transistors power presentation

Upload: kcrawford1845

Post on 02-Jun-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/11/2019 Transistors Power Presentation

    1/65

    1

    1. Power and RMS Values

  • 8/11/2019 Transistors Power Presentation

    2/65

    2

  • 8/11/2019 Transistors Power Presentation

    3/65

    3

  • 8/11/2019 Transistors Power Presentation

    4/65

    4

  • 8/11/2019 Transistors Power Presentation

    5/65

    5

    Instantaneous power p(t) flowing into the box

    )()()( titvtp Circuit in a box,

    two wires

    )(ti

    )(tv

    +

    )(ti

    )()()()()( titvtitvtp bbaa )(tvaCircuit in a box,

    three wires

    )(tia

    +

    )(tib

    +

    )(tvb

    )()( titi ba Any wire can be thevoltage reference

    Works for any circuit, as long as all N wires are accounted for. There must

    be (N1) voltage measurements, and (N1) current measurements.

  • 8/11/2019 Transistors Power Presentation

    6/65

    6

    Average value of

    periodic instantaneous power p(t)

    Tot

    otavg dttpTP )(

    1

  • 8/11/2019 Transistors Power Presentation

    7/65

    7

    Two-wire sinusoidal case

    )sin()sin()()()( tItVtitvtp oo

    )cos(22)cos(2)(

    1

    IVVI

    dttpTP

    Tot

    otavg

    ),sin()( tVtv o )sin()( tIti o

    2

    )2cos()cos()(

    tVItp o

    )cos( rmsrmsavg IVP Power factor

    Average power

    zero average

  • 8/11/2019 Transistors Power Presentation

    8/65

    8

    Root-mean squared value of a

    periodic waveform with period T

    Tot

    otavg dttpT

    P )(1

    R

    VP rmsavg

    2

    Tot

    otrms dttvT

    V )(1 22

    Apply v(t) to a resistor

    Tot

    ot

    Tot

    ot

    Tot

    otavg dttv

    RTdt

    R

    tv

    Tdttp

    TP )(

    1)(1)(

    1 22

    Compare to the average power

    expression

    rms is based on a power concept, describing the

    equivalent voltage that will produce a given

    average power to a resistor

    The average value of the squared voltage

    compare

  • 8/11/2019 Transistors Power Presentation

    9/65

    9

    Root-mean squared value of a periodic

    waveform with period T

    Tot

    ot orms dttV

    TV )(sin1

    222

    Tot

    oto

    oTot

    ot orms

    ttT

    Vdtt

    T

    VV

    2

    )(2sin

    2)(2cos1

    2

    222

    ,2

    22 V

    Vrms

    Tot

    otrms dttvTV )(

    1 22

    For the sinusoidal case

    2

    VVrms

    ),sin()( tVtv o

  • 8/11/2019 Transistors Power Presentation

    10/65

    10-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    0 30 60 90 120 150 180 210 240 270 300 330 360

    Voltage

    Current

    Given single-phase v(t) and i(t) waveforms for a load

    Determine their magnitudes and phase angles

    Determine the average power

    Determine the impedance of the load

    Using a series RL or RC equivalent, determine the R

    and L or C

  • 8/11/2019 Transistors Power Presentation

    11/65

    11-100

    -80

    -60

    -40

    -20

    0

    20

    40

    60

    80

    100

    0 30 60 90 120 150 180 210 240 270 300 330 360

    Voltage

    Current

    Determine voltage and current magnitudes and phase angles

    Voltage cosine has peak = 100V, phase angle = -90

    Current cosine has peak = 50A, phase angle = -135

    ,902

    100~VV

    AI 1352

    50~

    Using a cosine reference,

    Phasors

  • 8/11/2019 Transistors Power Presentation

    12/65

    12

    The average power is

    )cos(22

    IVPavg

    45cos2

    50

    2

    100)135(90cos

    2

    50

    2

    100avgP

    WPavg 1767

  • 8/11/2019 Transistors Power Presentation

    13/65

    13

    VoltageCurrent Relationships

    )(tiR )(tvR

    R

    tvti RR

    )()(

    )(tvL)(tiL

    dt

    tdiLtvL

    )()(

    )(tvC)(tiC

    dt

    tdvCtiC

    )()(

  • 8/11/2019 Transistors Power Presentation

    14/65

    14

    Thanks to Charles Steinmetz, Steady-State AC Problems

    are Greatly Simplified with Phasor Analysis

    (no differential equations are needed)

    RI

    VZ

    R

    RR ~

    ~

    LjI

    VZ

    L

    LL ~

    ~

    CjI

    VZ

    C

    CC

    1~

    ~

    R

    tvti RR

    )()(

    dt

    tdiLtvL

    )()(

    dt

    tdvCtiC

    )()(

    Resistor

    Inductor

    Capacitor

    Time Domain Frequency Domain

    voltage leads current

    current leads voltage

  • 8/11/2019 Transistors Power Presentation

    15/65

    15

    V1 V2

    Problem 10.17

    1

    20100

    4

    20100

    ~

    ~

    2

    11

    2

    1

    2

    1

    2

    1

    2

    1

    3

    1

    4

    1

    2

    1 j

    V

    V

    j

    j

    2

    1

    2

    1

    2

    11

    2

    1

    2

    1

    3

    1

    4

    1

    jjD

    D

    j

    j

    V

    2

    11

    2

    1

    1

    20100

    2

    1

    4

    20100

    ~1

    D

    j

    j

    V

    1

    20100

    2

    11

    2

    1

    4

    20100

    2

    1

    ~2

  • 8/11/2019 Transistors Power Presentation

    16/65

    16

    c EE411, Problem 10.17

    implicit nonedimension v_phasor(2), i_injection_phasor(2), y(2,2)complex v_phasor, i_injection_phasor, y, determinant, i0_phasorreal pi

    open(unit=6,file='EE411_Prob_10_17.txt')

    pi = 4.0 * atan(1.0)

    y(1,1) = 1.0 / cmplx(0.0,4.0)1 + 1.0 / 3.02 + 1.0 / 2.0y(1,2) = -1.0 / 2.0y(2,1) = y(1,2)y(2,2) = 1.0 / 2.0

