BLANK NOT FILMED

iii

Page 5: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

CONTENTS

Page

Abstract .......................................... 6....... 0 ............ ,.. W

INTRODUCTION ........................................................... 1

DESCRIPTION OF INTERFACES . . . . . . . . .................................... . . 2

RUNNING SAS2GIS AND GIS2SAS ........ ............................. . .. . .. . 3

COMBINING THE GIS AND A STATISTICAL PACKAGE FOR DATA ANALYSIS .. - .. , . 3

REFERENCES ............................. .........................,... 7

APPENDIX 1 ........................................................... . ... Al-1

APPENDIX 2 ..................................... ........................... A2-1

APPENDIX3 ....................... . ...... ... ...................... . ........ A3-1

LIST OF TABLES

Table Page

1 Input Parameters for SAS2GIS . . . ................. . .. , .. , ... , . , . 5

2 Input Parameters for GIS2SAS . . . . . . . . ................................. 6

LIST OF FIGURES

Figure Page

1 Structure of an ESRI GIS Multivariable File (MVF) .... . ... . ....... . .... . . . . 8

2 Logical Units Required by SAS2GIS .. . ................................... 8

3 Logical Units Required by GIS2SAS ....... , . , , . . ... . . . . . . .. . .... 9

4 A Plot of Elevations in the Rio Grande Rift Study Area Produced

By the ESRI GIS....,. .................................................... 9

5 Bouguer Gravity Values from the Rio Grande Rift Study Area . .. . ............ . 10

6 Residuals from a Regression of Elevation and Bouguer Gravity , . , , , . , , , , . , 10

PRECEDING PAGE BLANK NOT FILMED

i

v

I---

Page 6: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

I__ __ ____

INTERFACES BETWEEN STATISTICAL ANALYSIy PACKAGES

AND THE I SRI GEOGRAPHIC INFORMATION SYSTEM

INTRODUCTION

Automated geographic information systems provide a framework in which spatially referenced

data (maps and remote sensing imagery) may be manipulated, displayed and analyzed (Knapp,

1979). The utility of a geographic information system (GIS) lies in ita ability to create and anal-

yze a multivariable file derived from snaps and .images of a study area, Geographic information

systems have been used by land planners to select sites for campgrounds in Canadian national

parks (Arbour, 19880), by researchers at the National Cancer Institute to study patterns of mortal-

ity (Mason, 1980) and by geologists to examine relationships between petrologic and geophysical

information on the moon (Andre et al., 1977).

The Environmental Systems Research Institute (ESRI) GIS provides the user with a tool for

creating multivariable files from digitized map data and digital remote sensing data. A GIS multi-

variable file may be thought of as a cube made up of data cells. The horizontal axes of the cube

correspond to geographic location, Along the vertical axes are the different variables in the multi-

variable file, Thus, each column of cells in the cube has a unique geographic location and each

layer of cells in the cube corresponds to a unique thematic map variable, such as soil type, vege-

tation, type or topographic elevations (see Figure 1). Analyses which can be performed on the

multivariable files include. slope and aispect calculations, proximity analyses and the creation of

qualitative models based on user supplied weights (ESRI staff, 1979). However, statistical analy-

ses, such as multiple regression, analysis of variance and spatial auto correla tion analysis can not

be performed within the GIS. Further, since observations in a GIS multivariable file are stored

as sixteen bit integers, real values and integers outside the range t32,768 can not be manipulated

by the GIS.

The inability to perform statistical analyses on GIS multivariable files, precludes the develop-

ment of powerful quantitative models for resource exploration or land use planning with :a the

Page 7: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

GIS package. However, statistical packages, suelf as SAS, provide tools for performing a

range of

statistical analyses front the computation or simple descriptive statistics to complex multivariate

techniques (Helwig and Council, 1979).

To provide a means of performing statistical analyses on variables in CIS flies and to allow

the results of these analyses to be merged with CIS multivariable files, Interfaces between the

ESR1 CIS and real valued data riles were created,

DESCRIPTION OF INTERFACES

SAS21 GIS is as computer program which converts gridded real valued data into the single

variable rile (SVF) format used by the ESRI geographic information system. The data file of

real values that is to be converted to all integer SVF must be sorted so that for a SVF file it rows by

in columns, the irml value for cell (I, j) in the SVF will correspond to entry (i*m+j) in the real val-

ued data rile. The conversion is accomplished by a linear transformation, y=ax+b, which maps a

real valued variable X into an integer variable Y, Tile program provides the user with two op-

tions for converting the data into integer format. First, the user may supply tile a and b terms

of Y=ax+b. Second the user may specify a range for the transformed data. The original data will

be mapped into this range using the linear transformation and the transformed data will be

checked to insure that the conversion did not truncate tile values more than a user specified

amount. After the transformed data have been written to a disk file, an additional record is

added to the file which contains the as and b terms that were used to make tile transformation.

