trait directed de novo population transcriptome dissects ... · trait directed de novo population...

38
Trait directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass Holcus lanatus Meharg, C., Khan, B., Norton, G., Deacon, C., Johnson, D., Reinhardt, R., ... Meharg, A. A. (2014). Trait directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass Holcus lanatus. New Phytologist, 201(1), 144-154. DOI: 10.1111/nph.12491 Published in: New Phytologist Document Version: Peer reviewed version Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust This is the peer reviewed version of the following article: Meharg, C., Khan, B., Norton, G., Deacon, C., Johnson, D., Reinhardt, R., Huettel, B. and Meharg, A. A. (2014), Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus. New Phytologist, 201: 144–154. , which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1111/nph.12491/abstract. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected]. Download date:28. May. 2018

Upload: lamdiep

Post on 03-Apr-2018

223 views

Category:

Documents


4 download

TRANSCRIPT

Trait directed de novo population transcriptome dissects geneticregulation of a balanced polymorphism in phosphorusnutrition/arsenate tolerance in a wild grass Holcus lanatusMeharg, C., Khan, B., Norton, G., Deacon, C., Johnson, D., Reinhardt, R., ... Meharg, A. A. (2014). Trait directedde novo population transcriptome dissects genetic regulation of a balanced polymorphism in phosphorusnutrition/arsenate tolerance in a wild grass Holcus lanatus. New Phytologist, 201(1), 144-154. DOI:10.1111/nph.12491

Published in:New Phytologist

Document Version:Peer reviewed version

Queen's University Belfast - Research Portal:Link to publication record in Queen's University Belfast Research Portal

Publisher rights© 2013 The Authors. New Phytologist © 2013 New Phytologist TrustThis is the peer reviewed version of the following article: Meharg, C., Khan, B., Norton, G., Deacon, C., Johnson, D., Reinhardt, R., Huettel,B. and Meharg, A. A. (2014), Trait-directed de novo population transcriptome dissects genetic regulation of a balanced polymorphism inphosphorus nutrition/arsenate tolerance in a wild grass, Holcus lanatus. New Phytologist, 201: 144–154. , which has been published in finalform at http://onlinelibrary.wiley.com/doi/10.1111/nph.12491/abstract. This article may be used for non-commercial purposes in accordancewith Wiley Terms and Conditions for Self-ArchivingGeneral rightsCopyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or othercopyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associatedwith these rights.

Take down policyThe Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made toensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in theResearch Portal that you believe breaches copyright or violates any law, please contact [email protected].

Download date:28. May. 2018

 

  1  

Trait  directed  de  novo  population  transcriptome  dissects  1  

genetic  regulation  of  a  balanced  polymorphism  in  phosphorus  2  

nutrition/arsenate  tolerance  in  a  wild  grass  Holcus  lanatus  L.  3  

 4    5  

 6  

Caroline  Meharg1*,  Bayezid  Khan2,  Gareth  Norton2,  Claire  Deacon2,  David  Johnson2,  7  

Richard  Reinhardt3,  Bruno  Huettel3,  Andrew  A.  Meharg1*  8  

 9  

 10  

1. Institute  for  Global  Food  Security,  Queen’s  University  Belfast,  David  Keir  11  

Building,  Malone  Road,  Belfast  BT9  5BN.  12  

2. Institute  of  Biological  and  Environmental  Sciences,  University  of  Aberdeen,  13  

Cruickshank  Building,  St  Machar  Drive,  Aberdeen  AB24  3UU.  14  

3. Max  Planck  Institute  for  Plant  Breeding  Research,  Carl-­‐von-­‐Linné-­‐Weg  15  

10,  50829  Köln,  Germany.  16  

 17  

*  Corresponding  authors  18  

 19  

 20  

 21  

   22  

 

  2  

Summary  1  

• Here  we  characterize  the  genetic  regulation  of  a  single  gene  balanced  2  

polymorphism  for  phosphate  fertilizer  responsiveness,  as  well  as  arsenate  3  

tolerance,  in  wild  grass  Holcus  lanatus  L.  genotypes  screened  from  the  same  4  

habitat,  treated  with  high  and  low  phosphorus  (P)  as  phosphate.    5  

• De  novo  transcriptome  sequencing,  RNAseq  and  SNP  calling  was  conducted  6  

on  extracted  RNA.  Roche  454  sequencing  data  was  assembled  into  ~22,000  7  

isotigs  and  Illumina  reads  for  phosphorous  starved  (P-­‐)  and  phosphorous  8  

treated  (P+)  genovars  of  tolerant  (T)  and  non-­‐tolerant  (N)  phenotype  were  9  

mapped  to  this  reference  transcriptome.      10  

• Heatmaps  of  the  gene  expression  data  showed  strong  clustering  of  each  11  

P+/P-­‐  treated  genovar,  as  well  as  clustering  by  N/T  phenotype.  Statistical  12  

analysis  identified  87  isotigs  to  be  significantly  differentially  expressed  13  

between  N  and  T  phenotypes  and  258  between  P+  and  P-­‐  treated  plants.    14  

• This  single  gene  for  tolerance  led  to  distinct  phenotype  transcriptomes,  with  15  

large  differences  in  post-­‐translational  and  post-­‐transcriptional  regulation  16  

rather  than  in  P  nutrition  transport  and  metabolism;  and  the  identification  of  17  

SNPs  that  systematically  differ  between  phenotype,  again  in  transcripts  with  18  

predicted  regulatory  function  including  several  proteases,  kinases  and  19  

ribonuclear  RNA  binding  protein  and  concurrent  up-­‐regulation  of  expressed  20  

transposons  in  the  T  phenotype.  21  

 22  

 23  

 24  

 

  3  

Introduction  1  

Grasses  are  known  to  have  complex  genomes  of  various  size,  often  large,  with  2  

extensive  repetitive  elements,  local  rearrangements,  differences  in  genomic  3  

structure,  ploidy  level  and  chromosome  number,  and  are  consequently  challenging  4  

with  respect  to  whole  genome  sequencing  and  assembly  (Buckler  et  al.,  2001;  5  

Feuillet  &  Keller,  2002;  Jackson  et  al.,  2011,  Hamilton  &  Buell,  2012).  Transcriptome  6  

sequencing  bypasses  genomic  complexity  by  focusing  on  protein  coding  genes  7  

(Hamilton  &  Buell,  2012)  (~25,000  to  56,000  in  grasses)  derived  from  a  well-­‐8  

conserved  and  relatively  small  proportion  of  the  genome  (~84%  of  gene  families  9  

shared  between  grass  sub-­‐families)  (The  International  Brachypodium  Initiative,  10  

2010).  As  transcripts  are  sensitive  to  environment,  RNA  sequencing  can  be  clustered  11  

by  function  through  use  of  appropriate  experimental  manipulation  to  further  aid  in  12  

gene  pathway  identification  (Suarez  Rodriguez  et  al.,  2010;  Urzica  et  al.,  2012;  13  

O’Rourke  et  al.,  2013).  14  

 15  

While  genomic  sequencing  has  led  to  unparalleled  advance  in  our  understanding  16  

of  the  physiology  and  ecology  of  model  organisms,  it  is  not  currently  feasible  17  

(due  to  expense)  to  conduct  trait  led  genome  sequencing  investigations  in  all  18  

wild  species  of  interest  (Nawy,  2012),  rather  there  is  a  reliance  in  finding  traits  19  

that  exist  (naturally  or  through  mutation)  in  model  species  (Jackson  et  al.,  2011).  20  

While  laboratory  generated  (site  directed,  knockdown,  overexpression,  chemical  21  

or  radiation  induced)  mutants  are  essential  for  studying  gene  function  and  serve  22  

as  breeding  resource  (Kuromori  et  al.,  2009),  natural  polymorphisms  in  non-­‐23  

model  species  are  a  greatly  untapped  resource.    24  

 

  4  

 1  

The  wild  grass  Holcus  lanatus  L.,  an  outcrossing  diploid  (2n=14)  and  closely  related  to  2  

B.  distachyon  (Aliscioni  et  al.,  2012),  has  a  remarkable  balanced  polymorphism  in  3  

arsenate  tolerance,  screened  from  a  semi-­‐natural,  non-­‐arsenic  contaminated  4  

populations  (Meharg  et  al.,  1993),  coded  by  a  single  gene  (Macnair  et  al.,  1992).  As  5  

arsenate  is  a  phosphate  analogue  it  has  been  postulated  that  this  polymorphism  is  6  

maintained  due  to  phosphorus  nutrition,  not  arsenate  tolerance  per  se,  particularly  7  

as  the  tolerance  gene  co-­‐segregates  with  suppression  of  High  affinity  Phosphate  8  

Transport  (HAPT)  (Meharg  et  al.,  1992a;  Meharg  &  Macnair,  1992b),  though  an  9  

explicit  ecological  link  to  phosphorus  status  of  soils  has  yet  to  be  proven  (Naylor  et  10  

al.,  1996).  This  soil  P  responsiveness  is  addressed  in  this  current  study  along  with  the  11  

transcriptomic  consequences  of  being  of  tolerant  (T)  or  non-­‐tolerant  (N)  phenotype  12  

to  ascertain  why  and  how  this  polymorphism  is  maintained.  13  

 14  

 15  

 16  

   17  

 

