topic 6 - traffic flow theory - version 2

34
3/19/2013 1 Topic 6 (Ch. 5) Traffic Stream Parameters Mohan Venigalla, Ph.D., P.E. A it P f CEIE © Mohan Venigalla Associate Professor, CEIE George Mason University Fairfax, VA 220304444 Progress © Mohan Venigalla

Upload: agamboa1

Post on 28-Oct-2015

271 views

Category:

Documents


2 download

DESCRIPTION

Document on Traffic flow basics.

TRANSCRIPT

Page 1: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

1

Topic 6 (Ch. 5)Traffic Stream Parameters

Mohan Venigalla, Ph.D., P.E.A i t P f CEIE

© Mohan Venigalla

Associate Professor, CEIE

George Mason University

Fairfax, VA 22030‐4444

Progress

© Mohan Venigalla

Page 2: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

2

Traffic Streams

• Individual vehicles and drivers make up  the t ffi   ttraffic stream

• Local characteristics and driver behavior are major factors on its performance 

• Drivers and vehicles are not uniform in their make up or behavior

© Mohan Venigalla

their make up or behavior

Traffic Streams

• Uninterrupted – freeways, two‐lane rural droads

• Interrupted flow facilities – arterials, local roadways (have external devices that interrupted flow) 

© Mohan Venigalla

Page 3: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

3

Interrupted Facilities

• Vehicles flow in platoons

A    f  hi l   i  t th   ith   – A group of vehicles moving together with a significant gap between themselves and the next group of vehicles

• Signal timing plans try to take advantage of platoons for continuous flow

Si l   l  l   h     il      b   i d 

© Mohan Venigalla

• Signals place less than 2 miles apart can be timed to allow for uninterrupted flow between signals

Traffic Stream Parameters

• Macroscopic parameters – describe the traffic stream as a wholestream as a whole

– Traffic flow

– Speed

– Density

• Microscopic parameters  ‐ describe the behavior of 

© Mohan Venigalla

the individual vehicle with respect to each other 

– Spacing 

– Headway

Page 4: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

4

Macroscopic Parameters

• Traffic flow – number of vehicles that pass a certain point during a specified time certain point during a specified time interval (vehicles/hour)

• Speed – rate of motion in distance/time (mph)

• Density – number of vehicles occupying a i  l th  f hi h    l  ( hi l  

© Mohan Venigalla

given length of highway or lane (vehicles per mile per lane, vpmpl)

Spacing and Time Headway

• Spacing – the distance between successive hi l  i    t ffi   t    th      vehicles in a traffic stream as they pass some 

common reference point on the vehicles

• Time headway – the time between successive vehicles in a traffic stream as they pass some common reference point on the 

© Mohan Venigalla

p pvehicles

Page 5: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

5

Traffic Flow and Time Headway

Traffic Flow given by: nq

tq

n

q= traffic flow in vehicles per unit timen= number of vehicles passing some designated roadway point during time tt= duration of time intervalFlow measurements typically related to generalized period of time; Volume of traffic refers to vehicles per hour

Time Headway given by:

© Mohan Venigalla

i

iht1

Time Headway given by:t= duration of time intervalhi=time headway of the ith vehiclen= number of measured vehicle time headways at some designated roadway point

Time Headway and Traffic Flow

• Time headway is defined as the time between the passage of successive vehicles (can be measured from front bumpers or rear bumpers)

Substituting t into the flow equation gives:

orh

nq n

© Mohan Venigalla

hq

hi

i

11

Page 6: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

6

Example Problem

Given the following headways, determine the  h d   d th  flaverage headway and the flow:

4.74s, 3.33s, 4.74s, 8.97s, 11.63s, 3.83s, 14.40s

© Mohan Venigalla

Speed and Travel Time• Time mean speed – point measure of speed

• Space mean speed – measure relating to length p p g gof roadway

• Average travel time – total time to traverse a highway

• Average running speed – total time during which vehicle is in motion while traversing a highway segment (no stop time included)