This record is not read by any CIS software but may be used by the interface GISI-SAS to con-

vert the SVF file to a real valued data file.

GIS2SAS is a computer program which transforms integer data in ESRI's SVF format into

real valued data with row column references. The formula used to convert integer data to real.

valued data is x=(y-b)/a, where x is a real value, y is sin integer and a and b are consWnts. The

user li;js two options for converting integers to real values. First, the user may specify a and b

Page 8: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

t 1

terms for the transformation. This is required if.the SVF rile was not created by SAS2GIS.

Second, if no a and b valor- were provided by the user the program will use the a and b values

in the lust record written by SAS2GIS when the file was created. Program output consists of a

real valued data rile in a format specified by the user.

RUNNING SAS2GIS AND GIS2SAS

SAS2GIS and GIS2SAS are interactive computer programs written in FORTRAN JV. At

Goddard Space Flight Center they run itt the foreground on an IBM 360/91 and an IBM 360/75,

Listings of these programs appear in Appendix 1, The clists Miles which contain TSO commands

and subcommands) used to set up and run the interfaces are presented in Appendix 1, To run

a program the user types the program's name, SAS CrIS or GIS2SAS, followed by T ("input file-

name") and 0 ("output filename"). For example if the user types,

SAS2GIS I(BOTANY,DATA) O(GISMATA)

the program SAS2GIS will be run to create an SVF file GIS,DATA from a real valued data f le

BOTANY.DATA,

When the programs are running in the foreground they will prompt the user for two lines of

input, The first line contains parameters used to make the transformations and the second line is

the format of the real valued data file, Tables l and 2 summarize the input parameters for these

interfaces.

Should the user wish to convert these interfaces to run in a batch environment, he must

make two modifications. First, the clists must be replaced by JCL statements which assign disk

files for input and output to logical units S and 10, as shown in Figures 2 and 3. Second, the

write statements which prompt the user for input should be removed,

COMBINING THE GCS AND A STATISTICAL PACKAGE FOR DATA ANALYSTS

Some preliminary results in an analysis of gravity and elevation data from the Rio Grande

rift are presented here to illustrate the utility of combining a package of statistical analysis

3

Page 9: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

iprograms, SAS, with the PSV I geographic information system (CIS). The objective of this study

was to remove the relationship between Bouguer gravity and topographic relief which. was present

in a data set of elevation and gravity observations compiled by Keller and Conrad at the Univers-

ity of Texas.

Tlie gravitational field measured at a given point on the, earth's surface include, effects unre-

lated to geology, These effects are due to: variations In the distance between the earth's center

and the station where the gravity field was measured and the contribution of local topography to

the observed gravity (grant and West, 1965). Once corrections for these effects have been ap-

plied to the data, the resulting values are termed Bouguer gravity data and reflect the contribu-

tion of underlying geologic structures.

At present there is no agreement can the best Method for computing Bouguer gravity from

the observed gravity which Is measured at a station. However, Nettleton (1940) has suggested

that when the corrections to reduce observed gravity to Bouguer gravity are properly applied, the

correlation between station elevation and Bouguer gravity should be low. A striking similarity

between the Bouguer gravity and station elevation was first observed in three dimensional plots

of these two data types produced by the GIS. In order to determine the degree of correlation

between the gridded elevation data from the rift (Figure 4) and gridded Bouguer data (Figure 5),

the statistical analysis package SAS76 was used to compute a Pearson product moment correla-

tion coefficient. The correlation between Bouguer gravity and elevation was high, —0.903, and a

linear regression was computed to remove the variation in Bouguer gravity due to elevation. The

residuals from the regression provide a better estimate of Bouguer gravity because the effect of

station elevation has been removed. A plot of these residuals, Figure 6, reveals regions of high

positive residuals in the North—west and South-east corners of the Rio Grande study area. This

suggests that there are regional variations in rock density in the study area and that individual

Bouguer gravity corrections should be calculated for each region.

