today is thursday, september 3 rd, 2015 pre-class: what’s a characteristic of a good experiment?...

45
Today is Thursday, September 3 rd , 2015 Pre-Class: What’s a characteristic of a good experiment? (lots of answers here) Put your Checks Lab in the Turn-In Box. In This Lesson: Scientific Method (Lesson 2 of 4)

Upload: ernest-watson

Post on 03-Jan-2016

212 views

Category:

Documents


0 download

TRANSCRIPT

Today is Thursday,September 3rd, 2015

Pre-Class:What’s a characteristic of a good

experiment? (lots of answers here)

Put your Checks Lab in the Turn-In Box.

In This Lesson:Scientific Method

(Lesson 2 of 4)

Today’s Agenda

• Some Inspiration• Scientific Method Terminology Defined• The Checks Lab

• Where is this in my book?– P. 10-11

By the end of this lesson…

• You should be able to use the scientific method to make decisions and analyze results.

• You should be able to determine the roles of various treatment groups in creating a thorough experiment.

Some Inspiration

• “I never failed once. It just happened to be a 2000 step process.”– Thomas Edison, in reference to his many “failed”

attempts to invent the modern electric light bulb.• No one ever learns to walk without falling first.• Basically, I want you to know that I put no

pressure on you to be right every time. I’m not grading you on what you say – I’m just trying to help you learn.

The Scientific Method

• The scientific method can be presented in many or few steps.

• Here’s our general one for this class:– Observe [a problem or pattern]– Research [the background info, if any]– Hypothesize [your best guess for an explanation]– Experiment [test your hypothesis]– Analyze [make sure you’re seeing a true pattern]– Conclude [accept or reject your hypothesis, explain]

Exploring the Steps

• Observe– Being observant is crucial for being a scientist.– You are born with some basic tools for observing.– Scientists have developed

other tools for observationtoo.

http://thebeautybrains.com/wp-content/uploads/2006/12/senses.jpg

Testing Observation Skills

• The Checks Lab!

Exploring the Steps

• Research– All science is built on previous science.– Finding background information allows you to

learn more about the pattern you are seeing.

Exploring the Steps

• Hypothesize– Develop your best guess as to what could explain

the pattern.– Generally “if-then” statements.– Consider all evidence you have researched or

observed.– Ensure that your hypothesis is testable!• “falsifiable”• What is not a testable hypothesis?

Testable Hypotheses

• Discuss with your partner which of the following hypotheses are testable by an experiment:– A: Spiders given caffeine make asymmetrical webs.– B: God created all life.– C: There are no unicorns.– D: Eye color is a trait inherited from one’s parents.

About Choice C…

• If I were to go to the forest around here and not see a woodpecker, can I say it’s not there?– No, I can only say I don’t have any evidence that

it’s there.• The same goes for hypotheses.– It’s more about saying, “Yes, we have evidence,”

or “no, we don’t,” than about “right” and “wrong.”

Null Hypothesis

• In any experiment, there is always a second hypothesis – the null hypothesis.

• The null hypothesis is that there is no difference.– For the apple-ripening experiment, it would mean that

apples ripen equally fast in oxygen and carbon dioxide.• Your experiment is performed to determine whether

you can reject the null hypothesis and conclude that there is a significant difference.

• No significant difference means you must accept the null hypothesis.

Experiment

• Test your hypothesis.• Features of a good experiment:– High sample size (n).

• In other words, they tested a lot of subjects.

– Has a control group and variable groups.• An un-modified sample and a sample being tested.

– Only one variable tested at a time.• Sources of error are minimized.

– Can be repeated by others.• Procedure is clear.

Example Experiment

• Hypothesis:– Spiders given caffeine build asymmetrical webs.

• Experiment:– Gather 100 spiders of same species.

• High sample size, no additional variables.

– Give 50 spiders caffeine and water, give other 50 plain water.• Control group (plain water) and variable group (caffeine and

water).

– Record procedure clearly.• Repeatability.

Why Control Groups?

• Why did we need to have a group of spiders given just water? Weren’t we testing just caffeine?

• Was this a web from a normal spider or a caffeine spider?

http://www.trinity.edu/jdunn/spiderdrugs.htm

Control Group

• The control group is there to be the “normal” result.

• It’s the “standard” to which we compare other results.– Without a control, we don’t truly know what

normal is.• To identify the control group, simply find the

test subjects that are not given any special treatment.

Controls and Constants

• By the way, don’t forget that controls are different from constants.– Constants are things kept the same in an

experiment. Sometimes constants are referred to as “controlled variables.”• Example: All spiders used in the experiment were the

same species.

– Controls are the test subjects treated “normally.”• Example: Spiders not given any kind of “treatment” like

caffeine.

Spiders on Drugs

• Scientists actually did this test.– NASA scientists!

• Here’s what they found:– Normal spiderweb:

Spiders on Drugs

• Caffeine:

• Mescaline/peyote:

Spiders on Drugs

• Marijuana:

• Benzedrine/Speed:

Spiders on Drugs

• Sleeping Pills:

The first one?

• LSD

Why do we need a control group?

• Another reason we need a control group is because of the placebo effect.

• Basically, the placebo effect states that if you give patients a pill (even one that does nothing), but tell them it works, the patient frequently will achieve better health (or at least perceive it).

• In other words, “thinking” you’re getting better can actually make you feel better!– It works with pills, (fake) surgery, and even just telling

people they’re getting better.

The Placebo Effect

• To get around the placebo effect, doctors give patients…a placebo!

