towards a new form of national impedance standard for...

19
Towards a New Form of National Impedance Standard for Millimetre Wavelengths using Dielectric Waveguide Jimmy Yip 1 , M-H John Lee 2 , Nick Ridler 1 , and Richard Collier 2 1 NPL 2 Cavendish Laboratory, University of Cambridge

Upload: others

Post on 20-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Towards a New Form of National Impedance

    Standard for Millimetre Wavelengths using

    Dielectric Waveguide

    Jimmy Yip1, M-H John Lee2, Nick Ridler1, and Richard Collier2

    1 NPL2 Cavendish Laboratory, University of Cambridge

  • Drawbacks in Metallic Waveguides

    • Skin effect

    • Surface roughness to

    • Mono-mode operation

    • Narrow band in metallic rectangular waveguide

    21−∝ fα

    f∝α

    23f∝α 25f

  • Types of Dielectric Waveguide

    1rε0ε

    (a)

    Circular dielectric rod

    guide (variants: elliptical

    dielectric rod guide)

    1rε

    (b)

    Rectangular dielectric

    rod guide

    1rε

    Ground Plane

    (c)

    Image guide (d)

    Insulated image guide

    (variants: strip guide – an

    un-grounded insulated

    image guide)

    2rε

    Ground Plane

    1rε

    1rε

    Ground Plane

    (e)

    Grounded rib waveguide

    (variants: un-grounded

    ridge guide)

    (f)

    Embedded stripline

    (variants: optical fibre – a

    fully embedded circular

    dielectric rod, and trapped

    image guide)

    0rε

    1rε2rε

    (g)

    2D Photonic Crystal Structure

    (Periodic discontinuities cause matched-

    multiple-reflections, which form a “photonic

    bandgap” or virtual cut-off. It can be

    developed into 2D or 3D wave guiding

    structures. Variants: circular photonic crystal

    fibre, etc.)

    Guided

    Wave

    Multiple reflections

    0rε

    1rε (h) Dielectric slab guide: one of the dimensions at the

    cross-section is extended to infinite. (This physically

    unrealisable guide is only used for the field and wave

    analysis, e.g. a rectangular dielectric rod guide can be

    mathematically approximated by the combination of

    two slab guides perpendicular to each other.)

    1rε

  • Ray trace in a rectangular dielectric rod waveguide. ( )12 εε >

    A

    B

    C D

    A’

    B’

    C’

    2ε1εx

    z

    y

    A

    B

    C

    D

    A’

    B’

    C’ z

    y

    A

    B

    C

    D

    A’

    B’

    C’

    x

    z

    The zigzagging wave is bounced off from each of the four walls sequentially within the rectangular dielectric rod

    guide under internal reflection

  • Propagation modes in dielectric waveguide

    a2

    b21rε 2rε

    x

    y

    a2

    1rε

    2rε

    1rε

    xE

    TM10 ModeTE01 Mode

    1rε

    2rε

    1rε

    b2xE

    (1) The x

    E11 mode in a rectangular dielectric rod waveguide is the combination of the TM10 and TE01modes in dielectric slab guides.

    yE

    a2

    1rε

    2rε

    1rε

    TE10 Mode

    1rε

    2rε

    1rε

    b2 yE

    TM01 Mode

    (2) The yE11 mode can be treated as the combination of the TE10 and TM01 modes.

    There are two dominant

    modes in dielectric

    waveguide: Ex and Ey modes

  • Selection of dielectric materials

    V. Good1170.0002 @ 1 kHz2.12 @ 1 MHzTPX(Polymethylpentene)

    V. Poor100 –2000.0001 – 0.001 @ 1 MHz

    2.3 – 2.4 @ 1 MHz

    HDPE(High Density Polyethylene)

    Fair100 –1800.0003 – 0.0005 @ 1 MHz

    2.2 – 2.6 @ 1 MHz

    PP(Polypropylene)