  5  

Materials  and  methods  1  

Chemicals  used  in  experiments  were  Trace  element  grade  or  better,  while  all  2  

chemicals  used  for  analytical  purposes  were  Aristar  grade.    3  

 4  

Plant  &  soil  collection  5  

Single  tillers  of  H.  lanatus  were  collected  from  a  semi-­‐natural  grassland,  6  

Cruickshank  Botanic  Gardens  (CBG),  University  of  Aberdeen,  UK,  where  H.  7  

lanatus  is  a  dominant  species.  Only  one  tiller  was  taken  from  each  of  250  8  

individual  plants,  and  only  isolated  plants  were  selected,  spaced  at  least  5  m  9  

from  each  other.  Surface  soil  (0-­‐10  cm)  from  the  CBG  population  was  collected  10  

and  2  mm  sieved  and  stored  at  field  moist  conditions  until  use.  Tillers  were  11  

cultivated  in  a  temperate  glasshouse  following  potting  (10  cm  wide  pots)  into  12  

John  Innes  number  2  compost.    13  

 14  

Plant  growth  characterization  15  

Tiller  testing  was  conducted  according  to  procedures  outlined  in  Macnair  et  al.  16  

(1992).  Following  tiller  tolerance  testing,  genotypes  were  selected  for  further  17  

study  where  their  longest  root  length  after  2  wk  growth  in  arsenate  free  solution  18  

exceeded  100  mm.  The  plants  were  either  classified  as  non-­‐tolerant  (N)  or  19  

tolerant  (T)  based  on  their  tolerance  index  (TI),  where  TI  =  100  *  (root  growth  in  20  

0.013  mM  arsenate/root  growth  in  absence  of  arsenic),  with  this  segregation  21  

shown  in  Fig.  1.  Out  of  the  250  genotypes  screened,  ~30  of  each  phenotype  were  22  

selected  for  detailed  study.      23  

 24  

 

  6  

A  P  fertilization  experiment  was  conducted  on  these  ~60  genotypes,  split  into  N  1  

and  T  phenotype,  where  each  genotype  was  a  single  replicate,  and  where  the  2  

CBG  soil  was  fertilized  with  phosphate  (100  P  mg/kg  soil  d.wt.  as  disodium  3  

phosphate).  Plants  were  grown  in  control  (no  fertilization)  and  with  fertilization  4  

for  60  d  before  harvesting.  At  harvest  roots  were  washed  free  of  soil  and  root  5  

and  shoot  dry  weight  recorded  along  with  shoot  P.    P  was  analysed  in  6  

powderised  shoot  by  Inductively  Coupled  Plasma  –  Mass  Spectrometry  (ICP-­‐MS)  7  

on  an  Agilent  4000  instrument,  following  microwave  assisted  digestion  (CEM-­‐8  

Technologies)  in  concentrated  nitric  acid.  9  

 10  

RNA  preparation  11  

Tillers  were  grown  hydroponically  for  2  wk  in  50  ml  either  complete  Hoaglands  12  

solution,  or  that  solution  minus  the  phosphate,  in  individual  centrifuge  tubes  with  13  

base  of  the  tubes  covered  in  tin  foil  to  block  out  light.  Plants  were  grown  in  a  heated  14  

glasshouse  (~180C),  under  supplemental  sodium  lamps.  Roche  454  sequencing  was  15  

conducted  on  one  non-­‐tolerant  replicate  grown  plus  (P+)  or  minus  (P-­‐)  phosphate.  A  16  

genotype  of  the  non-­‐tolerant  phenotype  was  chosen  for  454  transcriptome  17  

sequencing  and  assembly  as  it  was  assumed  that  the  non-­‐tolerant  phenotype  would  18  

be  the  most  P  responsive  from  previous  physiological  studies  (Meharg  &  Macnair,  19  

1992a).  For  Illumina  sequencing  a  further  4  replicate  individual  genotypes  (not  20  

including  the  genotype  used  for  454  sequencing),  of  each  phenotype  (T  or  N)  were  21  

grown  in  P+  and  P-­‐  in  a  factorial  design,  phenotype  (tolerance)  by  phosphorous  [P]  22  

treatment,  i.e.  16  samples  in  total.  The  N  genotype  used  for  454  sequencing,  and  23  

another  T  genotype,  where  analysed  by  Illumina  in  the  same  experiment  used  for  24  

 

  7  

454  sequencing,  but  where  not  included  in  the  phenotyope*P  Illumina  analysis  1  

experiment  analysis  as  there  RNA  was  extracted  at  a  different  time  point  which  lead  2  

to  differential  gene  expression.  However,  these  additional  T  and  N  genotype  were  3  

used  in  SNP  analysis  so  that  SNP  calling  was  conducted  on  20  samples.    4  

 5  

On  harvesting  blotted  lightly  dry  roots  and  shoots  for  each  replicate  had  their  RNA  6  

extracted.  Samples  were  ground  under  liquid  nitrogen  and  total  RNA  was  extracted  7  

using  the  Plant  RNeasy  extraction  method  (Qiagen),  with  the  additional  on-­‐column  8  

DNase  treatment.  The  resulting  material  was  stored  at  -­‐800C  until  shipping  on  dry  ice  9  

for  analysis.  10  

 11  

Transcriptome  sequencing  12  

Sequencing  was  conducted  at  the  Max  Planck  Plant  Breeding  Research  Institute,  13  

Cologne,  Germany.  RNA  was  reverse  transcribed  to  cDNA,  fragmented,  polyA  14  

enriched  and  sequenced  on  a  454  GS-­‐FLX  (Titanium  Chemistry)  and  HiSeq  2000  (100  15  

bp  paired  end  Illumina  technology).    16  

 17  

For  generation  of  a  reference  transcriptome  assembly,  two  normalized  Roche  454  18  

libraries  were  prepared  for  one  arsenic  non-­‐tolerant  genovar  (N)  and  sequenced  on  a  19  

Roche  454  GS-­‐FLX  using  Titanium  chemistry.  Half  a  plate  was  used  for  transcriptome  20  

sequencing  of  phosphorous  treated  (N+)  and  half  a  plate  for  non-­‐treated  (N-­‐)  plants.    21  

 22  

For  gene  expression  and  SNP  analysis  (RNAseq),  a  100bp  paired  end  Illumina  23  

sequencing  library  was  generated  for  each  of  the  20  samples.  These  included  all  4  24  

 

  8  

samples  from  the  first  experiment  (T-­‐,  N-­‐,  T+,  N+),  as  well  as  another  16  samples  1  

(experiment  2)  consisting  of  4  tolerant  (T)  and  4  non-­‐tolerant  (N)  genovars,  receiving  2  

P-­‐  and  P+  treatment  (4  N-­‐,  4  N+,  4  T-­‐,  4  T+).  Illumina  reads  were  mapped  to  the  454  3  

reference  transcriptome  assembly.    4  

 5  

For  annotation  of  the  reference  transcriptome  with  standalone  BLAST  (blast-­‐2.2.22,  6  

ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/2.2.22/),  the  7  

Osativa_193_transcript  and  Osativa_193_peptide  databases  were  downloaded  from  8  

ftp://ftp.plantgdb.org/download/Genomes/OsGDB/,  the  plant-­‐refseq  database  from  9  

ftp://ftp.ncbi.nih.gov/refseq/release/plant/  and  the  nucleotide  (nt)  database  from  10  

ftp://ftp.ncbi.nih.gov/blast/db/.    11  

 12  

For  generation  of  the  reference  transcriptome,  the  454  reads  were  adapter  and  13  

quality  trimmed  and  assembled  with  Newbler  version  2.6.  After  assembly,  isotigs  14  

were  annotated  by  blasting  them  against  Oryza  sativa  transcript  (BLASTn),  O.  sativa  15  

peptide,  plant-­‐refseq  (BLASTx)  and  nt  (BLASTn)  using  an  e-­‐value  cutoff  of  1.00  E-­‐08.  16  

A  BLAST  report  was  compiled  by  parsing  of  all  BLAST  results  with  Perl  scripts  using  17  

BioPerl  modules  (Stajich  et  al.,  2002)  to  extract  the  top  hit  accession,  description,  E-­‐18  

value,  percent  identification  (id)  from  each  BLAST  search.  Annotation  of  putative  19  

function  for  O.  sativa-­‐peptides  and  O.  sativa-­‐transcripts  were  inserted  into  the  Blast  20  

report  after  submission  to  http://rice.plantbiology.msu.edu/downloads_gad.shtml  21  

(annotation  of  all  isotigs  is  reported  in  SI  Annotated-­‐DESeq-­‐Result.xlsx).    22  

 23  

 24  

 

  9  

For  identification  of  differentially  expressed  transcripts/genes,  100bp  paired  end  1  

Illumina  reads  from  experiment  1  (4  samples)  and  experiment2  (16  samples)  were  2  

aligned  to  the  assembled  454  reference  transcriptome  (isotigs)  using  bowtie  3  