© Mohan Venigalla

highway segment (no stop time included)

Page 7: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

7

Speed and Travel Time

• Operating speed – maximum safe speed a hi l    b  d i   ith t  di  vehicle can be driven without exceeding 

design speed

• 85th percentile speed – speed at which 85% of vehicles are traveling at or below

© Mohan Venigalla

Time Mean Speed

• Arithmetic mean of vehicles speeds is given by:given by:

n

uu

n

ii

t

1

ut=time-mean speed in unit distance per unit timeui=spot speed of the ith vehicle

© Mohan Venigalla

i p pn=number of measured vehicle spot speeds

Page 8: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

8

Space Mean Speed

• Time necessary for a vehicle to travel some  lvehicle to travel some known length of roadway t

lus

n1

us= space-mean speed in unit distance per unit timel=length of roadway used for travel time measurements of vehiclest(bar)= average vehicle travel time, defined as:

© Mohan Venigalla

i

itnt

1

1

ti= time necessary for vehicle i to travel a roadway section of length l

Traffic Density

• Measure using aerial photographs; think of it as the number of vehicles that occupy a pylength of roadway

lnk

k=traffic density in vehicles per unit distancen=number of vehicles occupying some lengthof roadway at some specified timel=length of roadway

© Mohan Venigalla

n

iisl

1

l=length of roadway

si=spacing of the ith vehicle (the distance between vehicles i and i-1 measuredfrom front bumper to front bumper

Page 9: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

9

Spacing and Density

• Substituting the equation for roadway length into the density equation giveslength into the density equation gives

ors

nk n

ii

11

© Mohan Venigalla

sk

1

Basic Traffic Stream Modelsukq

Example: average headway is 2.5 s/veh on single lane roadway; averagehi l i i 200’ d i d f ffi

fthk

hrvehq

hrssvehq

svehvehs

q

/00501

/1440

/3600/40.0

/40.0/5.2

1

vehicle spacing is 200’; determine average speed of traffic.

© Mohan Venigalla

hrmimiveh

hrveh

k

qu

mivehmiftftvehk

ftvehvehft

k

/5.54/4.26

/1440

/4.26/5280/005.0

/005.0/200

Page 10: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

10

Speed‐Density Model

)1(f k

kuu

jf k

u=space mean speed in mi/hruf= free-flow speed in mi/hrk=density in veh/mikj=jam density in veh/hr

© Mohan Venigalla

Flow‐Density Model

)(2

jf k

kkuq

jk

© Mohan Venigalla

Page 11: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

11

Speed‐Flow Model

)(2

j

uukq )(

fj u

ukq

© Mohan Venigalla

Example Problem

• Given an estimate of density of 16.05 vpmpl t    d  f 6 h  d t i  th  j  at a speed of 60mph; determine the jam density and flow rate at 60mph.  Assume car length is 15’ and at jam density spacing between vehicles is 15’.

© Mohan Venigalla

Page 12: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

12

Questions

• If a vehicle is traveling at a cruising speed of 55 h i th t55 mph, is that:

– Time mean speed, or

– Space mean speed?

• Is free‐flow speed, what is the space mean speed?

© Mohan Venigalla

speed? 

– Ans: uf

Problem 5.5 (p 169)

• On a specific westbound section of a highway, studies show that the speed density relationship isstudies show that the speed‐density relationship is

• It is known that the capacity is 4200 veh/h and the 

)1(

5.3

jf k

kuu

© Mohan Venigalla

jam density is 210 veh/mi. what is the space‐mean speed of the traffic at capacity and what is the free‐flow speed?

Page 13: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

13

Solution to Problem 5.5

• Given: kj = 210; qcap = 4200; )1(

5.3

jf k

kuu

• We have, q = u.k or

• At capacity, dq/dk = 0

)(

5.3

jf k

kkkuq

)5.41(0

5.3

cap

f k

ku

© Mohan Venigalla

jk

Volume

• Planning (non‐directional) volume measures

– Average annual daily traffic (AADT)

– Average annual weekday traffic (AAWT)

– Average daily traffic (ADT), average 24 hour volume that can be measured by season, 

© Mohan Venigalla

ymonth, week, day, etc.