    V. Good70 – 900.0002 @ 1 MHz2.5 @ 1 MHzRexolite(Cross-link Polystyrene)

    Poor100 –1600.0003 – 0.0007 @ 1 MHz

    2.0 – 2.1 @ 1 MHz

    PTFE(Polytetrafluoroethylene)

    Good47/1080.003 @ 1 MHz3.2 to 3.3 @ 50 Hz – 10 kHz

    PEEK(Polyetheretherketone)

    RigidityCoefficient of Thermal Expansion

    ( x10-6 K-1)

    Dissipation Factor

    tanδ

    Dielectric Constant

    ε

    Name

  • Measurement of different dielectric materials 1

    Comparing Different Dielectric Materials

    -20

    -18

    -16

    -14

    -12

    -10

    -8

    -6

    -4

    -2

    0

    75 80 85 90 95 100 105 110

    Frequency (GHz)

    S21 (

    dB

    )

    PP

    PTFE

    HDPE

    Rexolite

    PEEK

    TPX

  • Measurement of different dielectric materials 2

    -3

    -2.5

    -2

    -1.5

    -1

    -0.5

    0

    75 80 85 90 95 100 105 110

    Frequency (GHz)

    S21 (

    dB

    )

    PP HDPE

    Rexolite TPX

  • Tapered transition

    Rectangular

    Waveguide

    Taper

    Section

    Dielectric-filled Rectangular

    Waveguide

    a=2540µm

    b=1270µm

    x

    zy

    E

    Port 1

    Port 2

  • Different types of taper

    (a) H-Plane Asymmetric Taper. (b) H-Plane Symmetric Taper. (c) E-Plane Asymmetric Taper.

    (d) E-Plane Symmetric Taper. (e) Pyramidal Taper. (Tapered in both

    H- and E-planes)

  • Simulation result of different tapers

    -60

    -50

    -40

    -30

    -20

    -10

    0

    75 80 85 90 95 100 105 110

    Frequency (GHz)

    S1

    1 (

    dB

    )

    No Taper (a) (b) (c) (d) (e)

    (a) H-plane asymmetric

    (b) H-plane symmetric

    (c) E-plane asymmetric

    (d) E-plane symmetric

    (e) Pyramidal

  • Field analysis in different tapers

    (a) Asymmetric H-plane taper.

    Ray Trace

    E

    a

    Taper Length (TL)

    2.3=rεα

    1η 2η

    (b) Symmetric H-plane taper.

    E

    2.3=rε0ε

    α

    E-field

    E 2.3=rε

    b

    1λ 2λ

    (c) E-plane asymmetric taper.

    2.3=rε0ε

    1λ 2λ

    (d) E-plane symmetric taper.

  • Standard wheel

  • Measurement of different off-set shorts 1

    Measured in an un-calibrated system

    75 GHz

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

    Real

    Imag

    inary

    Short

    2.435mm

    3.632mm

    4.561mm

    5.100mm

    5.590mm

    110 GHz

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

    Real

    Imag

    inary

    Short

    2.435mm

    3.632mm

    4.561mm

    5.100mm

    5.590mm

  • Measurement of different off-set shorts 2

    92.5 GHz

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

    Real

    Imag

    inary

    Short

    2.435mm

    3.632mm

    4.561mm

    5.100mm

    5.590mm

    96 GHz

    -1

    -0.8

    -0.6

    -0.4

    -0.2

    0

    0.2

    0.4

    0.6

    0.8

    1

    -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

    Real

    Imag

    inary

    Short

    2.435mm

    3.632mm

    4.561mm

    5.100mm

    5.590mm

  • Calibration using 4 standards

  • Uncertainty profile

  • Expected size of errors in |S11| at 75 GHz

    Transmission mediumRandom errors due to

    connection repeatability

    Systematic errors due to

    connection misalignment

    Combined standard

    uncertainty

    Dielectric Waveguide 0.003 0.002 0.003

    Rectangular Metallic

    Waveguide

    0.007 0.006 0.008

  • Conclusions

    • Lower loss

    • Better connectivity (even with small air gap)

    • Good repeatability

    • It can be used on integrated waveguides and photonic

    band-gap structures