(Langmead  et  al.,  2009),  allowing  multiple  matches  (option  -­‐a)  reporting  only  the  4  

best  hits  obtained  for  each  read  pair  (option  -­‐-­‐best  -­‐-­‐strata)  with  an  allowed  5  

maximum  of  3  end-­‐to-­‐end  mismatches  (option  –v  3)  to  an  isotig.  For  each  of  the  20  6  

samples  the  number  of  reported  reads  aligning  to  each  isotig  was  counted  with  use  7  

of  a  Perl  script.    8  

 9  

Differentially  expressed  transcripts/isotigs  were  identified  in  R  (http://www.r-­‐10  

project.org/)  with  package  DESeq  (Anders  &  Huber,  2010)  using  the  FDR<0.1  as  11  

cutoff  for  significance.  DESeq  analysis  was  carried  out  on  the  Illumina  data  from  the  12  

second  experiment  (n=4)  for  all  4  pairwise  comparisons  (N-­‐  vs.  T-­‐,  N+  vs.  T+,  N-­‐  vs.  13  

N+,  T-­‐  vs.  T+)  to  allow  identification  of  genes  relevant  to  P+/  P-­‐  treatment  and  those  14  

involved  in  tolerant  vs.  non-­‐tolerant  phenotype.    After  DESeq  analysis  the  log2  Fold  15  

Change  (log2FC)  of  lowly  expressed  genes  was  recalculated  as  follows:  DESeq  16  

calculated  normalized  counts  of  <5  were  set  to  a  baseline  of  5.  This  allowed  17  

estimation  of  log2FC  even  if  one  of  the  treatments  showed  a  mean  normalized  count  18  

of  0  and  furthermore  ensured  that  all  2-­‐fold  changes  reported  had  normalized  mean  19  

expression  values  of  at  least  ≥10  in  one  of  the  treatments  in  question.  Isotigs  with  20  

False  Discovery  Rate  (FDR)  <  0.1  for  any  treatment  comparison  (344  isotigs)  were  21  

submitted  to  BLAST2GO  (default  settings:  BLASTx,  nr,  BLAST  expect  value  1.0E-­‐03,  22  

number  of  BLAST  hits  20)  (Conesa  &  Götz,  2008)  for  further  functional  analysis  23  

 

  10  

including  Gene  Ontology,  Enzyme  Code  and  Interpro  domain  search.  The  full  1  

annotated  DESeq  result  is  reported  in  SI  Annotated-­‐DESeq-­‐Result.xlsx.  2  

 3  

For  identification  of  isotigs  showing  homology  to  specific  proteins  of  interest  4  

proteins  were  blasted  against  all  isotigs  (tBLASTn).  For  visualisation  of  assigned  5  

protein  homologies,  some  selected  isotigs  were  translated  into  protein  (expasy,  6  

http://web.expasy.org/translate/)  and  aligned  with  homologous  plant  protein  7  

sequences  using  mafft  version7  (Katoh  &  Standley  2013).  Mafft  alignments  were  8  

imported  into  Seaview  (Gouy  et  al.,  2010),  and  the  alignments  exported  (SI  Figs.  1-­‐8).    9  

 10  

Samtools  was  used  for  identification  of  SNPs  with  variant  and  mapping  quality  >20  11  

(Li  et  al.,  2009).  SNP  tables  of  all  20  plants  were  merged  and  homozygous  and  12  

heterozygous  SNPs  consistent  across  N  and  T  phenotype  (n=10)  were  extracted  as  13  

potentially  relevant  drivers  of  N  versus  T  phenotype  using  a  Perl  script.  14  

 15  

The  data  is  in  the  process  of  being  submitted  to  Short  Read  Archive  (SRA)  at  the  16  

European  Nucleotide  Archive  (www.ebi.ac.uk/ena/),  to  be  released  upon  17  

publication.  18  

 19  

 20  

 21  

   22  

 

  11  

Results  and  Discussion  1  

There  was  a  clear  segregation  into  tolerant  and  non-­‐tolerant  classes  (Fig.  1).    2  

This  was  expected  as  previous  studies  have  shown  the  ubiquity  of  this  balanced  3  

polymorphism  (Meharg  et  al.  ,1993;  Naylor  et  al.,  1996).  When  grown  in  their  4  

soil  of  origin  the  plants  responded  differentially  to  phosphate  fertilizer  (Fig.  2).  5  

General  Linear  Modeling  (GLM)  (using  Minitab  (v.16))  of  ranked  data  (due  to  6  

non-­‐normality  of  untransformed  data)  found  a  significant  (P=0.004)  7  

phenotype*P  fertilization  interaction  for  shoot/root  ratio,  all  other  model  terms  8  

were  not  significant  for  this  comparison.  This  phenotype*P  fertilization  9  

interaction  term  was  caused  by  a  decrease  in  shoot/root  ratio,  in  tolerants  10  

treated  with  P,  showing  that  the  tolerant  phenotype  is  not  reducing  relative  root  11  

growth  in  response  to  P  nutrition.  Plants  normally  reduce  relative  root  12  

production  under  P  nutrition  (Gojon  et  al.,  2009).  This  is  the  first  characterization  13  

of  a  phosphate  specific  response  for  this  polymorphism  and  the  differential  14  

allocation  to  root  and  shoot  biomass  in  response  to  P  availability  likely  to  be  the  15  

reason  why  this  polymorphism  is  maintained,  and  this  will  explained  and  16  

outlined  in  more  detail  in  subsequent  publications.  There  were  no  significantly  17  

different  (i.e.  P>0.005)  terms  for  both  shoot  weight  and  shoot  P,  while  only  the  18  

treatment  term  was  significant  for  root  weight.  These  data  show  that  shoot  P  19  

(root  P  was  not  measured  as  it  is  impossible  to  remove  all  adhering  soil  which  20  

greatly  confounds  interpretation)  does  not  differ  between  phenotypes,  and  that  21  

this  shoot  P  status  is  not  P  fertilizer  responsive,  all  indicating  tight  homeostasis,  22  

a  known  characteristic  with  respect  to  plant  P  nutrition  (Gojon  et  al.,  2009;  Hill  et  23  

al.,  2006).    24  

 25  

 

  12  

Roche  454  sequencing  generated  ~1  million  reads  and  a  total  of  474  megabases  (MB)  1  

of  sequence  data  for  assembly  of  a  reference  transcriptome.  Circa.  82%  of  all  reads  2  

and  ~85%  of  all  bases  (400MB)  aligned.  The  inferred  read  error  was  1.06%  3  

(Supporting  Information  [SI]  Illumina-­‐and-­‐454-­‐Stats.xlsx).    Assembly  with  Newbler  4  

2.6  generated  a  reference  transcriptome  (SI  454Isotigs.fna)  with  a  total  of  22,313  5  

isotigs.  The  overall  size  of  the  assembled  reference  transcriptome  was  29  megabases  6  

(MB).  The  average  isotig  size  obtained  was  1,302bp,  the  N50  Isotig  size  1,489bp,  the  7  

number  of  isotigs  ≥1kb  was  12,828,  (SI  Illumina-­‐and-­‐454-­‐Stats.xlsx,  Sheet1).  When  8  

BLASTed  against  O.  sativa,  plant  refseq  transcriptome  databases  and  non-­‐redundant  9  

nucleotide  database  (nt)  (SI  Annotated-­‐DESeq-­‐Result.xlsx)).  Of  these,  18,204  10  

returned  a  match  against  O.  sativa  transcripts,  18,954  returned  a  match  against  O.  11  

sativa  peptides,  19,344  against  plant  refseq  and  19,589  against  nt  (cutoff  for  12  

significance  <  1.00  E-­‐08).  BLAST  against  nt  returned  hits  almost  exclusively  against  13  

plant  cDNA/mRNA,  predominantly  Hordeum  vulgare  (barley),  Triticum  aestivum  14  

(wheat).  Highest  homologous  matches  against  Plant-­‐refseq  were  invariably  identified  15  

against  protein/transcript  sequences  of  Brachypodium,  Sorghum  bicolor  and  O.  16  

sativa  (rice),  of  these  Brachypodium  being  the  most  frequent  hit  and  most  closely  17  

related  to  H.  lanatus  (Aliscioni  et  al.,  2012).  Further  statistics  on  assembly  are  18  

reported  in  the  SI  Illumina-­‐and-­‐454-­‐Stats.xlsx.  The  only  previously  reported  H.  19  

lanatus  gene  sequence,  AY704470,  a  CDC25  phosphatases  homologue  (Bleeker  et  al.,  20  

2006),  was  identified  in  all  genotypes  with  isotig19077  showing  100%  identity  to  this  21  

published  sequence  (tBLASTn)  (SI  Fig.  1),  giving  further  verification  of  the  22  

transcriptome  assembly.    23  

 24  

 