4

Page 10: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

In this analysis the Statistical Analysis Syst6n (SAS) and the h SR1. CIS proved useful tools

fot examining the ntationship between variables in a spatially referenced multivariable database.

With these interfaces the researcher can utilize the extensive data base mwnagement and

graphics +apabillties of the GIS to complement existing software In the analysis of real valued

multivariate data,

Table IInput Parameters for SAS2GIS

Parameter Column Format Function

First Input Line

ROW 1-5 15 Number of rows in the SVF which will be createdfrom the input data file,

COLUMN 6-105 Number of columns in SVF.

A 11-15 FS-0 Multiplicative term in y=ax+b, used to map real xinto integer y ,

B 16-20 F5.0 Additive t erm in y=ax+b, if A and B are omittedNEWMIX and NEWMAX must be specified.

MIN 26-30 F5.0 Minimum value of input data default: value cal-culated by the program..

MAX 26-30 F5.0 Maximum value of input data default: value cal-culated by program.

NEWMIN 31-37 15 New minimum value after transformation tointegers,

NEWMAX 38-44 15 New maximum value after transformation tointegers.

TOLER 45-49 F5.0 User specified tolerance for truncation resultingfrom conversion of real values to integer format.

MISVAL 50-55 F6.0 Value indicating missing observations in the data.

NEWVAL 56-61 F6,0 Value which will be assigned to missing observa-tions in the SVF file, default: 0.

Second Input Line

FMT 1-80 80A1 User supplied input format for data in real dataset.

S

Page 11: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

Table 2Input Parameters for CIS2SAS

Parameter Column Format Function

First Line of Input

A I-6 F6,0 Divisor in xa(Y-b)/a used to transform Integervalues Into real values default, use lust value inlast record cf SVF file.

B 7-12 F6«0 b term in x=(y -b)/a used to transform integervalues into real vsaues default., use second valuein last record of SVF file,

Second line of Input

NCOL 1-3 13 # columns in output file,

Third Line of Input

FMT 1-50 80AI User supplied output format for real vaWieddata, set.

Page 12: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

REFERENCES

1. Andre C. M. Blelefeld, E. Elinson L Sodorhlom I Adler, and .1

surface chemistry-. a new imaging technique." Science 197 , 986-989,

2, Arbour, J. 14., 1 1980, "Tito use of a biophysical (ecological) data base for park planning,"

Proceedings of the International symposium on cartography and computing; applications In

health and environment, vol. 1, p. 515-523,

3. Environmental Systems Research Institute staff, 1979, ESRI geographic information soft-

ware descriptions, 79 p.

4. Grant, F. and G. West, 1965, Interpretation theory in applied geophysics, McGraw-Hill, New

York, 584 pp.

5. Helwig, J, T. and K. A. 0ioV,cil, 1979, SAS user's guide. SAS Institute, 494 p,

G. Knapp, E., 1978, "Landsat and ancillary data inputs to an automated geographic information

system.- Applications for urbanized area delineation." CSC T.R.-78 5019, 82 p.

7. Mason, T,, 1980, "A mechanism for selecting communities at high risk for cancer." Proceed-

ings of the international symposium on cartography and computing: applications in health

and environment, vn.l. 1, p. 216-321.

8, Nettleton, L., 1940, Geophysical prospecting for oil, McGraw-Hill, New York.

7

Page 13: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

SOILSGEOLOGYTOPOGRAPHYLANDSAT SAND 1

% SLOPEAWECT

Figure 1. Structure of an CSR1 GIS MultivuriableFile (MVF)

UNIT STRUCTURE COMMENT5 CARD USER CONTROL, CARDS6 PRINTER JOB LISTING8 CARD REAL VALUED DATA FILE

10 SVF INTEGER SINGLE VARIABLE FILE

Figure '. Logical Units Required by SASLGIS

Page 14: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

9

r

UNIT STRUCTURE COMMENT5 CARD USER CONTROL CARDSE PRINTER JOB LISTING8 SVF INTEGER SINGLE VARIABLE FILE

10 CARD REAL VALUED DATA FILE

Figure 3, logical Units Required by GIS"SAS

Figure 4. A Plot of Elevations in the Rio Grande Rift Study Area Produced by the ESRI GIS