    1 + 1.02 + 1.0 / cmplx(0.0,-2.0)

    i_injection_phasor(1) = 100.01 * cmplx(cos(20.0 * pi / 180.0),sin(20.0 * pi / 180.0))2 / cmplx(0.0,4.0)

    i_injection_phasor(2) = 100.01 * cmplx(cos(20.0 * pi / 180.0),sin(20.0 * pi / 180.0))

    determinant = y(1,1) * y(2,2) - y(1,2) * y(2,1)write(6,*) "determinant, rectangular = ",determinantwrite(6,*) "determinant, polar = ", cabs(determinant),1 atan2(aimag(determinant),real(determinant)) * 180.0 / piwrite(6,*)

    v_phasor(1) = (i_injection_phasor(1) * y(2,2)1 - y(1,2) * i_injection_phasor(2)) / determinant

    v_phasor(2) = (y(1,1) * i_injection_phasor(2)1 - i_injection_phasor(1) * y(2,1)) / determinant

    write(6,*) "v_phasor(1), rectangular = ",v_phasor(1)write(6,*) "v_phasor(1), polar = ", cabs(v_phasor(1)),

    1 atan2(aimag(v_phasor(1)),real(v_phasor(1))) * 180.0 / piwrite(6,*)

  • 8/11/2019 Transistors Power Presentation

    17/65

    17

    write(6,*) "v_phasor(2), rectangular = ",v_phasor(2)write(6,*) "v_phasor(2), polar = ", cabs(v_phasor(2)),1 atan2(aimag(v_phasor(2)),real(v_phasor(2))) * 180.0 / piwrite(6,*)

    i0_phasor = (v_phasor(1) - v_phasor(2)) / 2.0

    write(6,*) "i0_phasor, rectangular = ",i0_phasorwrite(6,*) "i0_phasor, polar = ", cabs(i0_phasor),1 atan2(aimag(i0_phasor),real(i0_phasor)) * 180.0 / pi

    write(6,*)

    end

    Program Results

    determinant, rectangular = (1.125000,4.1666687E-02)determinant, polar = 1.125771 2.121097

    v_phasor(1), rectangular = (63.06294,-14.65763)v_phasor(1), polar = 64.74397 -13.08485

    v_phasor(2), rectangular = (80.67508,-8.976228)

    v_phasor(2), polar = 81.17290 -6.348842

    i0_phasor, rectangular = (-8.806068,-2.840703)i0_phasor, polar = 9.252914 -162.1211

  • 8/11/2019 Transistors Power Presentation

    18/65

    18

    Active and Reactive Power Form a Power Triangle

    ),cos(22

    IVPavg ),sin(22

    IVQ

    jQPIVS ~

    ~

    )(

    VV~

    II~ P

    Q

    Projection of S

    on the real axis

    Projection of

    S on the

    imaginary

    axis

    Complex

    power

    S

    )(

    )cos(

    is the power factor

  • 8/11/2019 Transistors Power Presentation

    19/65

    19

    Question: Why is there conservation of P and Q in a circuit?

    Answer: Because of KCL, power cannot simply vanish but must

    be accounted for

    0~~~~

    CBA IIIV

    Consider a node, with voltage (to any reference), and three currents

    IA

    IB

    IC

    0~~~

    CBA III

    0~~~~ * CBA IIIV

    0 CCBBAA jQPjQPjQP

    0 CBA PPP

    0 CBA QQQ

  • 8/11/2019 Transistors Power Presentation

    20/65

    20

    Voltage and Current Phasors for Rs, Ls, Cs

    RRR

    RR IRVR

    I

    VZ

    ~~,~

    ~

    LLL

    LL ILjVLj

    I

    VZ

    ~~,~

    ~

    Cj

    IV

    CjI

    VZ CC

    C

    CC

    ~~

    ,1

    ~

    ~

    Resistor

    Inductor

    Capacitor

    Voltage and

    Currentin phase Q = 0

    Voltage leadsCurrentby 90

    Q > 0

    Currentleads

    Voltage by 90 Q < 0

  • 8/11/2019 Transistors Power Presentation

    21/65

    21

    VIIVIVjQPS **~~

    cosVIP

    sinVIQ

    P

    Q

    Projection of S

    on the real axis

    Projection of

    S on the

    imaginaryaxis

    Complex

    power

    S

    )(

  • 8/11/2019 Transistors Power Presentation

    22/65

    22

    RV

    Z

    V

    Z

    VVjQPS

    2

    *

    2*~~

    RIR

    VP 2

    2

    0Q

    RIZIIZIjQPS 22*~~

    also

    so

    Resistor

    , Use rms V, I

  • 8/11/2019 Transistors Power Presentation

    23/65

    23

    LjV

    LjV

    LjV

    ZVVjQPS

    22

    *

    2*~

    ~

    LIL

    VQ

    22

    0P

    LjILjIIZIjQPS 22*~~

    also

    so

    Inductor

    , Use rms V, I

  • 8/11/2019 Transistors Power Presentation

    24/65

    24

    2

    2

    *

    2*

    11

    ~~

    CVj

    Cj

    V

    Cj

    V

    Z

    V

    VjQPS

    C

    ICVQ

    22 0P

    C

    Ij

    CjIIZIjQPS

    22* 1~~

    also

    so

    Capacitor

    , Use rms V, I

  • 8/11/2019 Transistors Power Presentation

    25/65

    25

    Active and Reactive Power for Rs, Ls, Cs(a positive value is consumed, a negative value is produced)

