unique biosynthetic pathway in bloom-forming

49
HAL Id: pasteur-02044790 https://hal-pasteur.archives-ouvertes.fr/pasteur-02044790 Submitted on 21 Feb 2019 HAL is a multi-disciplinary open access archive for the deposit and dissemination of sci- entific research documents, whether they are pub- lished or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cytotoxic Aeruginoguanidines and Microguanidines Claire Pancrace, Keishi Ishida, Enora Briand, Douglas Gatte Pichi, Annika Weiz, Arthur Guljamow, Thibault Scalvenzi, Nathalie Sassoon, Christian Hertweck, Elke Dittmann, et al. To cite this version: Claire Pancrace, Keishi Ishida, Enora Briand, Douglas Gatte Pichi, Annika Weiz, et al.. Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cyto- toxic Aeruginoguanidines and Microguanidines. ACS Chemical Biology, American Chemical Society, 2019, 14 (1), pp.67-75. 10.1021/acschembio.8b00918. pasteur-02044790

Upload: others

Post on 06-Dec-2021

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unique Biosynthetic Pathway in Bloom-Forming

HAL Id: pasteur-02044790https://hal-pasteur.archives-ouvertes.fr/pasteur-02044790

Submitted on 21 Feb 2019

HAL is a multi-disciplinary open accessarchive for the deposit and dissemination of sci-entific research documents, whether they are pub-lished or not. The documents may come fromteaching and research institutions in France orabroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, estdestinée au dépôt et à la diffusion de documentsscientifiques de niveau recherche, publiés ou non,émanant des établissements d’enseignement et derecherche français ou étrangers, des laboratoirespublics ou privés.

Unique Biosynthetic Pathway in Bloom-FormingCyanobacterial Genus Microcystis Jointly AssemblesCytotoxic Aeruginoguanidines and Microguanidines

Claire Pancrace, Keishi Ishida, Enora Briand, Douglas Gatte Pichi, AnnikaWeiz, Arthur Guljamow, Thibault Scalvenzi, Nathalie Sassoon, Christian

Hertweck, Elke Dittmann, et al.

To cite this version:Claire Pancrace, Keishi Ishida, Enora Briand, Douglas Gatte Pichi, Annika Weiz, et al.. UniqueBiosynthetic Pathway in Bloom-Forming Cyanobacterial Genus Microcystis Jointly Assembles Cyto-toxic Aeruginoguanidines and Microguanidines. ACS Chemical Biology, American Chemical Society,2019, 14 (1), pp.67-75. �10.1021/acschembio.8b00918�. �pasteur-02044790�

Page 2: Unique Biosynthetic Pathway in Bloom-Forming

1

12

3

A Unique Biosynthetic Pathway in Bloom-Forming Cyanobacterial Genus4

MicrocystisJointlyAssemblesCytotoxicAeruginoguanidinesandMicroguanidines5

6

Claire Pancrace1,2,7, Keishi Ishida3,7, Enora Briand4,7, Douglas Gatte Pichi5, Annika R.7

Weiz5,ArthurGuljamow5,ThibaultScalvenzi1,NathalieSassoon1,ChristianHertweck3,6,8

ElkeDittmann5,*,MurielGugger1,*9

10

Affiliations111InstitutPasteur,CollectiondesCyanobactéries,28rueduDrRoux,75724ParisCedex12

15,France132UMRUPMC113, CNRS 7618, IRD 242, INRA1392, PARIS 7 113, UPEC, IEES Paris, 414

PlaceJussieu,75005,Paris,France153Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll16

Institute,Beutenbergstr.11a,07745Jena,Germany174Ifremer, Laboratoire Phycotoxines, rue de l’Ile d’Yeu, 44311 Nantes, France185Department of Microbiology, Institute of Biochemistry and Biology, University of19

Potsdam,14476Golm,Germany206FacultyofBiologicalSciences,FriedrichSchillerUniversityJena,07743Jena,Germany212223

Footnotes247Theseauthorscontributedequally.25*Correspondence:[email protected],[email protected] 26