9

it

Page 15: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

Figure 5, Bouguer Gravity Values from the Rio Grande Rift Study Area

Figure 6. Residuals from a Regression of Elevation and Bouguer Gravity

10

Page 16: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

APPr-NbIX I

I'I' OGRANt LISTINGS OF THE INTERACTIV8 INTERFACES BETWEEN REAL

VALUED DATA SETS AND THE- ESRI CEOGRAPHIC INFORMATION SYSTEM

A. SAS: GIS PROGRAM LISTING

VC1 PFAL VALU"" "ATA AJDEs"ll GIs VARTAPTr- 7ILU (Svils)C- U C 4' R A MM ER E."04 I R C M A ',19 0 K AJAI Ll : AUGUSI 1, 197c)

THIS V60-11A4 TlAWiT n " m '3 !4AL VAL Tj ̂ 1) L) jN Ir 1 S

1ATC I^NTU%A*2 rATA 11 1113) IN 3 STP-OS.

1. PIRLM2TS U "milOADAilETERS

I {V'C lli V 411YAT O R I'l ltIT "ALA A 4 r"tVU3)tC TO RrAL VALIES

INTC INTLiSTIS

2. MACS EBAL VNLUES TNrClNTr,'JV.22*

41111 A LlNrA ll--% It q -^ +32,768

TR MS-F %m 10

t,

3. vi lilTES T112 FSRI/ lItS r-TLE AID ZIFOrIATTOIitst,-Ujiin ro, ^r q ajS r o pij 11S*"'PILE TOREAL VALUEn I)AI.A,, AS VIE UST nAcophCIE THE Sv c r.UB.

USER 1114PUT:

CNiN 1 1-5 NRON R.C.45 "N VIP IT FILPICOL crL9108 1,'jINPUT 711.73,A M'ILTIPLICATIV", T'*-',k 't IN Y=(IX+ti

"TisD T 'A ^-^ A l XO P'y1 1c

1 T'llial 14 Yulx+n4T'4'",1 ►1,l VAUF CP I:7 B UT !) A T Ar. r., rVl L T : CALL IT.ATr,)

22-30 4 A X MAX110*1 V1L'17 IN '4NP rJT n !1 AD % "N IF ^ 1 1 L T : Z U" l l L ATFI)J1-37 'I"NMIl '"UNIT Y1 1"I'S

'ATT*li

T r A Nl B I I YA T r C :,,38-44 37'41AX V4TRI"', '411XVIU m Arl""ll

4VOR

T A 7' 0 * 1 11 AT ' C A F r: A L.

0 rV, Al't r 1 1111

t, CS v AT l i ll 14:1)op" A 'ILT

V 1 r VAT 1 31 A 'S f4' T I T C S, T 'I0 ,VA:10113 -^N SV!- r TL.'

A 'I L"

b J F y r r S * I V n f '^ r, 1 AT ^4)

:—T

Al-I

Page 17: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

CCC

REAL*4 Pi1T^20 ,DATA 1500),AA 2^ 0 !A MIN IISVAL/-9999./,yEpVAL/O./R A,L*4 RAN UE ,VET MIN/-32 h ./,.'I.'. IA^/32500,,/,TOLCR/.17004'1/INTFGER *2 tic U 2) ROW (500)EQ p xVA,LEdCE (AD ^^) ^) (A13 ( 2 U)

CFAB USEN SUPPLIED PAFAIET!IS FOn THE TRANSFOglA'TICN

w"I71; to 111111 FQP N',AT^/^:lu, APUT: RCW COLU14 A 5 IRIN IAX INFR !I'1 NFW "AXE/

1 ^ TCLL. ANCi: MISS V L 4, f VAL '1SIN4.: _

? (2I5, F .G,2F5.0,2F7.T) r 5.0 ?xu.,73^ a...1G...1 .. . 200 . ). .3u... 3 .//40...45...50...55...60'/4 + + + + + + + +

READ 1) (RLWCOL (1) ,1. =1,2) , A, E,3:LY, MAT, NEWtlIN, N F. ry fAX,TGLEn yMIP,iL 11EwV"Ll.