• A placebo, sometimes called a sugar pill, is a pill designed to look like medication but actually do nothing.– The term “placebo” can be used for other things

that do nothing but look like they might, as well.• More on the placebo effect: TED – Eric Mead

What’s a variable group?

• The variable group is where you test your hypothesis.– In the spider example, it’s the caffeinated spiders.

• You compare the variable group to the control group.– Example: Comparing the webs of caffeinated

spiders to the “control” (normal diet) spiders.

One last bit on variables…

• There’s actually two kinds of variables out there – dependent variables and independent variables.

• Dependent variables (sometimes called responding variables) are those that are measured in the experiment.– Example: Spider web shape.

One last bit on variables…

• Independent variables are those changed by the experimenter. Typically there’s a general category of independent variables, and they’re often the treatments.– Example: Substances given to the spiders.

• BIG HINT: The independent variable group is sometimes called the treatment group or the experimental group.– What’s being treated in the experiment? The

independent variable.

Analyze Your Data

• You need to make sure your data are different from chance.– Do enough spiders given caffeine make weirdo

webs?– What if some of the caffeine spiders just aren’t

good at making webs to begin with, caffeine or not?

Analyze Your Data

• You know how the word “bomb” is not really a problem most of the time, but if you say it on an airplane, suddenly it’s a big deal?

• Science has one of these words:– Significant.

• “Significant” means something has been statistically proven to be so.

“Significant” is Significant

• Example: “Apples stored in pure carbon dioxide ripened significantly faster than those stored in pure oxygen.”– This is only acceptable if an experiment was

performed and data analyzed proving that this is the case. If you haven’t done that, but notice a pattern, consider:

• “Apples stored in pure carbon dioxide ripened noticeably faster than those stored in pure oxygen.”

Draw Your Conclusion

• Your conclusion is the grand end result of everything you’ve done and all the evidence you’ve found.

• Your conclusion may support your hypothesis or it may not, it doesn’t matter.

• What does matter is that your conclusion is supported by your data.

After the Scientific Method

• When a group of experiments all seem to be confirming the same pattern, that pattern may be considered a theory.

• A theory is a well-tested explanation that explains a wide range of observations.– Basically, a concept that proves a lot of

hypotheses.• A theory is not an unproven statement or

something scientists just “think” is the case.

Theory Examples

• Can you think of any theories that exist?– Quantum Theory– Theory of Evolution– Theory of Gravity

Reasoning

• There are two ways to “reason” according to science:– Deductive reasoning– Inductive reasoning

• Neither one is necessarily correct, but they are both different.

Deductive Reasoning

• Think of it as “big-to-small” reasoning:

• Example:– All humans are mortal– Justin Bieber is human– Therefore, Justin Bieber is mortal

http://www.socialresearchmethods.net/kb/dedind.php

Inductive Reasoning

• “Small to big” reasoning:

• Example:– Beyoncé lip-synced– Beyoncé is a pop singer– Therefore, other pop singers lip sync

Deductive or Inductive?

• I like cheese.• Pizza has cheese.• I will like pizza.

• This is an example of inductive reasoning.– I start with a specific statement (I like cheese – a

component of a larger dish) and move to a general statement that I will like pizza.

– Maybe I don’t like tomato sauce. That could be a dealbreaker. But we don’t know that yet…

Deductive or Inductive?

• I can ice skate.• Hockey involves ice skating.• Therefore, I will be good at ice hockey.

• This is also inductive.– I am able to do a small component of a larger

picture.

Labeling the Experiment

• Francisco Redi was one of the first to prove that maggots don’t come from rotting meat.

• He used three jars: one open, one covered with netting, and one sealed.

• Into each he placed bits of meat and let it rot.• His hypothesis was that maggots come from

flies.– Notice that this is a testable hypothesis.

Labeling the Experiment• What’s his control?• What’s his independent variable?• What’s his dependent variable?• What are the constants?

http://faculty.sdmiramar.edu/dtrubovitz/micro/history/Redi.html

Jar 1: Jar 2: Jar 3:Flies No flies No flies

Answers• Control– Meat in the open jar (Jar 1).

• Independent Variable– Jar coverings.

• Dependent Variable– Maggots/flies.

• Constants– Same jars, same meat, same location.

Labeling the Experiment• A biologist thinks that exercising is good for mice.

• He takes 20 two-week-old mice and gives them all identical cages and identical diets, and he keeps them in the same room.

• 10 mice also receive an exercise wheel. The other 10 receive an exercise wheel that does not spin.

• He records their life spans and compares.

– What is the hypothesis?– What is the sample size?– What are the constants?– What is the control (or control group)?– What is the variable (or variable group)?– What’s the independent variable?– What’s the dependent variable?– Could anything have been done better?

Answers• Hypothesis

– Mice that exercise live longer.• Sample Size

– 10 (20 total mice, but in two groups of 10).• Constants

– Same age, same room, same cage, same exercise wheels.• Control

– Mice with a non-spinny wheel.• Variable/Treatment Group

– Mice with a spinny wheel.• Independent Variable

– Exercise or no exercise.• Dependent Variable

– Life span.• Improvements

– Same litter of mice, bigger sample size.

Simpsons Scientific Method

• Visit Quia.com/web• Log-in:– Username: [firstnamelastname]832– Password: Gleicher[house/apt #]

• Go to the class web page.• Look for Simpsons Scientific Method and take

the quiz.

Closure: Bad Science?

• Bad Science:– TED: Ben Goldacre – Battling Bad Science

• Publication Bias:– TED: Ben Goldacre – What Doctors Do Not Know

About the Drugs They Prescribe• Science Denial:– TED: Michael Specter – The Danger of Science

Denial