    0

    LIL

    Vrms

    rms

    22

    ,

    RI

    R

    Vrms

    rms 22

    ,

    0

    0

    Resistor

    Inductor

    Capacitor

    Active Power P Reactive Power Q

    ,,2

    2

    C

    ICV rmsrms

    source of reactive power

  • 8/11/2019 Transistors Power Presentation

    26/65

    26

    Now, demonstrate Excel spreadsheet

    EE411_Voltage_Current_Power.xls

    to show the relationship between v(t), i(t), p(t), P, and Q

    Vmag = 1

    Vang = 0

    Imag = 0.90 90

    Iang = -30 150

    Phase A Phase A Phase A P Q Phase B Phase B Phase B Phase C Phase C Phase C A+B+C Q

    wt v(t) I(t) p(t) 0.389711 0.225 v(t) I(t) p(t) v(t) I(t) p(t) p(t) 0.675

    0 1 0.779423 0.779423 0.389711 0.225 -0.5 -0.779423 0.389711 -0.5 5.51E-17 -2.76E-17 1.169134 0.675

    2 0.999391 0.794653 0.794169 0.389711 0.225 -0.469472 -0.763243 0.358321 -0.529919 -0.03141 0.016645 1.169134 0.6754 0.997564 0.808915 0.806944 0.389711 0.225 -0.438371 -0.746134 0.327084 -0.559193 -0.062781 0.035107 1.169134 0.675

    6 0.994522 0.822191 0.817687 0.389711 0.225 -0.406737 -0.728115 0.296151 -0.587785 -0.094076 0.055296 1.169134 0.675

    8 0.990268 0.834465 0.826345 0.389711 0.225 -0.374607 -0.70921 0.265675 -0.615661 -0.125256 0.077115 1.169134 0.675

    10 0.984808 0.845723 0.832875 0.389711 0.225 -0.34202 -0.68944 0.235802 -0.642788 -0.156283 0.100457 1.169134 0.675

    12 0.978148 0.855951 0.837246 0.389711 0.225 -0.309017 -0.66883 0.20668 -0.669131 -0.187121 0.125208 1.169134 0.675

    14 0.970296 0.865136 0.839437 0.389711 0.225 -0.275637 -0.647406 0.178449 -0.694658 -0.21773 0.151248 1.169134 0.675

    16 0.961262 0.873266 0.839437 0.389711 0.225 -0.241922 -0.625193 0.151248 -0.71934 -0.248074 0.178449 1.169134 0.675

    18 0.951057 0.880333 0.837246 0.389711 0.225 -0.207912 -0.602218 0.125208 -0.743145 -0.278115 0.20668 1.169134 0.675

    20 0.939693 0.886327 0.832875 0.389711 0.225 -0.173648 -0.578509 0.100457 -0.766044 -0.307818 0.235802 1.169134 0.675

    22 0.927184 0.891241 0.826345 0.389711 0.225 -0.139173 -0.554095 0.077115 -0.788011 -0.337146 0.265675 1.169134 0.675

    24 0.913545 0.89507 0.817687 0.389711 0.225 -0.104528 -0.529007 0.055296 -0.809017 -0.366063 0.296151 1.169134 0.67526 0.898794 0.897808 0.806944 0.389711 0.225 -0.069756 -0.503274 0.035107 -0.829038 -0.394534 0.327084 1.169134 0.675

    28 0.882948 0.899452 0.794169 0.389711 0.225 -0.034899 -0.476927 0.016645 -0.848048 -0.422524 0.358321 1.169134 0.675

    30 0.866025 0.9 0.779423 0.389711 0.225 6.13E-17 -0.45 -2.76E-17 -0.866025 -0.45 0.389711 1.169134 0.675

    32 0.848048 0.899452 0.762778 0.389711 0.225 0.034899 -0.422524 -0.014746 -0.882948 -0.476927 0.421102 1.169134 0.675

    34 0.829038 0.897808 0.744316 0.389711 0.225 0.069756 -0.394534 -0.027521 -0.898794 -0.503274 0.452339 1.169134 0.675

    36 0.809017 0.89507 0.724127 0.389711 0.225 0.104528 -0.366063 -0.038264 -0.913545 -0.529007 0.483272 1.169134 0.675

    38 0.788011 0.891241 0.702308 0.389711 0.225 0.139173 -0.337146 -0.046922 -0.927184 -0.554095 0.513748 1.169134 0.675

    Instantaneous Power in Single-Phase Circuit

    -1.5

    0

    1.5

    0 90 180 270 360 450 540 630 720

    va

    ia

    pa

    P

    Q

    Instantaneous Power in Three-Phase Circuit

    -1.5

    0

    1.5

    0 90 180 270 360 450 540 630 720

    va

    ia

    vb

    ib

    vc

    icpa+pb+pc

    Q

  • 8/11/2019 Transistors Power Presentation

    27/65

    27

    A load consists of a 47 resistor and 10mH inductor in

    series. The load is energized by a 120V, 60Hz voltage

    source. The phase angle of the voltage source is zero.

    a.

    Determine the phasor currentb.

    Determine the load P, pf, Q, and S.

    c.

    Find an expression for instantaneous p(t)

    A Single-Phase Power Example

  • 8/11/2019 Transistors Power Presentation

    28/65

    28

    A Transmission Line Example

    Calculate the P and Q flows (in per unit) for the loadflow situation shown below,

    and also check conservation of P and Q.