FUR1 AT (2 5 2F5. U, 2F 5.0, "c r 7. 0, rr). 0, 2^f . 0)NrCW*,;F 4ck ((1)NCCC=ROWCUL t21

EC11C NUMBER OF ROW$ A44 CCLDINS I;1 TNFUT Atin SV r FILFS

%PITF^b, 6) ,4RG4 NCOL, A, E9 FORMA (/ 1:10 T tb, RrWS= ► 'T 2?,z9/ l x T10 f C OLU'iNS-^ ,T22 I5/

1X,'I10,^SC.0 E=0,'T1^',L9.^/1`C,'"1J, ^^ iTL'^:iEnT=',T.'.1,IN. xa/)

RFAC A3D 0,QHC USER SPECI F IF r. F0 71MAT FOR DATA INPUT

W'T IIE (6,991'1 q 1 FCR"AT 1E3 I PL14ASE SlPUT IG IAT OF ;AL VALUED D TA')

FEAT )FC12ClAT(2CA4IF IA .U71. ^l GCS TO 999

*****^*,rr;** k****+k*ki^^^h**'^k^*'k* * ^*^^c:k^at**,► k*#*^ti^^c**,^^

SCALE DAM EFTNEEN NaWll:4 AID NT;"4:",1X

#^****tjM+^^**A****M##?'k+Ir*^*Ir^7!*#^^#=?c^`!t'+4t^;t'E**#^*+c*+ic^^* 9k^^^

F IN C ? IN ANC M AX O F C1T A I F 'AC T ,i;) P ?Y x^ 7

I'c (:;SV . NL. MAX) GO O ?CO

D O 22 I=1 lflo,F`FAC (8,Cll) IDATA (J) r0=1,lC0Q

1

CCC

2

CCCCCCCC

A1--2

Page 18: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

co 22 J-- 1, ►VCGLIF UATAJ .L'T. MI r1 4'[ v = n A':A iJINCATAJ .UT MAX^ .`f ^IXDATA t4^

22 CTINUIF

'

MIN .VJT. NEWVAL .0. 118K .L^,). 11SV,1t "IIN=NE^JVALI1 MAX .L°T. NE'wVAL .Jf. `1 1 .OQ `4ISVAL; MA}t=;lnWVALREaNC 8

CALCULATE 0, ANC B r 17R SCALIT3 IFUNC'TION Y =AXtp

300 RANGE=dEWMAP+1.—NE'4414Il:N>:W y AR*tiEWMT1 .LT. :1SSCNFtv''lAX+3J'1+`1i^1)A=, ANGi/ (L'lAX -MIN)C=RAN%'3E—A*MAX

+ 041,ii 1NTrl,`lr7i 1Tr".SILTS

' WRIIE ^a ra) tINMAX

Ct TCR "A'1 (^ 13 4 '-i 114 , 1 lU. S^ ^ 'S 1?C- 1 , F1 U. 5)

W El I'T F +v ^) Q 3FCEi!1A`T(^11i ,IOX, $ A-','12.5111 ,10:(,on=,,C12.S//)C

CCCCcCc

cCcccrg

C

C

cc

CGCcccC,

W21TE THE SVP

CIIFCK '1J INSURE THAT Ifir, TR V11 r'i:R3V) VALUES GAVE 110TBEEN TaUNCAIEC OORE TllAh k rj:,E;t SZ)ECX 1, r D T.)LEFA"!CE

CALL C^IKI(iL (DATA, NCOL, A, R, T CL E>3)

WRTTF dCW ANC LULU 1N TV1(7R`lA"'I(^N ON T(1 3xr C'T1a«

c1 WrITE ( 10) t%UWCCL

SCAlf T.1E DATA 1401 + RANG". P C — RA1131.

00 30 1= 10 501WREVD ^^1,C^", ]±IVI)=j'^) (n ►1":'1 (.I},7=1,:1C^L)DC u( 011,ICOLI^ ( r'ATt1 J) :,'" ., 'I%"aV1L) ".;1 1 (.J) -^1"s'r`VAT.r C 1v (Jl l Jfl*c0rAl ( J ) +`3)

40 CION1ZTirU

10I'TE i;iE zt A JS:'`(:aV'l-') CESIZ IVATION.-) A iC r AT A 'I T"^

CALL WhIxrL (ZlOo, NC OL)

