turbocharge design - calculation sample

Upload: isudirman

Post on 30-May-2018

233 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 Turbocharge Design - Calculation sample

    1/26

    Fluid properties - Assume constant properties:

    1.333:=... Ratio of specific heat

    Cp 1147

    J

    kg K:= ... Specific heat of air standard at constant

    pressure

    kJ 1000J:=

    kmol 1000 mol:=

    ... Gas constantR 287

    J

    kg K:=

    P1 1.6bar 0.16 MPa=:=

    r 18.5:=

    ASSUMPTIONS

    rc 2:= ... V3 per V2, cut off ratio

    T1 300K 26.85 C=:= ... Temperature inlet of cylinder

    11

    r 1

    rc

    1

    rc 1( )

    0.569=:=

  • 8/14/2019 Turbocharge Design - Calculation sample

    2/26

    STAGE 1:

    P1 0.16 MPa=

    T1 300 K =

    u1 214.07kJ

    kg:=

    r1 621.2:=

    1R T1

    P1

    0.538m

    3

    kg

    =:=

    11

    11.858

    kg

    m3

    =:=

    STAGE 2:

    r2r1

    r33.578=:=

    From table T-9

    T2 900K r2 34.31

    32.18 34.31920 900( ) K+ 906.87K=:=

    h2 932.93kJ

    kg

    r2 34.31

    32.18 34.31955.38 932.93( )

    kJ

    kg+ 940.641

    kJ

    kg=:=

    P2 P1T2

    T1 r 8.948MPa=:=

    2R T2

    P20.029

    m3

    kg=:=

    21

    234.379

    kg

    m3

    =:=

    STAGE 3:

    T3 rc T2 1813.739373 K=:=

  • 8/14/2019 Turbocharge Design - Calculation sample

    3/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    4/26

    CENTRIFUGAL COMPRESSOR - TURBOCHARGER

    D 92mm:=

    Stroke 93.8mm:=

    N 4:=... Number of cylinders

    V1_2 D

    2

    4 Stroke N 2494.183293 cm

    3=:=

    V2V1_2

    r 1142.525 cm

    3=:=

    V1 V2 r 2636.708052 cm3

    =:= 2494cm3

    2.494L=

    V1 V2 2494.183293 cm3

    =

    RPM 3000rpm:=

    m_exhaust 4 V1 V2( )RPM

    2 0.728

    kg

    s=:=

    Given (request) data:

    mf m_exhaust 0.728kg

    s=:= ... The mass flow rate

    PR13P1

    1atm1.579=:= ... Pressure ratio of compresor

    Svaneless 5mm:= ... Vaneless space (between impeller anddiffuser)

    rdt 55mm:=... The diffuser throat radius

    rdo 65mm:= ... The diffuser outlet radius

    Ndif 15:= ... Number of channels of diffuser

    Guess & suggestion data:

    rperR 0.5:= ... (r/R) The ratio of hub to shroud diameter at theeye

    t 0.82:= ... Overall efficiency

    0.525:= ... Head coefficient, from Aungier Fig. 1-9

  • 8/14/2019 Turbocharge Design - Calculation sample

    5/26

    1.04:= ... Power input factor

    0.835:= ... The slip factor

    m 0.95:= ... Mechanical efficiency of compressor

    limitedness:

    W3max 90m

    s:= ... Maximum outlet velocities

    a3max 11:= ... The maximum included angle of the vaneddiffuser passage

    Umax 460m

    s:= ... Maksimum tip speed

    M1Wmax 0.8:= ... Suggested maximum Mach number at inletimpeller - W1 direction

    Tmax 400K := ... Maximum static temperature

  • 8/14/2019 Turbocharge Design - Calculation sample

    6/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    7/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    8/26

    T1To1

    1 1( ) M1

    2

    2+

    := T1 280.673 K=

    C1 M1 R T1:= C1 131.074m

    s=

    Ca1 C1:=

    From the isentropic relationship at a point

    1Po1

    R To1

    T1

    To1

    1

    1

    := 1 1.132kg

    m3

    =

    P1 Po1T1

    To1

    1

    := P1 91.203 kPa=

    Therefore the eye tip diameter at inlet is:

    R1tmf

    1 k Ca1:= R1t 45.630499 mm=

    D1t 2 R1t:= D1t 91.261 mm=

    And the hub diameter at inlet is:

    D1r D1t rperR:= D1r 45.63 mm=

    Peripheral speed at the impeller eye tip (shroud) & 1t:

    U1t D1tRPM

    rev:= U1t 226.974699

    m

    s=

    1t atan Ca1U1t :=

    1t 30.006 =

    Peripheral speed at the impeller eye root (hub) & 1r:

    U1r D1rRPM

    rev:= U1r 113.48735

    m

    s=

    1r atanCa1

    U1r

    := 1r 49.113096 =

    1.b. The impeller outlet diameter

  • 8/14/2019 Turbocharge Design - Calculation sample

    9/26

    From Eq (4-11) the stagnation temperature difference is

    To3 To1To1

    tPR13

    1

    1

    +:= To3 330.632 K=

    To3 To1 42.482 K=

    From Eq (4-9)

    U2To3 To1( ) Cp

    := U2 236.877

    m

    s=

    And Tip flow coefficient (2) at exit of impeller

    D2U2 rev

    RPM:= D2 95.242 mm=

    The new value of To3 & t,

    U2 D2 RPM

    rev:= U2 236.877

    m

    s=

    To3U2

    2

    Cp

    To1+:= To3 330.632 K=

    tTo1 PR13

    1

    1

    To3 To1

    := t 0.82=

    Therefore the tip flow coefficient is:

    r2D2

    2:= r2 47.621175 mm=

    2mf

    o1 r22 U2

    := 2 0.352109=

    The Number of Blades:

    Z0.63

    1 .83:= Z 11.642=

    Z 12:=

    10.63

    Z:= 0.835= ... Will be used re-calculate

  • 8/14/2019 Turbocharge Design - Calculation sample

    10/26

    1.c. Velocity at exit and the the losses in the impeller and diffuser are the same, The

    axial depth of the impeller is:

    First guess M2 = 0.8 and iteration. The overall loss is proportional to (1 - c) = (1 - 0.82). Half of

    the overall loss is therefore 0.5(1 - 0.82) = 0.09 and therefore the effective efficiency of theimpeller in compressing from Po1 to Po2 is (1 - 0.09) ...

    M2 1:=

    c 1 0.5 1 t( ):= c 0.91=

    From Eq (4-11) afer rearranging the subscripts, and To3 = To2:

    To2 To3:= To2 330.632 K=

    T2To2

    1M2

    2 R

    2 Cp+

    := T2 283.373 K=

    PR12 1 cTo2 To1( )

    To1+

    1

    := PR12 1.655=

    P2 Po1T2

    To2

    1PR12

    := P2 90.456 kPa=

    2P2

    R T2:=

    2 1.112kg

    m3

    =

    Po2P2

    T2

    To2

    1

    := Po2 94.009 kPa=

    And TOTAL enthalphy rise (Hrev) at exit of impeller

    To2s c To2 To1( ) To1+:= To2s 326.808 K=

    H_adiabatic Cp To2s To1( ):= H_adiabatic 44341.039968m

    2

    s2

    =

    The head coefficient become ....

  • 8/14/2019 Turbocharge Design - Calculation sample

    11/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    12/26

    1r 49.113096 =

    At outlet section (2):

    D2 95.242 mm=

    b2 8.311479 mm=

    2 atanU2 Cax2

    Cr2

    := 2 8.443 =

    W2Cr2

    cos 2( ):= W2 266.099

    m

    s=

    C2 329.257 ms

    =

    Cax2 197.808m

    s=

    Cr2 263.216m

    s=

    2 acosCr2

    C2

    := 2 36.925 =

    Z 12=

    RPM 47500 rpm=

    2 0.352=

    0.835=

    2. DIFFUSER

    In the vaneless space between the impeller outlet and diffuser vanes the flow is that of a free

    vortex which at any radius requires that Cx.r = constant.