    0.05 + j0.15

    pu ohms

    j0.20 pu mhos

    PL+ jQLVL= 1.020 /0 VR= 1.010 /-10

    PR+ jQR

    IS

    IcapL IcapRj0.20 pu mhos

  • 8/11/2019 Transistors Power Presentation

    29/65

    29

    implicit nonecomplex vl_phasor,sl,icapl_phasor,zcl,is_phasor,zlinecomplex vr_phasor,sr,icapr_phasor,zcr

    real vlmag,vlang,vrmag,vrang,pi,qcapl,qcaprreal vl_mag,vl_ang,vr_mag,vr_angreal rline, xline, bcapreal pl,ql,pr,qr,is_mag,is_ang,icapl_mag,icapl_ang,icapr_mag,icapr_ang

    real qline_loss

    open(unit=6,file="EE411_Trans_Line.dat")pi = 4.0 * atan(1.0)

    vl_mag = 1.02vl_ang = 0.0vr_mag = 1.01vr_ang = -10.0rline = 0.05xline = 0.15

    bcap = 0.20

    vl_phasor = vl_mag * cmplx(cos(vl_ang * pi / 180.0),sin(vl_ang * pi / 180.0))vr_phasor = vr_mag * cmplx(cos(vr_ang * pi / 180.0),sin(vr_ang * pi / 180.0))

    is_phasor = (vl_phasor - vr_phasor) / cmplx(rline,xline)

    icapl_phasor = vl_phasor * cmplx(0.0,bcap)icapr_phasor = vr_phasor * cmplx(0.0,bcap)

    sl = vl_phasor * conjg(is_phasor + icapl_phasor)sr = vr_phasor * conjg(-is_phasor + icapr_phasor)

    pl = real(sl)ql = aimag(sl)

    pr = real(sr)qr = aimag(sr)

    write(6,*) "is_phasor (rectangular) = ",is_phasoris_mag = cabs(is_phasor)is_ang = atan2(aimag(is_phasor),real(is_phasor)) * 180.0 / pi

    write(6,*) "is_phasor (polar) ",is_mag,is_angwrite(6,*)

  • 8/11/2019 Transistors Power Presentation

    30/65

    30

    write(6,*) "icapl_phasor (rectangular) = ",icapl_phasoricapl_mag = cabs(icapl_phasor)icapl_ang = atan2(aimag(icapl_phasor),real(icapl_phasor)) * 180.0 / pi

    write(6,*) "icapl_phasor (polar) ",icapl_mag,icapl_angwrite(6,*)

    write(6,*) "icapr_phasor (rectangular) = ",icapr_phasoricapr_mag = cabs(icapr_phasor)icapr_ang = atan2(aimag(icapr_phasor),real(icapr_phasor)) * 180.0 / pi

    write(6,*) "icapr_phasor (polar) ",icapr_mag,icapr_angwrite(6,*)

    qcapl = cabs(vl_phasor) * cabs(vl_phasor) * (-bcap)qcapr = cabs(vr_phasor) * cabs(vr_phasor) * (-bcap)

    write(6,*) "pl = ",plwrite(6,*) "ql = ",qlwrite(6,*)

    write(6,*) "pr = ",prwrite(6,*) "qr = ",qrwrite(6,*)

    write(6,*) "qcapl = ",qcaplwrite(6,*) "qcapr = ",qcaprwrite(6,*)

    write(6,*) "pl + pr = ",(pl + pr)write(6,*) "ql + qr = ",(ql + qr)write(6,*)

    write(6,*) "pline_loss = ",cabs(is_phasor) * cabs(is_phasor) * rlineqline_loss = cabs(is_phasor) * cabs(is_phasor) * xline

    write(6,*) "qline_loss = ",qline_losswrite(6,*) "qline_loss + qcapl + qcapr = ",(qline_loss + qcapl + qcapr)write(6,*)

    end

  • 8/11/2019 Transistors Power Presentation

    31/65

    31

    -----------------------------------Results

    is_phasor (rectangular) = (1.102996,0.1987045)

    is_phasor (polar) 1.120752 10.21229

    icapl_phasor (rectangular) = (0.0000000E+00,0.2040000)icapl_phasor (polar) 0.2040000 90.00000

    icapr_phasor (rectangular) = (3.5076931E-02,0.1989312)icapr_phasor (polar) 0.2020000 80.00000

    pl = 1.125056ql = -0.4107586

    pr = -1.062252qr = 0.1870712

    qcapl = -0.2080800qcapr = -0.2040200

    pl + pr = 6.2804222E-02ql + qr = -0.2236874

    pline_loss = 6.2804200E-02qline_loss = 0.1884126

    qline_loss + qcapl + qcapr = -0.2236874

    0.05 + j0.15

    pu ohms

    j0.20 pu mhos

    PL+ jQL

    VL= 1.020 /0 VR= 1.010 /-10

    PR+ jQR

    IS

    IcapL IcapRj0.20 pu mhos

  • 8/11/2019 Transistors Power Presentation

    32/65

    32

    RMS of some common periodic waveforms

    22

    0

    2

    0

    22 1)(1

    DVDT

    T

    VdtV

    T

    dttv

    T

    V

    DTT

    rms

    DVVrms

    Duty cycle controller

    DTT

    V

    0

    0 < D < 1

    By inspection, this is

    the average value of

    the squaredwaveform

  • 8/11/2019 Transistors Power Presentation

    33/65

    33

    RMS of common periodic waveforms, cont.

    TTT

    rms t

    T

    Vdtt

    T

    Vdtt

    T

    V

    T

    V

    0

    3

    3

    2

    0

    2

    3

    2

    0

    22

    3

    1

    T

    V

    0

    3

    VVrms

    Sawtooth

  • 8/11/2019 Transistors Power Presentation

    34/65

    34

    RMS of common periodic waveforms, cont.