r11--3

Page 19: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

3C CUNTINUE

WRIT E T'IE CCEFFICEITS USEDAND THE FORPAT CF T(FE rlEgLAS THE LASS RECORDS O p IHE

6RITF ( 1C) ADWRITE ((t0) FASTFRT THb 111

TO M,AKV THE TRANSFOR4ATIONVALI EE DATA SESCTRA SF01 1iED PALE

11 rORrA (Igor/$.... S q C%tS5TUL rONV-3510 FI TO 3SPT SV^ rTLESTOP 1

EARCR y FSSAGE5 FGH INCC51ECT C CN TPiCL CARDS

99 WRITF^b 3)3 Ft? t?A. (it] , $ TUC r'E,i C2SErVAlICl1 ^ )

E10 P 2FIND

CCCC

THIS SU3BCUTIN'E N 1ITES TH E. INTF-3322SC

' AS A SINGLE VAR -LADLE FILEc-cC

SUBROUTINE { RITEC: (FC'A, NCGL)TNTEGFB*2 llLW (11COL)K PlTt t O) riLWRFT1JR^^END

*THIS SJBhOUTINE COIZARCS !HE C "L31`11L PEAL VALIM)

* CATS# FILE Willf MF R1_P!.T+ V11:PJ7C PTL fillICH RILL n"'rRCll'JC;D IF 'LffJr fiV ;' 1S TR< N.—)FU 1EC 8ACK TC A PEALVALULS .[E THL GIr , CR,VCr, r."T*ZENFNTiZJ^".i IN TiPF6 7 FILv9 rYC F ;"?5 A 11.3 "2 Sn"".CIFlrnTCL I RANCE AN E R02 ` fS"AGE IS nITTV-N AND T`°PE aO3is 96claiD.

SUP, RGIJ'T.Il CPfI CL(nlT 1,`IGGI.,:^,U,TOL B)INTEGL3*4 NCOL

I!^': PaGF:r*2 1DA1'

C 1LCCILA'C E ZFFEC C -3 1 I v S 'M;!ATLTO 'll ONVAil rP ^-'j uF 1 11 E i;i U L r) 1 T A

no 10 1= 1, v(.4LI CA T=CATA (1) *A+0

Al-4

Page 20: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

P CDAs= (1 CAI

`1w — U) /A

^## ♦ ^w^*i# ► ^+^ww***+^wMw^^ww#www*^.w*r^##*www^*w^ ► #^ww*w^*^w** CC4F:AVE CRIGINAL rr-.AT VAL r IF. REAL VALUE

WHICH RESULTS FRC:i TFANSFf;RIING ;IS FIL ;: BA CKTC A PEAL FILE 115I:is SLO PI A:IC INTERSV)T CALUVILATE11FRO M THE USER SUECIfIEC S44 3S :OR TRrANSF(%RMBD DATA

TGL P H ANCc C R EATE TIIF GIS FILEw** ► i*ww***w*w****+*#w+**vow*«**w+^**^+v**w+^^**w^****ww*^*^

IF (A FS (FD AT — 0ATA (I) ) .I.T. VII R) ,G TO 10

ELSF WRITS AN 1• ..401 '15SSAGE AND 5T?U

WRITE(o i l) ^ ,n ^ r I p ,S ! ^

i ^^w*ww***;x*** T t^T,a ^.► ;IC . ?:^::'^C,Ft. ►1rTN, T, a.i.aFUt'.i^1^ f.>+t^N

S`0 { V MCGK'rINiRETURNEND

1

10

AI-5

Page 21: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

B. GIS'.SAS PROGRAM LISTING

I IT L 4 14TE2 0AC rEETkFE.l E51t -JwACGPAP!IICINr0 q lATTC4 IYITEI ► VF DA TA SETSAND l lF,AL VAITM INTIN 3ETS11"IED BYSIATISTICAL ?ACKAJES

ERUGaAMUH: nDWAPn IASICKA

DATE: AUGUST 1 # 1979

THIS PEOGRAM TRI IISFORIS 1313 71L33 IN INTPN'IFn*2IiTC ThE QRIuTNAL FSAL VAL'IF1 IA'r l IN 3 ST'SPR:

1. tiEADS 1,10W COLUN IN F C33A7."ICK FRCM PECO q r I

2. ; r i A IN S F G V. IT"Z T 13 'I' 71"AL VtNLU%S ITS"IN-A I I N aA m.9 r o "Ri i T 1 01 : .11 A "A I NT % G n." "A ) / A

J. 431TES TH"7. 91AL nVr l TO A VILE WITH AUSER SUrFLIE9 F r P'l A'r

VARIADLE F tj 'N c T 10 1. 1

CAIA STOTIVS PEAL !A^-",AFUWCUL .9 1 111 ES I CT lc^9 AND COLU4"s

TN Tli'' T.lV r IT FILEsuw or imis ri ENTA AND k-lis rILF.CUL UMN C()VIMNS 11 CATA S "JIS TILL'AB STOr-ES '"' Zll"wll TPA ISFORM PARA'4SSLJPE SLUE C rL1 11 r.,'An P uricrioN q,;"-n