  13  

Paired  end  Illumina  sequencing  produced  an  average  of  ~53  million  reads  for  each  of  1  

the  20  libraries  giving  a  total  of  1052  million  100bp  paired  end  reads  or  210  2  

gigabases  (GB)  of  sequence  data.    Forty-­‐eight  percent  (100GB)  of  the  HiSeq  data  3  

aligned  successfully  to  the  assembled  454  transcriptome  without  any  prior  clipping  4  

of  reads,  with  an  average  of  25  million  full  length  100bp  paired  end  reads  (5GB)  for  5  

each  of  the  20  libraries  mapping  successfully  to  isotigs  with  3  or  less  end-­‐to-­‐end  6  

basepair  mismatches  (SI  Illumina-­‐and-­‐454-­‐Stats.xlsx).  Of  22313  isotigs  only  52  isotigs  7  

did  not  obtain  any  mapped  paired  end  Illumina  reads  when  aligning  all  Illumina  reads  8  

from  (all  20  individual  samples)  giving  good  verification  of  the  454  reference  9  

transcriptome  assembly  (SI  RawCounts-­‐per-­‐isotig.xlsx).  The  isotigs,  which  did  not  10  

obtain  any  mapped  Illumina  reads  may  either  have  been  too  short  (less  than  250bp)  11  

or  misassembled.  Non-­‐aligned  Illumina  reads  on  the  other  hand  are  likely  to  be  a  12  

mixture  of  poor  quality  reads,  reads  containing  adapter  sequence,  which  would  13  

require  end-­‐trimming,  or  alternatively  originate  from  lowly  expressed  transcripts,  14  

which  may  not  be  represented  in  the  454  reference  library,  but  may  still  be  picked  15  

up  amongst  the  Illumina  sequences  due  to  the  much  deeper  coverage  achieved  with  16  

Illumina  technology.  Transcript  expression  result  showed  strong  clustering  of  each  17  

P+  and  P-­‐  treated  genotype  verifying  that  each  plant  was  indeed  a  different  18  

genotype  (Fig.  3).  T  genotypes  clustered  together,  as  did  N,  showing  that  the  19  

phenotypes  had  distinctive  transcript  expression  signatures.  Differential  expression  20  

analysis  was  carried  out  with  DESeq  (Anders  &  Huber,  2010)  and  identified  344  21  

isotigs,  with  a  False  Discovery  Rate  (FDR)  of  0.1,  significantly  up  or  down-­‐regulated  in  22  

response  to  either  P+/P-­‐  treatment  or  N/T  phenotype  (Fig.  4,  SI  Annotated-­‐DESeq-­‐23  

Result.xlsx).  Of  these  87  isotigs  were  shown  to  be  differentially  expressed  between  N  24  

 

  14  

and  T  phenotype,  while  the  majority,  258  isotigs,  were  shown  to  be  differentially  1  

expressed  in  response  to  different  P±  nutrition  treatment.  There  was  no  overlap  2  

between  the  significant  isotigs  identified  for  P+/-­‐  and  N/T  phenotype  response.  3  

There  are  a  number  of  potential  explanations  for  the  independence  of  transcripts  4  

between  N/T  and  P+/P-­‐  nutrition.  The  first  is  that  a  single  regulatory  gene,  given  that  5  

we  know  that  arsenate  tolerance  is  under  single  gene  control  (Macnair  et  al.,  1992),  6  

is  controlling  transcript  production  of  a  host  of  genes  in  the  T/N  comparison.  The  7  

second,  which  is  not  exclusive  of  the  first,  is  that  differences  in  metabolism  resulting  8  

from  differential  function  of  a  gene(s)  may  lead  to  feedback  regulating  transcripts  of  9  

interrelated  functions  such  as  the  obvious  impact  of  P  starvation  on  P  metabolism  10  

observed  here  (Figs.  3  and  4).  Differences  in  P  stress  perception  by  plants  are  known  11  

to  induce  a  host  of  differential  responses,  such  as  tillering,  root  biomass  production,  12  

arbuscular  mycorrhizal  regulation,  and  rhizosphere  excretion  of  dicarboxylic  acids  to  13  

mobilize  phosphate  from  iron  minerals,  and  this  will  lead  to  differential  regulation  of  14  

a  network  of  genes  (Chiou  et  al.,  2011;  Gojon  et  al.,  2009;  Hill  et  al.,  2006).  Again,  the  15  

arsenate  tolerance  gene  has  a  range  of  pleiotropic  consequences  (shoot/root  16  

biomass,  HAPT  suppression  and  arsenate  tolerance  itself),  fitting  well  such  a  17  

feedback  and/or  upstream  regulator  model.    18  

 19  

The  amplitude  of  fold-­‐change  was  greater  between  phenotypes  than  between  P  20  

treatments,  while  annotation  was  better  for  P  responsive  genes  (Fig.  4).  Annotated  21  

genes  in  classes  that  are  highly  relevant  to  the  current  study  show  that  transcripts  22  

significantly  differentially  regulated  between  T  and  N  phenotype  are  dominated  by  23  

kinases,  pathogen  resistance,  plant  growth  regulators  (PGR),  proteases,  transposable  24  

 

  15  

elements  (TEs)  and  RNA  directed  activity,  but  none  involved  in  phosphate  transport  1  

(Annotated-­‐DESeq-­‐Results.xlsx,  Fig.  4).  It  has  previously  been  shown  that  one  2  

consequence  of  having  the  arsenate  tolerance  gene  is  suppression  of  high  affinity  3  

phosphate/arsenate  transport  (Meharg  et  al.,  1992a,b).  The  results  presented  here  4  

indicate,  therefore,  that  post-­‐transcriptional  and  post-­‐translational  mechanisms  play  5  

a  key  role  in  this  suppression,  as  there  was  no  differential  expression  of  transcripts  6  

involved  in  phosphate  transport  between  phenotype.      7  

 8  

With  respect  to  T  phenotype  the  only  annotated  gene  absent  compared  to  N,  where  9  

it  is  highly  expressed,  is  a  kinase  receptor  (isotig09647).  Furthermore,  isotigs  with  10  

significant  homology  to  cbl-­‐interacting  kinase,  MAPK  kinase  and  serine/threonine  11  

kinases  had  systematic  differences  in  SNPs  between  N  and  T  phenotype  as  did  isotigs  12  

showing  homology  to  proteasome  associated  protein,  transferases  and  a  13  

ribonucloprotein/RNA  recognition  protein  (Fig.  5,  SI  Table  1).      14  

 15  

A  gene  that  codes  for  rice  adaption  to  soil  P  stress,  PSTOL1,  has  been  characterized  16  

(Gamuyao  et  al.,  2012).  This  gene  is  an  enhancer  of  early  root  growth  and  over  17  

expression  leads  to  increased  grain  yields,  hypothesized  to  be  due  to  more  efficient  P  18  

capture  due  to  larger  root  systems,  with  larger  root  systems  characterizing  the  H.  19  

lanatus  T  phenotype  here  (Fig.  2).    This  gene  is  a  kinase  and  some  homologous  20  

sequences  were  identified  in  H.  lanatus,  such  as  isotig20112  which  showed  ~  88%  21  

(identities  145/164)  homology  to  the  serine/threonine  protein  kinase  22  

LOC_Os01g04570.2  and  63%  (identities  108/169)  to  Pstol1/OsPupK46-­‐2,  also  23  

annotated  as  serine/threonine  protein  kinase  (SI  Fig.  2)  and  isotig03216,  which  24  

 

  16  

showed  50%  (identities  158/312)  to  protein  serine/threonine  kinase  1  

LOC_Os01g04570.2  and  49%  (identities  154/313)  to  Pstol1/OsPupK46-­‐2.  Isotig20112  2  

was  expressed  in  all  T  and  N  phenotypes  but  was  ~4  fold  down-­‐regulated  in  2  out  of  3  

4  N  phenotypes,  with  no  P  effect.  isotig03216  was  again  expressed  in  all  N  and  T  4  

phenotypes,  but  N5,  N4,  N2  as  well  as  T4  showed  ~>3  fold  lower  expression  5  

compared  to  T2,  T3,  T5,  N3,  but  the  overall  observed  ~2  fold  up-­‐regulation  in  T-­‐  6  

versus  N-­‐  was  not  statistically  significant  (SI  AnnotatedDeseqResult.xlsx).    7  

 8  

Other  transcripts  belonging  kinases,  some  of  these  showing  homology  to  cbl-­‐9  

interacting  kinases  9,  14  &  23,  were  found  to  be  up-­‐regulated  under  low  P  status    10  

(Fig.    4,  SI  AnnotatedDeseqResult.xlsx).  Cbl-­‐interacting  kinases  are  serine/threonine  11  

protein  kinases,  as  is  PSTOL1  (Gamuyao  et  al.,  2012).  The  only  transcript  absent  in  T  12  

compared  to  N  phenotype  (present  in  3  out  of  5  N  phenotypes  and  absent  in  all  5  T  13  

phenotypes),  isotig09647,  noting  that  there  was  also  a  transposon  severely  14  

suppressed,  was  a  receptor  protein  kinase.  Another  probable  serine/threonine  15  

protein  kinase  WNK2-­‐like,  isotig18018,  was  ~60  fold  up-­‐regulated  in  T  compared  to  16  

N.  It  is  apparent  that  kinases  play  a  role  in  both  T/N  phenotypic  and  P  responsive  17  

differences  in  the  H.  lanatus  transcriptomes  presented  here  and  that  there  is  18  

possibly  some  level  functional  redundancy.  It  is  pertinent  in  this  context  that  some  19  

kinases  have  recently  been  identified  as  being  central  in  phenotypic  differences  in  20  

plant  root  response  to  P  status  (Gamuyao  et  al.,  2012)  as  well  as  shown  to  be  up  21  

regulated  in  response  to  arsenate  stress  (Huang  et  al.,  2012).    22  

 23  

 