Page 14: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

14

Volume

• Hourly volumes – used for design and ti l  l ioperational analysis

– Peak hour volume – single highest hourly volume 

– Directional design hour volume –

• AADT x K x D = DDHV (K = proportion of daily ff d k h f k

© Mohan Venigalla

traffic during peak hour, D = proportion of peak traffic traveling in peak direction)

Volume

• Peak hour factor – describes the relationship between hourly volume and maximum rate of flow within the hourly volume and maximum rate of flow within the hour

– PHF = hourly volume/maximum rate of flow OR

– PHF = V/(4 x V15)

• PHF range –

1 0 (each 15 minute period equal) to

© Mohan Venigalla

1.0 (each 15 minute period equal) to

0.25 (one 15 min period contains all traffic)

Page 15: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

15

Peak Hour Factor Example

15 min period Vehicle Count Flow Rate (vph)

7:20AM 389 1556

7:35AM 495 1980

7:50AM 376 1504

© Mohan Venigalla

8:05AM 363 1452

7:20-8:20AM 1623 1623

Peak Hour Factor Example

• Determine the Peak Hour Factor

© Mohan Venigalla

Page 16: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

16

Chapter 5

© Mohan Venigalla

QUEUING 

Introduction

• Macroscopic relationships and analyses are l bl b tvery valuable, but

• A considerable amount of traffic analysis occurs at the microscopic level

• In particular, we often are interested in the elapsed time between the arrival of successive

© Mohan Venigalla

elapsed time between the arrival of successive vehicles (i.e., time headway)

Page 17: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

17

Introduction

• The simplest approach to modeling vehicle arrivals is to assume a uniform spacingarrivals is to assume a uniform spacing

• This results in a deterministic, uniform arrival pattern—in other words, there is a constant time headway between all vehicles

• However, this assumption is usually unrealistic, as vehicle arrivals typically follow a random process

© Mohan Venigalla

vehicle arrivals typically follow a random process

• Thus, a model that represents a random arrival process is usually needed

Introduction

• First, to clarify what is meant by ‘random’:

F f t t b id d t l• For a sequence of events to be considered truly random, two conditions must be met:

1. Any point in time is as likely as any other for an event to occur (e.g., vehicle arrival)

2. The occurrence of an event does not affect the probability of the occurrence of another event (e.g., the 

© Mohan Venigalla

p y ( g ,arrival of one vehicle at a point in time does not make the arrival of the next vehicle within a certain time period any more or less likely)

Page 18: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

18

Introduction

• One such model that fits this description is the P i di t ib tiPoisson distribution

• The Poisson distribution:

– Is a discrete (as opposed to continuous) distribution

– Is commonly referred to as a ‘counting 

© Mohan Venigalla

y gdistribution’

– Represents the count distribution of random events

Poisson Distribution

)()(

etnP

tn

!

)(n

P(n) = probability of having n vehicles arrive in time tλ = average vehicle arrival rate in vehicles per unit timet= duration of time interval over which vehicles are countede= base of the natural logarithm

© Mohan Venigalla

e= base of the natural logarithm

Page 19: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

19

Example Application

Given an average arrival rate of 360 veh/hr or 0.1 vehicles per second; with t=20 seconds;vehicles per second; with t=20 seconds; determine the probability that exactly 0, 1, 2, 3, and 4 vehicles will arrive.

p(1) = 

p(2) =

p(3) =

!