10, rr .1.4 ,;-. 0rj n ZAIA DATAI All I k ra v.\,T"?Svps o p L'IN7AR TRANSPOn4

9Tn!i-.- ,3 I i0l; U TUE TBAN5iopqED*rATA

FAT 11SvI SIP2-tIll P CIMAT FOR rzvALVALIF1 IAV1 3E.T'

r%EAI*4 DATA (150L, A P (2 FLC I)EI TNMRINTEG O H*2 liCoCC k) 115WLCCxTCAL*l BUHH h")

ti ECU IVALt, NCE (Ad (i) ^-,L E) mi vi R) , (nu FF cr i) -m- (1)

C r^EAC USER SUPPLIED (',U'7r-U'r AID DAIALIrTUSc

ilt'P.1 T E (a 4)NrQ7N,*',AT(ldJ

U f *11510 1 M0.L d 41.'JL 'Lr E 'Vi le") In iA"Kt VIR

A 1-6

Page 22: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

.1IH (DEFAULT: IF 24H10, n RO'RA! %ILL U.Q "4 LAS" Pr-CORD, Of SVF)IH A of

•Rr A r. 5LGEE#INT,R

WPITE4 2)2 FORMA W PLEASE 1 1.1?f)T COL INS C OR CITPUT DATA SET: (13)

DEFAIJLr: IF ;EliC,, PROGriAl W MILL USE # CO MNS IN SVF l )REAC(5,6 N,CCLfCFPAT ^i q, IT F (E, 81

P. FORMAT ( PLEASE IZ0UT FCRIAT FOR .0"A' VALUE!) n ATA SrT'.'0 // life,' -EI FA(JLT: LAST 1.1ECCRD OF SV 71 411EL JE HSEDo

(8OA1)

, FA V (9 f 1 ) FMTFORMAT(d0ill)

CG qBAC A,d) .C u C o !u 4S 14C COVIVIS)4"',1 '311*5 7ILFc

FEAC g) LOWCCLFCW=r. ),(:CL(l)CCl0 N=BCwCCL(2)

3WRITF^b 3) ACWotXL,9!NFCRFA

J M10/11U # Jl'.%JT-j- , c m22,T5/lX10 'COlUMNS= # j T22?I5)

GT V I

". A rllN v (SLOOI AE N E74. 0 . C A. .1 1 t4 c" 1-10

C SPACE PAST TRAi4SFCl.!En rATAc

DO

30 1=1,RCwC 30 CALLFBACC (IROW, COL".'1'4 , 9)

C FEAR AaD ZCHO VAbA ll"47"'ll "IS t]S-r r) *T(7 0+"W14^1NAL REAL IIATAC

0PFAE

8) -)1'ITE SLcPE INTvlV5 Ili 1 SLCP"j='Fo IR 'q 11 ,110 0 , T 19,F8. 3/1 X X10 I I.NTE VZ SFr1T=' 117 21 r 9-3)

C CHFCF E06 U Eli SPECITIH.C

Cc, 50 1=1"'oIF (Ftl l ^ l) 81'IK) - 33C 'rC61

50 CcNTINUCC NCNE FCOND USE LAST ESURn Cr 5V?C

rxEAcQl,.E,No=99) FAI

Ccc r p A N F r y v : h E U n"r A V ITO 0.- T G3 I A '94 VA !J 73 5c A HCW isl A 7XIEc

IF tNCk;L . EQ^ V) 0) NCL;L=CCtt'lNSEA (^L 6Cm Ln (11 10 i = 1, Rew

Al-7

Page 23: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

h

CALF READS ( lkow CUL'13W,R)C t^ 10 J= 1 -CLU M Ir

o DATA (J) (IIICW (J)— xvT^11) /SLOP"C %RITE ThE REAL VAL gP D nATA FILLC

14 CALL WklI TEC (DAlA j NC'CL, v MT, 1D)WRITE n, 1t)

12 FORMW (/1110o'++++ S r1CCESSF TJL CONV 11. 5ION TO 11.7-AL V L qT D FILE *#+*'

9 9 E. RTT1( e, 1001OO FORMAT j1,iU 1t1 **+*+' F ATAL PRROR:

NO "CR`SAT S?PCIFTFC'.