    Using the power concept, it is easy to reason that the following waveforms

    would all produce the same average power to a resistor, and thus their rms

    values are identical and equal to the previous example

    V

    0

    V

    0

    V

    0

    0

    -V

    V

    0

    3

    VVrms

    V

    0

    V

    0

  • 8/11/2019 Transistors Power Presentation

    35/65

    35

    2. Three-Phase Circuits

  • 8/11/2019 Transistors Power Presentation

    36/65

    36

    Three Important Properties of Three-Phase

    Balanced Systems

    Because they form a balanced set, the a-b-ccurrents sum to zero. Thus, there is no returncurrent through the neutral or ground, whichreduces wiring losses.

    A N-wire system needs (N1) meters. A three-phase, four-wire system needs three meters. Athree-phase, three-wire system needs only twometers.

    The instantaneous power is constant

    Three-phase,

    four wire system

    a

    b

    c

    n

    Reference

  • 8/11/2019 Transistors Power Presentation

    37/65

    37

    Observe Constant Three-Phase P and Q in Excel spreadsheet

    1_Single_Phase_Three_Phase_Instantaneous_Power.xls

    Vmag = 1

    Vang = 0

    Imag = 0.90 90

    Iang = -30 150

    Phase A Phase A Phase A P Q Phase B Phase B Phase B Phase C Phase C Phase C A+B+C Q

    wt v(t) I(t) p(t) 0.389711 0.225 v(t) I(t) p(t) v(t) I(t) p(t) p(t) 0.675

    0 1 0.779423 0.779423 0.389711 0.225 -0.5 -0.779423 0.389711 -0.5 5.51E-17 -2.76E-17 1.169134 0.675

    2 0.999391 0.794653 0.794169 0.389711 0.225 -0.469472 -0.763243 0.358321 -0.529919 -0.03141 0.016645 1.169134 0.6754 0.997564 0.808915 0.806944 0.389711 0.225 -0.438371 -0.746134 0.327084 -0.559193 -0.062781 0.035107 1.169134 0.675

    6 0.994522 0.822191 0.817687 0.389711 0.225 -0.406737 -0.728115 0.296151 -0.587785 -0.094076 0.055296 1.169134 0.675

    8 0.990268 0.834465 0.826345 0.389711 0.225 -0.374607 -0.70921 0.265675 -0.615661 -0.125256 0.077115 1.169134 0.675

    10 0.984808 0.845723 0.832875 0.389711 0.225 -0.34202 -0.68944 0.235802 -0.642788 -0.156283 0.100457 1.169134 0.675

    12 0.978148 0.855951 0.837246 0.389711 0.225 -0.309017 -0.66883 0.20668 -0.669131 -0.187121 0.125208 1.169134 0.675

    14 0.970296 0.865136 0.839437 0.389711 0.225 -0.275637 -0.647406 0.178449 -0.694658 -0.21773 0.151248 1.169134 0.675

    16 0.961262 0.873266 0.839437 0.389711 0.225 -0.241922 -0.625193 0.151248 -0.71934 -0.248074 0.178449 1.169134 0.675

    18 0.951057 0.880333 0.837246 0.389711 0.225 -0.207912 -0.602218 0.125208 -0.743145 -0.278115 0.20668 1.169134 0.675

    20 0.939693 0.886327 0.832875 0.389711 0.225 -0.173648 -0.578509 0.100457 -0.766044 -0.307818 0.235802 1.169134 0.675

    22 0.927184 0.891241 0.826345 0.389711 0.225 -0.139173 -0.554095 0.077115 -0.788011 -0.337146 0.265675 1.169134 0.675

    24 0.913545 0.89507 0.817687 0.389711 0.225 -0.104528 -0.529007 0.055296 -0.809017 -0.366063 0.296151 1.169134 0.67526 0.898794 0.897808 0.806944 0.389711 0.225 -0.069756 -0.503274 0.035107 -0.829038 -0.394534 0.327084 1.169134 0.675

    28 0.882948 0.899452 0.794169 0.389711 0.225 -0.034899 -0.476927 0.016645 -0.848048 -0.422524 0.358321 1.169134 0.675

    30 0.866025 0.9 0.779423 0.389711 0.225 6.13E-17 -0.45 -2.76E-17 -0.866025 -0.45 0.389711 1.169134 0.675

    32 0.848048 0.899452 0.762778 0.389711 0.225 0.034899 -0.422524 -0.014746 -0.882948 -0.476927 0.421102 1.169134 0.675

    34 0.829038 0.897808 0.744316 0.389711 0.225 0.069756 -0.394534 -0.027521 -0.898794 -0.503274 0.452339 1.169134 0.675

    36 0.809017 0.89507 0.724127 0.389711 0.225 0.104528 -0.366063 -0.038264 -0.913545 -0.529007 0.483272 1.169134 0.675

    38 0.788011 0.891241 0.702308 0.389711 0.225 0.139173 -0.337146 -0.046922 -0.927184 -0.554095 0.513748 1.169134 0.675

    Instantaneous Power in Single-Phase Circuit

    -1.5

    0

    1.5

    0 90 180 270 360 450 540 630 720

    va

    ia

    pa

    P

    Q

    Instantaneous Power in Three-Phase Circuit

    -1.5

    0

    1.5

    0 90 180 270 360 450 540 630 720

    va

    ia

    vb

    ib

    vc

    icpa+pb+pc

    Q

    Imaginary

  • 8/11/2019 Transistors Power Presentation

    38/65

    38

    The phasorsare rotating counter-clockwise.

    The magnitude of line-to-line voltage phasors is 3 times the magnitude of line-to-neutral voltage phasors.

    Vbn

    Vab= VanVbn

    Vbc=

    VbnVcn

    Van

    Vcn

    30

    120

    Real

    Vca= VcnVan

  • 8/11/2019 Transistors Power Presentation

    39/65

    39

    Conservation of power requires that the magnitudes of deltacurrents Iab, Ica, and Ibcare3

    1

    times the magnitude of line currents Ia, Ib, Ic.