)()(

n

etnP

tn

© Mohan Venigalla

p(3) = 

p(4) = 

p(>4) = 1 – Sigma p( 1 to 4)

Example Solution

1350)201.0(

)0()20(1.00 e

P

271.0!1

)201.0()1(

135.0!0

)()0(

)20(1.01

eP

P

)5(1)5( nPnP

© Mohan Venigalla

053.0

090.0180.0271.0271.0135.01

)()(

Page 20: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

20

© Mohan Venigalla

Poisson Example

• Example:

– Consider a 1‐hour traffic volume of 120 vehicles, during which the analyst is interested in obtaining the distribution of 1‐minute volume counts

© Mohan Venigalla

Page 21: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

21

Poisson Example #2

(120 h/h ) / (3600 /h ) 0 0333 h/• = (120 veh/hr) / (3600 sec/hr) = 0.0333 veh/s• t = 0.0333 veh/sec  60 sec = 2 veh

= (120 veh/hr) / (60 min/hr) = 2 veh/min

t = 2 veh/min  1 min = 2 veh

OR

© Mohan Venigalla

1353.01

1353.01

!0

2)0(

20

e

P

Poisson Example

# of 1‐min intervals with exactly n vehicle arrivals

probability of exactly n vehicles arriving in 1‐min interval

2707.01

1353.02

!1

2)1(

21

e

P

2707.02

1353.04

!2

2)2(

22

e

P

x 60 min = 16.24

x 60 min = 16.24

yg

© Mohan Venigalla

1804.06

1353.08

!3

2)3(

23

e

P

And so on…

x 60 min = 10.82

Page 22: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

22

Poisson Example

© Mohan Venigalla

16

18

Poisson Example

4

6

8

10

12

14

16

Fre

qu

en

cy

© Mohan Venigalla

0

2

0 1 2 3 4 5 6 7 8 9 10

# of veh arrivals/minute

Page 23: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

23

Poisson Example

What is the probability of more than 6 cars i i (i 1 i i t l)?arriving (in 1‐min interval)?

6

0

1

616

i

inP

nPnP

© Mohan Venigalla

(0.5%)or 005.0

995.01

)012.0036.0090.0180.0271.0271.0135.0(16

nP

Poisson Example

What is the probability of between 1 and 3 i i (i 1 i i t l)?cars arriving (in 1‐min interval)?

32131 nPnPnPnP

%0.18%1.27%1.2731 nP

© Mohan Venigalla

%2.72

Page 24: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

24

Poisson distribution

• The assumption of Poisson distributed hi l i l l i li di t ib tivehicle arrivals also implies a distribution 

of the time intervals between the arrivals of successive vehicles (i.e., time headway) 

© Mohan Venigalla

Negative Exponential

• To demonstrate this, let the average arrival rate, , be in units of vehicles per second, so thatbe in units of vehicles per second, so that

3600

q

Substituting into Poisson equation yields

sec

veh

hsec

hveh

© Mohan Venigalla

!3600

)(

3600

n

eqt

nP

qtn

(Eq. 5.25)!

)()(

n

etnP

tn

Page 25: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

25

Negative Exponential

• Note that the probability of having no hi l i i ti i t l f l thvehicles arrive in a time interval of length 

t [i.e., P (0)] is equivalent to the probability of a vehicle headway, h, being greater than or equal to the time interval t.

© Mohan Venigalla

Negative Exponential

• So from Eq. 5.25,

)()0( thPP

36003600

1

1 qtqt

ee

(Eq. 5.26)

1 !0

10

x

Note:

© Mohan Venigalla

This distribution of vehicle headways is known as the negative exponential distribution.

Page 26: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

26

Negative Exponential Example

• Assume vehicle arrivals are Poisson distributed with an hourly traffic flow of 360 veh/h.an hourly traffic flow of 360 veh/h.

Determine the probability that the headway between successive vehicles will be less than 8 seconds.

Determine the probability that the headway

© Mohan Venigalla

Determine the probability that the headway between successive vehicles will be between 8 and 11 seconds.

Negative Exponential Example

• By definition, thPthP 1

818 hPhP

1

18

3600)8(360

3600

ehPqt

© Mohan Venigalla

551.0

4493.01

1 3600

e

Page 27: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

27

Negative Exponential Example

811118 hPhPhP

551.03329.01

551.01

8111

811118

3600)11(360

e

hPhP

hPhPhP

© Mohan Venigalla

1161.0

Negative Exponential

1.0

0.2

0.4

0.6

0.8

Pro

b (

h >

= t

)

e^(-qt/3600)

© Mohan Venigalla

0.0

0 5 10 15 20 25 30 35

Time (sec)

For q = 360 veh/hr

Page 28: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

28

Negative Exponential

c.d.f.