  17  

Also  of  note  is  that  an  auxin  binding  protein  (isotig16840)  was  highly  expressed  in  1  

the  T  phenotype  compared  to  the  N  phenotype.  The  alignment  of  the  translated  2  

isotig16840  is  shown  in  SI  Fig.    3  and  shows  a  high  homology  to  auxin  binding  rice  3  

and  Brachypodium  proteins.  One  of  the  key  differences  between  T  and  N  phenotype  4  

identified  here  was  in  root  biomass  (Fig.  2).  Auxins,  and  associated  expansins,  have  a  5  

key  role  in  root  growth  (Cosgrove,  1999).  The  higher  expression  of  an  auxin-­‐binding  6  

protein  with  decreased  expression  of  an  expansin  precursor  transcript  in  T  7  

phenotype,  compared  to  N,  and  the  enhanced  expression  of  an  auxin  responsive  8  

protein  (isotig11028)  under  high  P  (SI  AnnotatedDeseqResult.xlxs)  suggest  that  auxin  9  

signaling  is  central  to  the  difference  in  root  biomass  regulation  between  T  and  N.  The  10  

alignment  of  translated  isotig12721  with  expansin  precursor  can  be  seen  in  SI  Fig.    4.  11  

   12  

While  most  expressed  transposons,  some  of  these  annotated  with  RNA  directed  13  

activity,  were  up  regulated  in  T  compared  to  N  (isotig13038,  13187,  13075,  15546,  14  

07417),  one  transposon  of  the  en  spm  subclass  (isotig02887/02888)  and  one  15  

unclassified  nucleic  acid  binding  transposon  (isotig05913)  were  suppressed  in  T  16  

compared  to  N,  (SI  AnnotatedDeseqResult.xlxs).  Transposons  and  retrotransposons,  17  

the  most  frequent  and  strongly  differentially  expressed  class  of  isotigs  between  18  

phenotypes,  are  thought  to  play  a  role  in  post-­‐transcriptional  regulation  with  19  

silencing  of  TEs  involving  both  transcriptional  and  post-­‐transcriptional  mechanisms    20  

(Mirouze  &  Paszkowski,  2011;  Okamoto  &  Hirochika,  2001).  In  plants,  21  

retrotransposons  are  commonly  known  to  be  expressed  under  conditions  of  stress  22  

(Grandbastien,  1998).  It  is  also  thought  that  retrotransposon  activation  is  sensitive  to  23  

environment  (Mirouuze  &  Paszkowski,  2011;  Grandbastien,  1998),  further  enhancing  24  

 

  18  

their  candidacy  for  regulating  stress  responses,  such  as  nutritional  deficiencies.  1  

Transposable  Elements  (TEs)  can  evoke  gene  variation  and  functional  changes  (Gao  2  

et  al.,  2012)  and  are  a  source  of  small  RNAs  and  implicated  in  gene-­‐regulation  in  3  

both  animals  and  plants  (McCue  &  Slotkin,  2012).  A  role  for  small  RNAs  in  regulation  4  

of  P  starvation  is  emerging  (Fang  et  al.,  2009;  Hsieh  et  al.,  2009;  Chiou  &  Lin,  2011;  5  

O’Rourke  et  al.,  2013).  Further  to  this,  a  potential  role  of  a  small  RNA  targeting  6  

transcripts  involved  in  posttranscriptional/posttranslational  regulation  leading  to  T  7  

and  N  phenotype  in  H.  lanatus  is  worth  further  investigation.  8  

 9  

A  suite  of  isotigs  involved  in  protein  degradation  including  two  with  homology  to  10  

aspartic  proteinase  nepenthesin  precursor  (isotig17128,  isotig10719),  one  FtsH  11  

protease  (03772)  and  a  ubiquitination  like  protein  (isotig20448)  were  suppressed  in  12  

T  compared  to  N  phenotype,  indicating  that  post-­‐translational  protein  degradation  13  

may  be  an  important  factor  for  the  N  phenotype.  With  respect  to  P  treatment,  14  

ubiquitin-­‐domain  protein  (isotig17019),  protease  inhibitor  (isotig19161),  putative  15  

subtilisin  homologue,  a  non-­‐specific  protease  (isotig03645)  were  significantly  up  16  

regulated  in  response  to  P  starvation,  while  ubiquitin  conjugating  enzyme  like  17  

(isotig08177),  ICE-­‐like  protease  p20  domain  containing  protein  (isotig10848),  18  

putative  Deg  protease  homologue  (isotig09222)  and  LTPL113  -­‐  Protease  inhibitor  19  

(isotig19161)  were  significantly  down  regulated  in  response  to  P  starvation.    20  

 21  

Furthermore,  6  consistent  homozygous  and  30  consistent  heterozygous  SNPs  for  N  22  

versus  T  phenotype  (n=10)  were  identified  (Fig.  5).  These  occurred  predominantly  in  23  

transcripts  associated  with  regulatory  function  such  as  proteolysis  (protease,  24  

 

  19  

proteasome  subunit,  heat  shock),  protein  modification  (cysteine  desulferase,  1  

glycosyl  transferase,  transferase,  kinase)  and  RNA  recognition  (RNA-­‐binding,  2  

ribonucleoprotein)  and  were  a  mixture  of  transitions  and  transversion  SNPs  (Fig.  5).  3  

Ubiquitins,  which  mark  proteins  for  proteasome  mediated  degradation  are  thought  4  

to  have  a  key  role  in  regulation  of  plant  SPX  domains  in  response  to  P  stress  (Wu  et  5  

al.,  2012),  so  it  is  particularly  interesting  that  we  find  that  the  largest  number  of  6  

SNPs  (3  transversion  and  1  transition  SNP)  between  T  and  N  in  an  putative  7  

proteasome  subunit  (isotig11038)  as  well  as  SNPs  in  FtsH  protease  (isotig03772)  and  8  

heat  shock  protein  (isotig03795/03796).  Also  while  we  assume  that  these  SNPs  are  9  

of  genomic  origin,  without  the  genomic  sequence  of  H.  lanatus  it  is  not  possible  to  10  

rule  out  that  targeted  mRNA  editing  may  be  involved  in  some  of  these  cases.  RNA-­‐11  

editing,  which  has  first  been  identified  in  the  cox2  mRNA  of  Trypanosoma  brucei,  is  12  

thought  to  play  an  important  role  in  organelles  (plastids  and  mitochondria)  of  plants,  13  

with  those  identified  typically  involving  a  change  of  specific  C  to  U,  but  other  14  

changes  can  as  yet  not  be  ruled  out  (Grennan,  2011;  Jiang  et  al.,  2012).  The  role  of  15  

RNA-­‐editing  in  plant  plastid  as  well  as  nuclear  encoded  RNA/mRNA,  remains  to  be  16  

further  investigated  by  systematic  sequencing  of  plant  genome  (DNA)  and  17  

transcriptome  (cDNA)  as  has  been  described  for  identification  of  RNA  editing  sites  in  18  

human  studies  (Ramaswami  et  al.,  2012).  While  RNA-­‐binding  proteins  of  the  19  

pentatricopeptide  repeat  family,  multiple  organellar  RNA  editing  factor  and  20  

chloroplast  ribonucleoproteins  are  known  to  be  involved,  further  proteins  remain  to  21  

be  identified  (Tillich  et  al.,  2009;  Grennan,  2011;  Takenaka  et  al.,  2012).  So  it  is  22  

noteworthy  in  this  context  that  one  of  the  homozygous  SNPs  identified  between  T  23  

versus  N  phenotype  in  this  study  is  in  isotig05374  which  shows  70%  homology  to  a  24  

 

  20  

RNA  recognition  motif  containing  protein/predicted  ribonucleoprotein.  Further  to  1  

that,  exonuclease  (isotig08248),  which  mediates  RNA  degradation  (Stoppel  et  al.,  2  

2012),  is  strongly  up  regulated  in  the  N  phenotype.  Thus  both  the  N/T  gene  3  

expression  result  as  well  as  the  SNPs  obtained  for  N/T  phenotype  suggest  that  post-­‐4  

translational  regulation  of  proteins  via  the  ubiquitin-­‐proteasome  system  plays  an  5  

important  role  in  determining  the  N  and  T  phenotype  and  furthermore  points  to  a  6  

potential  role  of  post-­‐transcriptional  regulation  (RNA  degradation  and  a  possible  role  7  

of  RNA  editing).  A  causative  upstream  master  regulatory  gene,  inducing  post-­‐8  

translational  and  maybe  also  post-­‐transcriptional  events  of  consequence  for  9  

arsenate  resistance  and  P  uptake  efficiency  in  these  plants  remains  to  be  identified  10  

and  potential  involvement  of  small  RNAs  should  be  investigated  in  this  context.    11  