    Van

    Vbn

    Vcn

    Real

    Imaginary

    Vab= VanVbn

    Vbc=

    VbnVcn

    30

    Vca= VcnVan

    Ia

    Ib

    Ic

    Iab

    Ibc

    Ica

    Ib

    Ic

    Iab

    Ica

    Ibc

    Ia

    a

    c

    b

    Vab +

    Balanced Sets Add to Zero in BothTime and Phasor Domains

    Ia+ Ib+ Ic= 0

    Van+ Vbn+ Vcn= 0

    Vab+ Vbc+ Vca= 0

    Line currents Ia, Ib, and Ic

    Delta currents Iab, Ibc, and Ica

  • 8/11/2019 Transistors Power Presentation

    40/65

    40

    The Two Above Loads are Equivalent in Balanced Systems

    (i.e., same line currents Ia, Ib, Icand phase-to-phase voltages Vab, Vbc, Vcain both cases)

    3Z

    3Z3Z

    a

    c

    b

    Vab +

    Ia

    Ib

    Ic

    Z

    ZZ

    c

    b

    Vab

    Ia

    Ib

    Ic

    n

  • 8/11/2019 Transistors Power Presentation

    41/65

    41

    The Two Above Sourcesare Equivalent in Balanced Systems(i.e., same line currents Ia, Ib, Icand phase-to-phase voltages Vab, Vbc, Vcain both cases)

    a

    c

    b

    Vab +

    Ia

    Ib

    Ic

    Van

    a

    c

    b

    Vab +

    Ia

    Ib

    Ic

    n+

  • 8/11/2019 Transistors Power Presentation

    42/65

    42

    Z

    ZZ

    ab

    Vab +

    Ia

    Ib

    Ic

    c

    nIn

    KCL: In= Ia+ Ib+ Ic

    But fora balanced set,

    Ia

    + Ib

    + Ic

    = 0, so In

    = 0

    Ground (i.e., V = 0)

    The Experiment: Opening and closing the switch has no effect because I nisalready zero for a three-phase

    balanced set. Since no current flows, even if there is a resistance in the grounding path, we must conclude thatVn= 0 at the neutral point (or equivalent neutral point) of any balanced three phase load or source in a bala nced

    system. This allows us to draw a one-line diagram (typically for phase a) and solve a single -phase problem.

    Solutions for phases b and c follow from the phase shifts that must exist.

    Zline

  • 8/11/2019 Transistors Power Presentation

    43/65

    43

    Balanced three-phase systems, no matter if they are deltaconnected, wye connected, or a mix, are easy to solve if youfollow these steps:1. Convert the entire circuit to an equivalent wyewith a

    groundedneutral.2. Draw the one-line diagram for phase a, recognizing that

    phase a has one third of the P and Q.3. Solve the one-line diagram for line-to-neutral voltages and

    line currents.4. If needed, compute line-to-neutral voltages and line currents

    for phases b and c usingthe 120 relationships.5. If needed, compute line-to-line voltages and deltacurrents

    usingthe 3 and 30relationships.

    a

    n

    a

    n

    Zload+

    Van

    Zline

    Ia

    a

    c

    b

    Vab +

    3Zload

    a

    c

    b

    Ib

    Ia

    Ic

    Zline

    Zline

    3Zload3Zload

    The One-LineDiagram

  • 8/11/2019 Transistors Power Presentation

    44/65

    44

    Now Work a Three-Phase Motor Power Factor

    Correction Example

    A three-phase, 460V motor draws 5kW with a power factor of 0.80

    lagging. Assuming that phasor voltage Vanhas phase angle zero,

    Find phasor currents Iaand Iaband (noteIabis inside

    the motor delta windings)

    Find the three phase motor Q and S

    How much capacitive kVAr (three-phase) should be connected in

    parallel with the motor to improve the net power factor to 0.95?

    Assuming no change in motor voltage magnitude, what will be the

    new phasor current Iaafter the kVArs are added?

  • 8/11/2019 Transistors Power Presentation

    45/65

    45

    Now Work a Delta-Wye Conversion Example

    The 60Hz system shown below is balanced. The line-to-line voltage of the source is 460V.

    Resistors R are each 5.

    Part a. If each Z is (90 + j45), determine the three-phase complex power delivered by the

    source, and the three-phase complex power absorbed by the delta-connected Z loads.

    Part b. If anV~

    at the source has phase angle zero, find ''~baV at the load.

    Z

    ZZ

    Part c. Draw a phasor diagram that shows line currents Ia, Ib, and Ic, and

    load currents Iab, Ibc, and Ica.

  • 8/11/2019 Transistors Power Presentation

    46/65

    46

    3. Transformers

  • 8/11/2019 Transistors Power Presentation

    47/65

    47

    Transformer Core Types

  • 8/11/2019 Transistors Power Presentation

    48/65

    48

    High-Voltage Grid Transformers, 100s of MW

  • 8/11/2019 Transistors Power Presentation

    49/65

    49

    Single-Phase Transformer

    Rs jXs

    Ideal

    Transformer7200:240V

    Rm jXm

    7200V 240V

    Turns ratio 7200:240

    (30 : 1)

    (but approx. same amount of

    copper in each winding)

  • 8/11/2019 Transistors Power Presentation

    50/65

    50

    Short Circuit Test

    Rs jXsIdeal

    Transformer7200:240V

    Rm jXm

    7200V 240V

    Turns ratio 7200:240

    (but approx. same amount of

    copper in each winding)

    Short circuit test: Short circuit

    the 240V-side, and raise the

    7200V-side voltage to a few

    percent of 7200, until rated

    current flows. There is almost

    no core flux so the

    magnetizing terms are

    negligible.

    sc

    scss

    I

    VjXR ~

    ~

    +

    Vsc

    -

    Isc

  • 8/11/2019 Transistors Power Presentation

    51/65

    51

    Open Circuit Test

    Rs jXsIdeal

    Transformer7200:240V

    Rm jXm

    7200V 240V

    Turns ratio 7200:240

    (but approx. same amount of

    copper in each winding)

    +

    Voc

    -

    Open circuit test: Open circuit

    the 7200V-side, and apply

    240V to the 240V-side. The

    winding currents are small, so

    the series terms are negligible.

    oc

    ocmm

    I

    VjXR ~

    ~

    ||

    Ioc

    1. Given the standard percentage values below for a 125kVA transformer,

  • 8/11/2019 Transistors Power Presentation

    52/65

    52

    Single Phase Transformer.