BY USER AhD &C FOn Mll C4 SV ***+*^STOP 2r.-ND

CcCC * THIS SUBEC U11NE REaC$ A SV F P0.11AT FILEC + '^C *t**#*****#*****+*******#*# ►**ix#*^*#***#********.***C

SUBROUTINE TEADC(IRCWvCCL"U NoLU`i-A.T)INTEGE°R*4 COLUMNINTEG E R*2 1-hOW (COLW4 l)REACALUNIT)IhOwRETU NEND

CC

C •C * THIS SUBROUTIN E "4RTTFS THS 17, AL V AL ► f EC DATAC wlTd A USER S ECIFIEC ?ORIAT **CC *s^*****+*h***##**z**#y*******^******^***i****C

SUERCUTINi 6RIIEC(DATI,CCLnM'1,£ IT, VISIT)INTE;GFa*4 COLUMNREAL*4 DATA (COLUMN,FIT ( q)IRITF jL7h17,Fm)UA,41r ET11RNVND

A.1-8

Page 24: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

AP'CNb1Y 2

CLISTS

A. CL.IST FOR SAS2GIS

FROG O INFILE (REAL.DATA) OUTFILE (SAS.GIS)CALLOC DA (&INFILE,) F(FT08F000ALLOC DA (&OUTFILE.) N SP (10, 1) TR U (GIS)CALLOC DA (&OUTFILE.) F (FT10F001)DO SAS2SVF LIB (PROG.LOAD)

S. CLIST FOR GIS2SAS

PROG O INFILE (SAS.GrIS) OUTFILE (REAL.DATA)CALLOC DA (&INFILE.) F (FT08F001)CALLOC DA (&OUTFILE.) N SP (1.0, 10) TR U (FORT)CALLOC DA (&OUTFILE.) F (Fr 10F001)ALLOC DA (*) F (FT05F001)ALLOC DA (*) F (FT06F001)DO SVF2SAS LIB (PROG.LOAD)

A2-1

Page 25: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

APPENDIX 3

AN EXAMPLE OF THE OUTPUT FROM THE INTERACTIVE

PROGRAMS, SAS2GIS AND GfS2SAS. PROGRAM OUTPUT IS IN

UPPERCASE AND USER INPUT IS IN LOWERCASE LETTERS,

A. EXAMPLE OF RUNNING SAS2GIS

sas2gis infile (realdata) outfile (elev2,svf)

INPUT: ROW COLUMN A B MIN MAX NEW_MIN NEW—MAXTOLERANCE MISS—VAL NEW —VAL USING.(215, 2175.0, 2175.0, 2F7.0, F5.0, 2F6.0)

.... 5, o. 10, o. 15..,20.,.25 ... 30 . . . 35 ... 40 ... 4$ ... 50 ... 55 ... 60

36 48 1 0.

ROWS = 36COLUMNS= 48SLOPE= 1.000INTERSEPT 0.0

PLEASE INPUT FORMAT OF REAL VALUED DATA(I Of8.0)

+4-+ SUCCESSFUL C014VERSION TO ESRI SVF FILE 1

1H00021 STOP ICONDITION CODE = 01

B, EXAMPLE OF RUNNING GIS2SAS

gis2sas infile (elev.svf) outfile (realdata)PLEASE INPUT A (F5.0) B (F5.0) TERMS WHICH WILL BE USED TO MAKETHE TRANSFORMATION

(DEFAULT: IF ZERO, PROGRAM WILL USE LAST RECORD OF SVF)

A B........ I +

1. 0.

PLEASE INPUT # OF COLUMNS FOR OUTPUT DATA SET: (13)DEFAULT: IF ZERO, PROGRAM WILL USE # COLUMNS IN SVF

PLEASE INPUT FORMAT FOR REAL VALUED DATA SET, (80A0DEFAULT: LAST RECORD OF SVF WILL BE USED(10f8.0)

A3-1

Page 26: THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE ... · GIS package. However, statistical packages, suelf as SAS, provide tools for performing a range of statistical analyses front

ROWS a 36COLUMNS 48SLOPE- 1.000INTERSEPT - 0.0

++++ SUCCESSFUL CONVERSION TO REAL VALUED FILE i i 1+

IH000 2 1 STOP IICONDITION CODE - Al

A3-2