 12  

The  transcripts  differentially  regulated  by  P  treatment  were  more  completely  13  

annotated  compared  to  between  phenotype  (SI  AnnotatedDeseqResult.xlxs),  with  14  

many  of  the  genes  identified  as  being  significant  having  well  known  roles  in  P  15  

transport  and  metabolism,  as  well  as  those  involved  in  post-­‐transcription,  post-­‐16  

translation,  and  signaling    (Fig.  4,  SI  Annotated-­‐DESeq-­‐Results.xlsx).  Some  gene  17  

expression  responses  involved  phosphate  transport.  These  include  3  isotigs  18  

annotated  as  phosphate  co-­‐transporters  and  2  with  SPX  domains.  All  showed  the  19  

same  general  pattern,  with  respect  to  transcript  counts,  with  up-­‐regulation  under  P  20  

starvation,  and  down-­‐regulation  in  P  replete  treatment,  but  there  was  little  21  

difference  with  respect  to  the  expression  changes  in  response  to  P-­‐/P+  in  the  T  and  N  22  

phenotype.  Alignments  of  phosphate  transport  translated  isotigs  to  proteins  are  23  

shown  in  SI  Fig.  5  &  6.  Isotigs01092,  18981,  09507  showed  strong  homology  to  24  

 

  21  

AAM49810.1  a  putative  rice  HAPT  (SI  Fig.  5),  and  isotig16690  to  Q651J5  phosphate  1  

transporter  PHO1-­‐3  known  to  be  induced  under  P  deficient  conditions  (SI  Fig.  6).  Of  2  

the  few  isotigs  with  significantly  higher  counts  in  P+  compared  to  P-­‐  in  T,  but  not  in  3  

N,  was  an  auxin  induced  protein  (isotigs11028).  Given  the  strong  induction  in  an  4  

auxin-­‐binding  transcript  (isotig16840)  in  the  T  versus  N  phenotype  and  the  observed  5  

differences  in  root  growth,  auxin  mediated  response  appears  to  be  an  important  6  

differentiator  of  the  T/N  phenotype.  The  rice  and  Brachypodium  matches  to  the  7  

translated  isotig16840  protein  sequence  are  shown  in  SI  Fig.  3.      8  

 9  

A  number  of  recent  studies  have  found  up-­‐stream  regulators  of  low  phosphorus  10  

adaption  responses  in  plants  with  ALFIN—LIKE  proteins  implicated  in  regulating  root  11  

hair  growth  in  Arabidopsis  under  P  stress  (Chandrika  et  al.,  2013).  ALFIN-­‐LIKE  12  

proteins  are  a  small  family  of  plant  Homeo  Domain  (PHD)  containing  putative  13  

transcription  factors  with  a  methylated  histone  residue  binding  component  and  14  

ALFIN-­‐LIKe  6  was  shown  to  control  the  transcription  of  a  range  of  genes  involved  in  15  

growth  in  particular  root  hair  growth  (Chandrika  et  al.,  2013).  A  homologue  of  this  16  

gene  was  identified  in  our  H.  lanatus  transcriptome  (isotig02053)  and  the  translated  17  

isotig  showed  high  similarity  to  A.  thaliana  and  even  higher  similarity  to  B.  18  

distachyon  ALFIN-­‐LIKE  protein  (SI  Fig.  8),  providing  further  evidence  of  the  overall  19  

quality  of  the  454  transcriptome  assembly,  though  this  transcript  was  equally  highly  20  

expressed  in  all  N  and  T  plants  and  not  differentially  regulated  between  either  P  21  

treatment  or  phenotype.    22  

 23  

 

  22  

Many  of  the  transcripts  responsive  to  P  nutrition  are  regulated  as  expected,  with  1  

many  obviously  involved  in  P  nutrition  and  generally  strongly  up  regulated  in  2  

response  to  P  stress.  For  example  the  4  phosphate  transport  related  transcripts,  and  3  

the  2  SPX  transcripts,  identified  in  H.  lanatus  in  this  study  were  induced  by  P  stress,  4  

in  line  with  what  has  been  observed  generically  in  literature  studies,  as  exemplified  5  

in  the  phosphate  responsive  transcriptome  of  white  lupin  (O’Rourke  et  al.,  2013).  6  

Other  transcripts  coding  for  proteins  involved  in  P  regulation  or  transport  identified  7  

(SI  Annotated-­‐DESeq-­‐Result.xlsx)  include  glycerophosphodiester/phosphodiesterase,  8  

sucrose-­‐phosphate  synthase,  glucose  pyrophosphorylase,  purple  acid  phosphatase,  9  

phosphatase,  glucose-­‐6-­‐phosphate  phosphate  translocator,  for  example,  also  10  

differentially  regulated  when  comparing  P  stressed  and  P  repleat  lupin  (O’Rourke  et  11  

al.,  2013).    12  

 13  

With  respect  to  arsenate  tolerance,  the  character  used  to  screen  the  phenotype  14  

understudy,  one  gene  with  a  putative  role  in  arsenic  transport/metabolism,  besides  15  

phosphate  transporters  and  their  regulators,  was  an  arsB-­‐like  gene.  The  alignment  of  16  

isotig09604  with  ars-­‐B  like  protein  can  be  seen  in  SI  Fig.    9.  ArsB,  is  widely  present  in  17  

arsenic  resistant  bacteria  where  its  role  is  as  an  arsenite  efflux  channel    (Yang  et  al.,  18  

2012),  though  in  plants  these  class  of  aqua-­‐glycerin  prions  also  are  involved  in  silicic  19  

acid  transport  (Zhao  et  al.,  2009).  This  gene  (isotig09604)  was  more  strongly  20  

expressed  in  T  compared  to  N  phenotype  as  was  aquaporin  Pip1-­‐5  like  21  

(Plasmamembrane  Intrinsic  Protein)  (isotig00796/00797/00798),  but  this  is  only  22  

involved  in  transport  of  water  and  small  neutral  solutes.    Logoteta  et  al.  (2009)  found  23  

that  differential  efflux  of  arsenite  by  H.  lanatus  was  not  found  between  T  and  N  24  

 

  23  

phenotype.  A  protein,  HLASR,  has  been  identified  in  H.  lanatus  to  have  a  1  

constitutive,  but  not  an  adaptive  role,  in  metabolism  of  arsenate,  namely  as  an  2  

arsenate  reductase  (Bleeker  et  al.  2006).  It  was  thought  that  this  HLASR  gene  only  3  

had  a  secondary  role  with  respect  to  arsenic  metabolism  and  that  its  primary  role  4  

was  homologous  to  CDC25  phosphatases,  which  activate  cycline-­‐dependent  kinases  5  

in  A.  thaliana,  which  are  involved  in  cell  cycle  regulation.  HLASR  is  also  thought  to  6  

have  a  role  in  GSH  oxidation  (Bleeker  et  al.,  2006).  An  exact  protein  match  7  

(isotig19077)  to  this  Cdc25-­‐like  H.  lanatus  ASR,  the  only  gene  sequence  previously  8  

published  for  this  species,  was  found  in  all  10  N  and  10  T  transcriptomes  (SI  Fig.    3),  9  

and  was  shown  not  to  be  differentially  regulated,  confirming  that  it  has  no  adaptive  10  

role  in  tolerance.              11  

 12  

Returning  to  the  fact  that  the  trait  under  study  here  is  due  to  a  single  loci  and  that  it  13  

leads  to  a  range  of  distinct  phenotypic  traits  is  indicative  that  an  upstream  regulatory  14  

gene  is  involved.  It  is  now  well  established  that  P  responsive  genes  a)  give  rise  to  15  

transcriptome  signal  cascades  and/or  b)  are  involved  in  these  signal  cascades  (Wu  et  16  

al.  2013;  Chiou  &  Lin,  2011).  We  identified  87  transcripts  whose  transcript  17  

expression  significantly  differed  between  T  and  P  phenotype,  and  19  transcripts  (17  18  

with  functional  annotation)  with  consistent  SNPs  (36  SNPs  in  total)  in  all  10  T  versus  19  

N  genotypes  (SI  Table  1).  It  is  noteworthy  that  consistent  SNPs  and  significant  gene  20  

expression  changes  between  N  versus  T  phenotypes  are  aggregated  in  transcripts  21  

with  regulatory  functions  (Fig.s  4  and  5).  Differential  post-­‐translational  and/or  post-­‐22  

transcriptional  regulation  (involving  ubiquitin,  proteases,  kinases,  methylation,  23  

transponsons,  retrotransposons  and  RNA  binding  proteins)  of  HAPT  or  proteins  24  

 

  24  

acting  on  HAPT,  therefore,  appear  to  define  the  N/T  phenotype.  Whether  identified  1  

SNPs  are  all  genomic  SNPs  or  whether  in  some  cases  mRNA  editing  may  be  involved  2  

remains  to  be  elucidated.  A  master  regulatory  gene,  potentially  to  be  found  within  3  

our  list  of  target  genes  or  possibly  in  form  of  an  as  yet  to  be  identified  small  RNA,  4  

leading  to  the  observed  effect  on  genes  involved  in  post-­‐translational  events  5  

including  protein  degradation  via  the  ubiquitin/proteasome  complex  and  potentially  6  

also  post-­‐transcriptional  events  mediated  by  RNA  binding  proteins,  is  as  yet  to  be  7  

identified.  This  characterization  of  the  genetic  consequences  the  P  response  8  

polymorphism  in  H.  lanatus  provides  an  unparalleled  insight  into  the  signal  cascades,  9  

optimized  under  natural  selection,  involved  in  P  nutrition  and  has  major  10  

consequences  for  understanding  how  plants  respond  to  phosphorus  nutrition  and  11  

adaptation  to  arsenate  in  their  environment.  We  anticipate  that  this  as  yet  unknown  12  

master  regulatory  gene  and  it’s  downstream  targets,  which  we  have  already  13  

identified,  will  be  of  significant  consequence  for  future  study  and  breeding  of  P-­‐14  

efficient  forage  plants  and  cereal  crops.  15  

 16  

   17  

 