    Percent values are given

    on transformer base.

    Winding 1

    kv = 7.2, kVA = 125

    Winding 2

    kv = 0.24, kVA = 125

    %imag = 0.5

    %loadloss = 0.9

    %noloadloss = 0.2

    %Xs = 2.2

    Rs jXs

    Ideal

    Transformer

    7200:240V

    Rm jXm

    7200V 240V

    Magnetizing

    current

    No

    load

    loss

    XsLoad

    loss

    3. If standard open circuit and short circuit

    tests are performed on this transformer, what

    will be the Ps and Qs (Watts and VArs)

    measured in those tests?

    1. Given the standard percentage values below for a 125kVA transformer,

    determine the Rs and Xs in the diagram, in .

    2. If the Rs and Xs are moved to the 240V side, compute the new values.

  • 8/11/2019 Transistors Power Presentation

    53/65

    53

    Rs jXs

    Ideal

    TransformerRm jXm

    X / R Ratios for Three-Phase Transformers

    345kV to 138kV, X/R = 10

    Substation transformers (e.g., 138kV to 25kV or 12.5kV, X/R = 2, X = 12%

    25kV or 12.5kV to 480V, X/R = 1, X = 5%

    480V class, X/R = 0.1, X = 1.5% to 4.5%

  • 8/11/2019 Transistors Power Presentation

    54/65

    54

    Linear Scale Log10 Scale

    Saturationrelative permeability decreases rapidly after 1.7 Tesla

    Relative permeability drops from about 2000 to about 1 (becomes air core)

    Magnetizing inductance of the core decreases, yielding a highly peaked

    magnetizing current

    T f C S t t

    i

  • 8/11/2019 Transistors Power Presentation

    55/65

    55

    Transformer Core Saturation

    -6

    -4

    -2

    0

    2

    4

    6

    Am

    peres

    Magnetizing Currentfor Single-Phase

    25 kVA. 12.5kV/240V Transformer.

    THDi = 76.1%, Mostly 3rdHarmonic.

    Log10 Scale

    Linear Scale

    No DC

    No DC

    With DC

    A l DC V lt t T f d W t h It S t t

  • 8/11/2019 Transistors Power Presentation

    56/65

    56

    Cold Core Test on 1kVA Transformer

    (120V Winding Excited, 480V Winding Connected to 25 Ohm Resistor, Vdc = 150V on 6500 uF)MG, March 12, 2009

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    -0.005 0.000 0.005 0.010 0.015 0.020 0.025

    Time - Seconds

    TransformerCurrentin120V

    W

    inding

    -20

    0

    20

    40

    60

    80

    100

    120

    140

    160

    TransformerVoltageAcross

    120V

    Winding

    \

    Apply a DC Voltage to a Transformer and Watch It Saturate

    Where there is a DC current, there is a DC voltage, and vice-versa

    VoltageCurrent

    Saturates

  • 8/11/2019 Transistors Power Presentation

    57/65

    57

    -0.1

    0.0

    0.1

    0.2

    0.3

    0.4

    0.5

    0.6

    0.7

    0.8

    0.9

    -150 -100 -50 0 50 100 150 200 250 300

    Est. Magnetizing Amps

    Volt-Seconds

    B-H Curve Constructed from V-I Measurements Shows Linear

    Region, Saturation, Hysteresis, and Residual Magnetism

    Shape of normal

    hysteresis path

    Severe hysteresis

    Residual

    magnetism

    Residual

    magnetism

    Distribution Feeder Loss Secondary Lines21%Annual Loss

  • 8/11/2019 Transistors Power Presentation

    58/65

    Example Annual energy loss = 2.40%

    Largest component is transformer no-load loss (45% of the 2.40%)

    Transformer No-

    Load

    45%

    Transformer Load

    8%

    Primary Lines

    26%

    21%

    Demand values for the peak hour of (load + loss) Total kW % of Consump Total kWh % of Consumpt

    Consumption/Demand 5665 22222498

    Total Loss 173 3.06% 534293 2.40%

    Line Loss (Wires) 123 2.18% 250568 1.13%

    Transformer Loss (load plus no-load) 50 0.88% 283726 1.28%Load Loss (Wires and transformers) 144 2.54% 291879 1.31%

    No-Load Loss (Transformer magnetizing) 29 0.52% 242414 1.09%

    Primary Loss (Includes transformers) 116 2.05% 421316 1.90%

    Secondary Loss (No transformers) 57 1.01% 112978 0.51%

    Primary Lines (Wires) 66 1.17% 137590 0.62%

    Secondary Lines (Wires) 57 1.01% 112978 0.51%

    No-Load Loss (Transformer magnetizing) 29 0.52% 242414 1.09%

    Transformer Load Loss 21 0.36% 41312 0.19%

    Annual EnergyAt Peak Hour

    Modern Distribution Transformer:

    Load loss at rated load (I2R in conductors) = 0.75% of rated transformer kW.