0.4

0.6

0.8

1.0P

rob

ab

ility

(h

< t

)

1 - e^(-qt/3600)0.551

© Mohan Venigalla

0.0

0.2

0 5 10 15 20 25 30 35

Time (sec)

8

Queuing Systems

• Queue – waiting line• Queue – waiting line

• Queuing models – mathematical descriptions of queuing systems  

• Examples – airplanes awaiting clearance for takeoff or landing, computer print jobs, 

© Mohan Venigalla

g, p p j ,patients scheduled for hospital’s operating rooms

Page 29: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

29

Characteristics of Queuing Systems• Arrival patterns – the way in which items or• Arrival patterns  the way in which items or customers arrive to be served in a system (following a Poisson Distribution, Uniform Distribution, etc.)

• Service facility – single or multi‐server

Service pattern the rate at which

© Mohan Venigalla

• Service pattern – the rate at which customers are serviced

• Queuing discipline – FIFO, LIFO

D/D/1 Queuing Models

• Deterministic arrivals

• Deterministic departures

• 1 service location (departure channel)

• Best examples maybe factory assembly lines

© Mohan Venigalla

Page 30: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

30

Example

Vehicles arrive at a park which has one entry i t ( d ll hi l t t ) P kpoints (and all vehicles must stop).  Park 

opens at 8am; vehicles arrive at a rate of 480 veh/hr.  After 20 min the flow rate decreases to 120 veh/hr and continues at that rate for the remainder of the day.  It takes 15 seconds 

© Mohan Venigalla

to distribute the brochure.  Describe the queuing model.

Example Solution

f llths

tvehhr

hrveh

tvehhr

hrveh

i/4min/60

min20min/2min/60

/120

min20min/8min/60

/480

© Mohan Venigalla

foralltvehvehs

min/4/15

Page 31: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

31

Example Solution

Therefore,

Vehicle arrivals can be defined as:

8t for t ≤ 20 min and 

160 +2(t ‐ 20)  for  t > 20 min

© Mohan Venigalla

Vehicle departures can be defined as:

4t for all t

© Mohan Venigalla

Page 32: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

32

Example Continued

• When will the queue dissipate? q p

160 +2(t‐20) = 4t

t = 60 minutes 

• Total vehicle delay is?

The total area between the arrival and departure curves.

© Mohan Venigalla

min2400)4080(2

1)2080(

2

1 vehDt

M/D/1 Queuing Model

• M stands for exponentially distributed times s a ds o e po e a y d s bu ed esbetween arrivals of successive vehicles (Poisson arrivals)

• Traffic intensity term is used to define the ratio of average arrival to departure rates:

© Mohan Venigalla

Page 33: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

33

M/D/1 Equations

• When traffic intensity term < 1 and constant steady state average arrival and departure rates:

)1(2

)1(2

2

w

Q

© Mohan Venigalla

)1(2

2

)1(2

t

M/M/1 Queuing Models

• Exponentially distributed arrival and departure po e a y d s bu ed a a a d depa u etimes and one departure channel 

When traffic intensity term < 1

1

2

Q

© Mohan Venigalla

1

)(

t

w

Page 34: Topic 6 - Traffic Flow Theory - Version 2

3/19/2013

34

M/M/N Queuing Models

• Exponentially distributed arrival and departure p y ptimes and multiple departure channels (toll plazas for example)

• In this case, the restriction to apply these equations is that the utilization factor must be less than 1.

© Mohan Venigalla

0.1N

M/M/N Models

P

N Nnc

1

10

Qw

NNN

PQ

NNnN

n cc

1

)/1(

1

!

)/1(!!

2

10

0

© Mohan Venigalla

Q

t

w