  25  

References  1  

Aliscioni  S,  Bell  HL,  Besnard  G,  Christin  P-­‐A,  Columbus  JT,  Duvall  MR,  Edwards  EJ,  2  

Giussani  L,  Hasenstab-­‐Lehman  K,  Hilu  KW,  Hodkinson  TR,  Ingram  AL,  Kellogg  EA,  3  

Mashayekhi  S,  Morrone  O,  Osborne  CP,  Salamin  N,  Schaefer  H,  Spriggs  E,  Smith  SA,  4  

Zuloaga  F.  2012.  New  grass  phylogeny  resolves  deep  evolutionary  relationships  and  5  

discobers  C4  origins.  New  Phytologist:  193,  304-­‐312.    6  

 7  

Anders  S,  Huber  W.  2010.  Differential  expression  analysis  for  sequence  count  data.  8  

Genome  Biology:  11,  R106.    9  

 10  

Bleeker  PM,  Hakvoort  HWJ,  Bliek  M,  Souer  E,  Schat  H.  2006.  Enhanced  arsenate  11  

reduction  by  a  CDC25-­‐like  tyrosine  phosphatase  explains  increased  phytochelatin  12  

accumulation  in  arsenate-­‐tolerant  Holcus  lanatus.  Plant  Journal:  45,  917-­‐929.    13  

 14  

Buckler  ES,  Thornsberry  JM,  Kresovich  S.  2001.  Molecular  diversity,  structure  and  15  

domestication  of  grasses.  Genetics  Research  Cambridge:  77,  213-­‐218.  16  

 17  

Chandrka  NNP,  Sundarevelpandian  K,  Yu  S-­‐M,  Schmidt  W.  2013.  ALFIN-­‐LIKE  6  is  18  

involved  in  root  hair  elongation  during  phosphate  deficiency  in  Arabidopsis.  New  19  

Phytologist:  advanced  online,  doi:10.1111/nph.12194.  20  

 21  

Chiou  TJ,  Lin  SI.  2011.  Signaling  network  in  sensing  phosphate  availability  in  plants.  22  

Annual  Review  Plant  Biology:  62,  185-­‐206.    23  

 24  

 

  26  

Conesa  A,  Gotz  S.  2008.  Blast2GO:  A  comprehensive  suite  for  functional  analysis  in  1  

plant  genomics.  International  Journal  Plant  Genomics:  Article  ID  619832.  2  

 3  

Cosgrove  DJ.  1999.  Enzymes  and  other  agents  that  enhance  cell  wall  extensibility.    4  

Annual  Review  Plant  Physiology  Plant  Molecular  Biology:  50,  391-­‐417.  5  

 6  

Fang  ZY,  Shao  C,  Meng  YJ,  Wu  P,  Chen  M.  2009.  Phosphate  signaling  in  Arabidopsis  7  

and  Oryza  sativa.    Plant  Science:  176,  170-­‐180.  8  

 9  

Feuille  C,  Keller  B.  2001.  Comparative  genomics  in  the  grass  family:  molecular  10  

characterization  of  grass  genome  structure  and  evolution.  Annals  Botany:  89,  3-­‐10.  11  

 12  

Gamuyao  R,  Chin  JH,  Pariasca-­‐Tanaka  J,  Catausan  S,  Dalid  D,  Slamet-­‐Loedin  I,  Tecson-­‐13  

Mendoza  EM,  Wissuwa  M,  Heur  S.  2012.  Nature:  488.  535-­‐541.  14  

 15  

Gao  C,  Xiao  M,  Jiang  L,  Li  J,  Yin  J,  Ren  X,  Qian  W,  Oscar  O,  Fu  D,  Tang  Z.  2012.  16  

Characterization  of  transcriptional  activation  and  inserted-­‐into-­‐gene  preference    17  

of  various  transposable  elements  in  the  Brassica  species.  Molecular  Biology  Reports:  18  

39,  7513-­‐7523.  19  

 20  

Gojon  A,  Nacry  P,  Davidian  JC.  2009.  Root  uptake  regulation:  a  central  process  for  21  

NPS  homeostasis  in  plants.  Current  Opinion  Plant  Biology:  12,  328-­‐338.  22  

 23  

 

  27  

Grandbastien  MA.  1998.  Activation  of  plant  retrotransposons  under  stress  1  

conditions,  Trends  Plant  Science  3:  181-­‐187.  2  

 3  

Grennan  AK.  2011.  To  thy  proteins  be  true:  RNA  editing  in  plants.  Plant  Physiology:  4  

156,  453-­‐454.  5  

 6  

Gouy  M,  Guindon  S,  Gascuel  O.  2010.  SeaView  version  4  :  a  multiplatform  graphical  7  

user  interface  for  sequence  alignment  and  phylogenetic  tree  building.  Molecular  8  

Biology  Evolution:  27,  221-­‐224.  9  

 10  

Hamilton  JP,  Buell  CR.  2012.  Advances  in  plant  genome  sequencing.  The  Plant  11  

Journal:  70,  177-­‐190.  12  

 13  

Hill  JO,  Simpson  RJ,  Moore  AD,  Chapman  DF.  2006.  Morphology  and  response  of  14  

roots  of  pasture  species  to  phosphorus  and  nitrogen  nutrition.  Plant  Soil:  286,  7-­‐19.    15  

 16  

Hsieh  LC,  Lin  SI,  Shih  ACC,  Chen  JW,  Lin  WY,  Tseng  CY,  Li  WH,  Chiou  TJ.  2009.  17  

Uncovering  small  RNA-­‐mediated  responses  to  phosphate  deficiency  in  Arabidopsis  18  

by  deep  sequencing.  Plant  Physiology:  151,  2120-­‐2132.  19  

 20  

Huang  TL,  Nguyen  QT,  Fu  SF,  Lin  CY,  Chen  YC,  Huang  HJ.  2012.  Transcriptomic  21  

changes  and  signaling  pathways  induced  by  arsenic  stress  in  rice  roots.  Plant  22  

Molecular  Biology:  80,  587-­‐608.  23  

 24  

 

  28  

Jackson  SA,  Iwata  A,  Lee  SH,  Schmutz  J,  Shoemaker  R.  2011.  Sequencing  crop  1  

genomes:  approaches  and  applications.  New  Phytologist:  191,  915-­‐925.  2  

 3  

Jiang  Y,  Fan  SL,  Song  MZ,  Yu  JN,  Yu  SX.  2012.  Identification  of  RNA  editing  sites  in  4  

cotton  (Gossypium  hirsutum)  chloroplasts  and  editing  events  that  affect  secondary  5  

and  three-­‐dimensional  protein  structures.  Genetics  Molecular  Research:  11,  987-­‐6  

1001.  7  

 8  

Katoh  K,  Standley  DM.  2013.  MAFFT  multiple  sequence  alignment  software  version  9  

7:improvements  in  performance  and  usability.  Molecular  Biology  Evolution:  30,  772-­‐10  

80.  11  

 12  

Kuromori  T,  Takahashi  S,  Kondou  Y,  Shinozaki  K,  Matsui.  2009.  Phenome  analysis  in  13  

plant  species  using  loss-­‐of-­‐function  and  gain-­‐of-­‐function  metants.  Plant  Cell  14  

Physiology:  50,  1215-­‐1231.  15  

 16  

Langmead  B,  Trapnell  C,  Pop  M,  Salzberg  SL.  2009.  Ultrafast  and  memory-­‐efficient  17  

alignment  of  short  DNA  sequences  to  the  human  genome.  Genome  Biology:  10,  R25.  18  

   19  

Li  JB,  Levanon  EY,  Yoon  JK,  Aach  J,  Xie  B,  Leproust  E,  Zhang  K,  Gao  Y,  Church    20  

GM.  2009.  Genome-­‐wide  identification  of  human  RNA  editing  sites  by  parallel  DNA  21  

capturing  and  sequencing.  Science:  324,  1210-­‐1213.  22  

 23  

 

  29  

Logoteta  V,  Xu  XY,  Macnair  MR,  McGrath  SP,  Zhao  FJ.  2009.  Arsenite  efflux  is  not  1  

enhanced  in  the  arsenate-­‐tolerant  phenotype  of  Holcus  lanatus.  New  Phytologist:  2  

183,  340-­‐348.  3  

 4  

Macnair  MR,  Cumbes  QJ,  Meharg  AA.  1992.  The  genetics  of  arsenate  tolerance  in  5  