    No load loss at rated voltage (magnetizing, core steel) = 0.2% of rated

    transformer kW.

    Magnetizing current = 0.5% of rated transformer amperes

    Si l Ph T f

  • 8/11/2019 Transistors Power Presentation

    59/65

    59

    Single-Phase Transformer

    Impedance Reflection from High-Side (H) to Low-Side (L) by the

    Square of the Turns Ratio

    Rs jXsIdeal

    Transformer7200:240V

    Rm jXm

    7200V 240V

    IdealTransformer7200:240V

    7200V 240V

    2

    7200

    240

    sjX 2

    7200

    240

    sR

    2

    7200

    240

    mjX

    2

    7200

    240

    mR

    2

    ~/

    ~

    ~/

    ~

    ~/

    ~

    ~/

    ~

    ,~

    ~

    ~

    ~

    so,~~~~

    ,~

    ~

    L

    H

    L

    HH

    H

    LH

    HH

    LL

    HH

    L

    H

    H

    L

    H

    L

    L

    HLLHH

    L

    H

    L

    H

    N

    N

    N

    NI

    N

    NV

    IV

    IV

    IV

    Z

    Z

    N

    N

    V

    V

    I

    IIVIV

    N

    N

    V

    V

    Faradays law Conservation ofpower

  • 8/11/2019 Transistors Power Presentation

    60/65

    60

    Now Work a Single-Phase Transformer Example

    Open circuit and short circuit tests are performed on asingle-phase,7200:240V, 25kVA, 60Hz

    distribution transformer. The results are:

    Short circuit test (short circuit the low-voltage side, energize the high-voltage side so thatrated current flows, and measure Pscand Qsc). MeasuredPsc= 400W, Qsc= 200VAr.

    Open circuit test (open circuit the high-voltage side, apply rated voltage to the low-voltageside, and measure Pocand Qoc). MeasuredPoc= 100W, Qoc= 250VAr.

    Determine the four impedancevalues(in ohms) for the transformer model shown.

    Rs jXs

    Ideal

    Transformer7200:240V

    Rm jXm

    7200V 240V

    Turns ratio 7200:240

    (30 : 1)

    (but approx. same amount of

    copper in each winding)

    A three phase transformer can be three separate

  • 8/11/2019 Transistors Power Presentation

    61/65

    61

    Y - Y

    A three-phase transformer can be three separate

    single-phase transformers, or one large

    transformer with three sets of windings

    N1:N2

    N1:N2

    N1:N2

    Rs jXs

    IdealTransformer

    N1 : N2

    Rm jXm

    Wye-Equivalent One-Line Model

    A

    N

    Reflect side 1 wye ohms to side 2 wye ohms

    by multiplying by [N2 / N1]^2

    Standard 345/138kV autotransformers, GY- GY,

    with a tertiary 12.5kV winding to provide

    circulating 3rdharmonic current

  • 8/11/2019 Transistors Power Presentation

    62/65

    62

    -

    For Delta-DeltaConnection Model, Convert the

    Transformer to Equivalent Wye-Wye

    N1:N2

    N1:N2

    N1:N2

    IdealTransformer

    3

    Rs

    3

    2:

    3

    1 NN

    3

    jXs

    3

    Rm

    3

    jXm

    A

    N

    Wye-Equivalent One-Line Model

    Reflect side 1 delta ohms to side 2 delta

    ohms by multiplying by [N2 / N1]^2

    Convert side 2 delta ohms to wye ohms bydividing by 3

    Convert side 1 delta ohms to wye ohms by

    dividing by 3

    Above circuit results in the proper reflection.

    Note that N2/Sqrt3 divided by N1/Sqrt3 is the

    same as N2 divided by N1

    For Delta-Wye Connection Model Convert the

  • 8/11/2019 Transistors Power Presentation

    63/65

    63

    - Y

    For Delta WyeConnection Model, Convert the

    Transformer to Equivalent Wye-Wye

    N1:N2

    N1:N2

    N1:N2

    IdealTransformer

    3

    Rs

    2:3

    1N

    N

    3

    jXs

    3

    Rm

    3

    jXm

    A

    N

    Wye-Equivalent One-Line Model

    Reflect side 1 delta ohms to side 2 wye ohms

    by multiplying by [N2 / N1]^2

    Convert side 1 delta ohms to wye ohms bydividing by 3

    Above circuit results in the proper reflection

    Standard building entrance

    and substation transformers.

    high side/ GYlow side

  • 8/11/2019 Transistors Power Presentation

    64/65

    64

    Y -

    For Wye-DeltaConnection Model, Convert the

    Transformer to Equivalent Wye-Wye

    N1:N2

    N1:N2

    N1:N2

    IdealTransformer

    3

    2:1 N

    N

    jXs

    Rm jXm

    A

    N

    Rs

    Wye-Equivalent One-Line Model

    So, for all configurations, the equivalent wye-wye transformer ohmscan be

    reflected from one side to the other using the three-phase bank line-to-line

    turns ratio

    Reflect side 1 wye ohms to side 2 delta ohms

    by multiplying by [N2 / N1]^2

    Convert side 2 impedances from delta ohms

    to wye ohms by dividing by 3

    Above circuit results in the proper reflection

  • 8/11/2019 Transistors Power Presentation

    65/65

    For wye-delta and delta-wye configurations, there is a

    phase shift in line-to-linevoltages because

    the individual transformer windings on one sideare connected line-to-neutral, and on the other

    side are connected line-to-line

    But there is no phase shift in any of the

    individual transformers

    This means that line-to-line voltages on the

    delta side are in phase with line-to-neutral

    voltages on the wye side

    Thus, phase shift in line-to-line voltages from

    one side to the other is unavoidable, but it can

    be managed by standard labeling to avoid

    problems caused by paralleling transformers