    At the diffuser vane leading edge the radius is (r2 + 10)mm = (47.62 + 10) mm = 57.62 mm

    r2D2

    2:= r2 47.621 mm=

    r2v r2 Svaneless+:= r2v 52.621175 mm=

  • 8/14/2019 Turbocharge Design - Calculation sample

    13/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    14/26

    Ar3i 2 r2v b2:= Ar3i 0.002748m2

    =

    Cr3imf

    3i Ar3i:= Cr3i 302.407

    m

    s=

    by ITERATION ...

    Cr3i 302.407m

    s:= ... change this value for iteration

    C3i Cr3i2

    Cx3i2

    +:= C3i 424.543m

    s=

    T3i To2C3i

    2

    2 Cp:= T3i 252.063 K=

    P3i Po1T3i

    To2

    1

    PR12:= P3i 56.608 kPa=

    3iP3i

    R T3i:= 3i 0.783

    kg

    m3

    =

    Ar3i 2 r2v b2:= Ar3i 0.002748m2

    =

    Cr3imf

    3i Ar3i:= Cr3i 338.5755428

    m

    s=

    No further iterations are necessary. Thus at the inlet to the vanesCr,3,i = 246.2013186 m/s.

    3i atanCx3i

    Cr3i

    := 3i 41.350188 =

    Moving to the radius at the diffuser throat, at the throat radius, 343 mm

    Cx3tC2 r2

    rdt:= Cx3t 285.084

    m

    s=

    by ITERATION again to find propertes at diffuser throat section ...

    Start with assuming Cr,3 = Cr,3,i

    Cr3t Cr3i:= Cr3t( ) 338.576m

    s=

    Cr3t 1308.0100793m

    s:= ... change this value for iteration

    C3t Cx3t2

    Cr3t2

    +:= C3t 1.339 103

    m

    s=

  • 8/14/2019 Turbocharge Design - Calculation sample

    15/26

    T3t To2C3t

    2

    2 Cp:= T3t 450.608 K=

    P3t Po1T3t

    To2

    1 PR12:= P3t 579.136 5.464i+( ) kPa=

    3tP3t

    R T3t:= 3t 4.478 0.042i( )

    kg

    m3

    =

    Ar3t 2 rdt b2:= Ar3t 0.002872m2

    =

    Cr3tmf

    3t Ar3t:= Cr3t 56.5986266 0.5339793i+( )

    m

    s=

    It may be seen that there is no change in the new values sothe radial velocity at the diffuser

    throat = 184.0268017 m/s

    3t atanCx3t

    Cr3t

    := 3t 78.770868 0.103249i( ) =

    A3tAr3t Cr3t

    C3t:= A3t 0.000121 0.000001i+( ) m

    2=

    As we have 15 diffuser vanes, the width of each throat is:

    Throat_widthA3t

    Ndif b2

    := Throat_width 0.974021 0.009189i+( ) mm=

    2 r2v 105.242 mm=

    rdt 2 110 mm=

    Svaneless 5 mm=

    Moving to the radius at the diffuser outler, at the outlet radius, 550 mm

    Cx3C2 r2

    rdo:= Cx3 241.225

    m

    s=

    by ITERATION again to find propertes at diffuser outlet section . ..

    Start with assuming Cr,3 = Cr,3,i

    Cr3o Cr3t:= Cr3o 56.599 0.534i+( )m

    s=

    Cr3o 87.84762m

    s:= ... change this value for iteration

  • 8/14/2019 Turbocharge Design - Calculation sample

    16/26

    C3o Cx32

    Cr3o2

    +:= C3o 256.723m

    s=

    T3o To2 C3o2

    2 Cp:= T3o 301.902 K=

    P3o Po1T3o

    To2

    1

    PR12:= P3o 116.559 kPa=

    3oP3o

    R T3o:= 3o 1.345

    kg

    m3

    =

    Ar3o 2

    rdo

    b2:=

    Ar3o 0.003394m

    2=

    Cr3omf

    3o Ar3o:= Cr3o 159.4398561

    m

    s=

    It may be seen that there is no change in the new values sothe radial velocity at the diffuser

    throat = 87.84762 m/s

    3o atanCx3

    Cr3o

    := 3o 56.536926 =

    A3oAr3o Cr3o

    C3o:= A3o 0.002108m

    2=

    As we have 15 diffuser vanes, the width of each throat is:

    Throat_width_outletA3o

    Ndif b2:= Throat_width_outlet 16.909629 mm=

    Overall dimension of DIFFUSER:

    At inlet:

    r2v 52.621 mm=

    3i 41.350188 =

    At throat:

    rdt 55 mm=

  • 8/14/2019 Turbocharge Design - Calculation sample

    17/26

    3t 78.770868 0.103249i( ) =

    Throat_width 0.974021 0.009189i+( ) mm=

    At outlet:

    rdo 65 mm=

    3o 56.536926 =

    Throat_width_outlet 16.909629 mm=

    Ndif 15=

    TURBINE - TURBOCHARGER

    P4 0.474MPa=

    T4 888.694 K=

    From previous data - calculation:

    Po1 P4 0.474 MPa=:= ... Stagnation pressure at inlet to nozzles

    To1 T4 888.694 K =:= ... Stagnation temperature at inlet to nozzles

    m_flow m_exhaust 0.728kg

    s=:= ... The mass flow of exhaust gas available to the turbine

    Assumptions :

    P2 .725 Po1 0.344MPa=:= ... Static pressure at exit from nozzles

    T2 0.9275 To1 824.264 K=:= ... Static temperature at exit from nozzles

    P3 0.5 Po1 0.237MPa=:= ... Static pressure at exit from rotor

    T3 0.86325 To1 767.165 K=:= ... Static temperature at exit from rotor

    To3 1.002 T3 768.7K=:= ... Stagnation temperature at exit from rotor

    r3av_r2 0.5:= ... Ratio r,ave / r1

  • 8/14/2019 Turbocharge Design - Calculation sample

    18/26

    RPM 47500rpm= ... Rotational speed

    Analysis:

    a). The total-to-static efficiency is given by

  • 8/14/2019 Turbocharge Design - Calculation sample

    19/26

    t_ts

    1To3

    To1

    1 P3Po1

    1

    0.849=:=

    b). The outer diameter of rotor, inlet diameter

    Cx3 0:= Cx2 U2=

    U2 Cp To1 To3( ) 370.99m

    s=:=

    D2U2 rev

    RPM 149.166 mm=:=

    c). The enthalphy loss coefficient for the nozzles and rotor rows

    Nozzle loss coefficient:

    T2s To1P2

    Po1

    1

    820.093 K=:=

    NT2 T2s

    To1 T20.064736=:=

    Rotor loss coefficient:

    U3 U2 r3av_r2 185.495m

    s

    =:=

    C3 2 Cp To3 T3( ) 59.328m

    s=:= C3

    23519.754213

    m2

    s2

    =

    W3 C32

    U32

    + 194.752m

    s=:= W3

    237928.205778

    m2

    s2

    =

    h3_h3s Cp T3P3

    P2

    1( )

    T2

    18314.248869m

    2

    s2

    =:=

  • 8/14/2019 Turbocharge Design - Calculation sample

    20/26

    Rh3_h3s

    r3av_r2 W32

    0.966=:=

    d). The blade outlet angle at the mean diameter 3,av, and

    3av acotC3

    U3

    72.264 =:=

    e). The total-to-total efficiency of the turbine

    t_t1

    1

    t_ts

    1

    2r3av_r2 cot 3av( )( )

    2

    0.858558=:=

    f). The volume flow rate at rotor exit

    Po3P3

    T3

    To3

    1

    238.888 kPa=:=

    ho1_ho3ss Cp To1 1Po3

    Po1

    1

    160.353

    kJ

    kg=:=

    3

    P3

    R T3 1.076

    kg

    m3=:=

    Q3m_flow

    30.676

    m3

    s=:=

    g). The hub and tip diameters of the rotor at exit

    Q3 r3t2

    r3h2

    ( ) C3=

    Q3 2 r3av h C3=

  • 8/14/2019 Turbocharge Design - Calculation sample

    21/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    22/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    23/26

    - END of CALCULATION -

  • 8/14/2019 Turbocharge Design - Calculation sample

    24/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    25/26

  • 8/14/2019 Turbocharge Design - Calculation sample

    26/26