Yorkshire  Fog,  Holcus  lanatus  L.  Heredity:  69,  325-­‐335.  6  

 7  

McCue  AD,  Slotkin  RK.  2012.  Transposable  element  small  RNAs  as  regulators  of  gene  8  

expression.  Trends  Genetics:  28,  616-­‐623.  9  

 10  

Meharg  AA,  Cumbes  QJ,  Macnair  MR.  1993.  Pre-­‐adaptation  of  Holcus  lanatus  L.  to  11  

arsenate  tolerance.  Evolution:  47,  313-­‐316.  12  

 13  

Meharg  AA,  Macnair  MR.  1992a.  Suppression  of  the  phosphate  uptake  system:  A  14  

mechanism  of  arsenate  tolerance  in  Holcus  lanatus  L.  Journal  Experimental  Botany:  15  

43,  519-­‐524.  16  

 17  

Meharg  AA,  Macnair  MR.  1992b.  Genetic  correlation  between  arsenate  tolerance  18  

and  the  rate  of  arsenate  and  phosphate  uptake  in  Holcus  lanatus  L.  Heredity:  69,  19  

336-­‐341.  20  

 21  

Mirouze  M,  Paszkowski  J.  2011.  Epigenetic  contribution  to  stress  adaptation  in  22  

plants.  Current  Opinion  Plant  Biology:  14,  267-­‐274.  23  

 24  

 

  30  

Nawy  T.  2012.  Non-­‐model  organisms.  Nature  Methods:  9,  37.  1  

 2  

Naylor  J,  Macnair  MR,  Williams  END,  Poulton  PR.  1996.  A  polymorphism  for  3  

phosphate/arsenate  tolerance  in  Holcus  lanatus  L.:  is  their  a  correlation  with  edaphic  4  

or  environmental  factors?  Heridity:  77,  509-­‐517.  5  

 6  

O’Rourke  JA,  Yang  SS,  Miller  SS,  Bucciarelli  B,  Liu  J,  Rydeen  A,  Bozsoki  Z,  Uhde-­‐Stone  7  

C,  Zheng  JT,  Allan  D,  Gronwald  JW,  Vance  CP.  2013.  An  RNA-­‐Seq  transcriptome  8  

analysis  of  othophosphate-­‐deficient  white  lupin  reveals  novel  insights  into  9  

phosphorus  acclimation  in  plants.  Plant  Physiology:  161,  705-­‐724.    10  

 11  

Okamoto  H,  Hirochika  H.  2001.  Silencing  of  transposable  elements  in  plants.  Trends  12  

Plant  Sciences:  6,  527-­‐534.    13  

 14  

Ramaswami  G,  Lin  W,  Piskol  R,  Tan  MH,  Davis  C,  Li  JB.  2012.  Accurate  identification    15  

of  human  Alu  and  non-­‐Alu  RNA  editing  sites.  Nature  Methods:  9,  579-­‐81.  16  

 17  

Takenaka  M,  Zehrmann  A,  Verbitskiy  D,  Kugelmann  M,  Härtel  B,  Brennicke  A.  2012.  18  

Multiple  organellar  RNA  editing  factor  (MORF)  family  proteins  are  required  for  19  

RNA  editing  in  mitochondria  and  plastids  of  plants.  PNAS:  109,  5104-­‐5109.  20  

 21  

Stajich  JE,  Block  D,  Boulez  K,  Brenne  SE,  Chervitz  SA,  Dagdigian  C,  Fuellen  G,  Gilbert  22  

JGR,  Kork  I,  Lapp  H,  Lehvaslaiho  H,  Matsalla  C,  Mungall  CJ,  Osborne  BI,  Pocock  MR,  23  

 

  31  

Schattner  P,  Senger  M,  Stein  LD,  Stupka  E,  Wilkinson  MD,  Birney  E.  2002.  The  Bioperl  1  

Toolkit:  Perl  modules  for  life  sciences.  Genome  Research:  12,  1611-­‐1618.  2  

   3  

Stoppel  R,  Meurer  J.  2012.  The  cutting  crew  -­‐  ribonucleases  are  key  players  in  the  4  

control  of  plastid  gene  expression.  Journal  Experimental  Botany:  63,  1663-­‐1673.  5  

 6  

Suarez  Rodriguez  MC,  Edsgard  D,  Hussain  SS,  Alquezar  D,  Rasmussen  M,  Gilbert  T,  7  

Nielsen  BH,  Bartels  D,  Mundy  J.  2010.  Transcriptome  of  the  dessication-­‐tolerant  8  

resurrection  plant  Craterostigma  plantagineum.  Plant  Journal:  63,  212-­‐228.    9  

 10  

The  International  Brachypodium  Initiative.  2010.  Genome  sequencing  and  analysis  of  11  

the  model  grass  Brachypodium  distachyon.  Nature:  463,  763-­‐768.  12  

Tillich  M,  Hardel  SL,  Kupsch  C,  Armbruster  U,  Delannoy  E,  Gualberto  JM,  13  

Lehwark  P,  Leister  D,  Small  ID,  Schmitz-­‐Linneweber  C.  2009.  Chloroplast  14  

ribonucleoprotein  CP31A  is  required  for  editing  and  stability  of  specific  15  

chloroplast  mRNAs.  PNAS:    7106,  6002-­‐6007.  16  

 17  

Urzica  EI,  Yamassaki  H,  Hsieh  SI,  Adler  LN,  Karpowicz  SJ,  Blaby-­‐Hass  CE,  Clarke  SG,  18  

Loo  JA,  Pellegrini  M,  Merchant  SS.  2012.  Systems  and  trans-­‐system  level  analysis  19  

identifies  conserved  iron  deficiency  resonponses  in  the  plant  lineage.  Plant  Cell:  24,  20  

3921-­‐3948.    21  

 22  

 

  32  

Wu  P,  Shou  H,  Xu  G,  Lian  X.  2013.  Improvement  of  phosphorus  efficiency  in  rice  on  1  

the  basis  of  understanding  phosphate  signaling  and  homeostasis.  Current  Opinions  2  

Plant  Biology:  in  press:    http://dx.doi.org/10.1016/j.pbi.2013.03.002  3  

 4  

Yang  H-­‐C,  Fu  H-­‐L,  Lin  Y-­‐F,  Rosen  BP.  2012.  Pathways  of  arsenic  uptake  and  efflux.  In  5  

Metal  Transporters  eds.  Lutsenko  S  and  Arguello.  Elsevier  Inc..  6  

 7  

Zhao  FJ,  Ma  JF,  Meharg  AA,  McGrath  SP.  2009.  Arsenic  uptake  and  metabolism  in  8  

plants.  New  Phytologist:  181,  777-­‐794.  9  

 10  

 11  

 12  

 13  

 14  

 15  

 16  

 17  

   18  

 

  33  

 1  

 2  

 3  

Figure  1.  Tolerance  index  (100*root  length  in  +As/root  length  in  –As)  of  Cruickshank  4  

garden  H.  lanatus  population  grown  hydroponically  in  0.013  mM  arsenic  as  arsenate  5  

for  2  wk..    6  

 7  

   8  

 

  34  

 1  

 2  

Figure  2.  Box  plots  of  Cruickshank  H.  lanatus  response  to  phosphate  fertilization  (100  3  

mg/kg  P  on  a  soil  d.wt.  basis)  when  grown  from  tillers  for  2  mth.  on  their  soil  of  4  

origin.  Arsenate  tolerant  plants  are  orange  bars,  non-­‐tolerant  pink  bars.  No  P  5  

fertilization  is  without  shading  while  P  fertilized  plants  are  shaded.  Shown  on  the  6  

bars  are  the  median,  25th  &  27th  (outer  box),  10th  and  90th  (whiskers)  and  5th  and  95th  7  

(dots)  percentiles.      8  

 

  35  

   1  

 2  

 3  

 4  

Figure  3:  Heatmap  of  the  RNAseq  gene  expression  result  showing  clustering  of  P+/-­‐  5  

of  each  genotytpe  as  well  as  T  and  N  phenotype    6  

 

  36  

   1    2    3  Figure  4.    RNAseq  gene  expression  result:  up  and  down  regulation  identified  for  P-­‐4  

/P+  and  T/N.  As  there  was  no  statistical  difference  between  phosphorus  treatments  5  

and  tolerance,  the  average  of  all  treatments  by  either  P  treatment  or  by  phenotype  6  

was  used  in  this  analysis.  All  genes  significantly  differentially  regulated  (at  FDR  =  7  

0.01)  in  either  treatment  (P  or  phenotype)  are  shown.  Where  the  ratio  was  8  

significant  between  treatments  the  bars  are  coloured,  where  not  significant,  the  bars  9  

are  white.    10  

 11    12    13    14    15    16  

P-­‐/P+ T/N

 

  37  

 1    2  Figure  5.    Consistent  T  versus  N  (n=10)  homozygous  (~100%)  and  heterozygous  3  

(~50%)  SNPs  identified  are  found  predominantly  in  transcripts  with  regulatory  4  

function.  In  red  transversions  A  <-­‐>  C,  A  <-­‐>  T,  G  <-­‐>  C,  G  <-­‐>  T  (interchange  of  two  5  

ring  purine  (AG)  for  one  ring  pyrimidine  (CT)).    In  green  the  more  common  6  

transitions  A<-­‐>G,  C<-­‐>T  (interchange  of  two  ring  purines  (AG)  or  one  ring  7  

pyrimidines  (CT)).  8  

 9