Page 3: Unique Biosynthetic Pathway in Bloom-Forming

2

Abstract27

The cyanobacterial genus Microcystis is known to produce an elaborate array of28

structurally unique and biologically active natural products including hazardous29

cyanotoxins. Cytotoxic aeruginoguanidines represent a yet unexplored family of30

peptides featuringa trisubstitutedbenzeneunit and farnesylatedargininederivatives.31

Inthisstudy,weaimedatassigningthesecompoundstoabiosyntheticgeneclusterby32

utilizing biosynthetic attributes deduced from public genomes ofMicrocystis and the33

sporadicdistributionofthemetaboliteinaxenicstrainsofthePasteurCultureCollection34

ofCyanobacteria.35

By integrating genome mining with untargeted metabolomics using liquid36

chromatographywithmassspectrometry,wecould linkaeruginoguanidine(AGD)toa37

nonribosomal peptide synthetase gene cluster and co-assign a significantly smaller38

product to this pathway, microguanidine (MGD), previously only reported from two39

Microcystis blooms. Further, a new intermediate class of compounds named40

microguanidineamideswasuncoveredtherebyfurtherenlargingthiscompoundfamily.41

The comparison of structurally divergent AGDs and MGDs reveals an outstanding42

versatilityof thisbiosyntheticpathwayandprovides insights into theassemblyof the43

twocompoundsubfamilies.44

Strikingly,aeruginoguanidinesandmicroguanidineswerefoundtobeaswidespreadas45

thehepatotoxicmicrocystins,but theoccurrenceofbothtoxin familiesappearedtobe46

mutuallyexclusive.47

48

49

Keywords:Microcystis,naturalproduct,cytotoxin,aeruginoguanidine,microguanidine50

51

Page 4: Unique Biosynthetic Pathway in Bloom-Forming

3

INTRODUCTION52

Microcystis is a dominant bloom-forming cyanobacterium occurring in temperate53

freshwater ecosystems.1 The genus is infamous for the production of thewell-known54

hepatotoxin microcystin.2 Both blooms and toxins cause ecosystem disturbance and55

public health threats, and constitute a growing concern in the frame of freshwater56

eutrophicationandglobalwarming.Microcystishasalsobeendescribedasaproducerof57

a multitude of bioactive natural products, some of interest for biotechnological and58

pharmaceuticalapplication.3-559

Cytotoxicaeruginoguanidines(AGDs)representoneofthemostremarkablefamiliesof60

compoundsdescribedforMicrocystis.6ThethreeAGDcongenersreportedforstrainM.61

aeruginosa NIES-98 feature highly unprecedented characteristics such as a 1-(4-62

hydroxy-3-hydroxymethyl)-phenyl-1-hydroxy-2-propylamine-4’,3’,1-tri-O-sulfate63

(Hphpa trisulfate) moiety, along with geranylation and prenylation of arginines (Fig.64

1A). While bloom-forming Microcystis belong to the most intensively studied65

cyanobacteria,AGDswerereportedonlytwicefromabloominCzechRepublicandan66

isolate in Brazil,7,8 and never from any other cyanobacteria. Their intricate features67

confineAGDsintoauniquecompoundfamily.368

Our recent genomic analysis of ten Microcystis strains revealed that the different69

genotypes share a highly similar core genome while their biosynthetic gene clusters70

(BGCs) involved in natural product (NP) formation show a sporadic distribution.71

Moreover, we uncovered three cryptic BGCs not associated with any cyanobacterial72

compound.9 The continuously increasing number of publically available genomes of73

Microcystisfurthercorroboratesthehighgeneticdiversityandpatchydistributionofthe74

NPsproducedbythiscyanobacterium.75

Analysis of mass spectrometry (MS) data has been widely used for years in NP76

characterization efforts. Molecular networking computational approach uses tandem77

MS/MSdatatogroupspectrabasedontheirfragmentationpatternssimilarities,which78

gainstrengthintheframeofmulti-straincomparison.Approachescombiningmolecular79

networking with genome mining highlight putative links between parent ions and80

pathways responsible for their biosynthesis. This combinatorial approach has been81

showneffectiveat linkingNPstotheirbiosyntheticgeneclusters incyanobacteriaand82

otherprokaryotessuchasSalinospora.10,11.83

Here,wehaveutilizedthesporadicdistributionofBGCsinMicrocystis toassignoneof84

Page 5: Unique Biosynthetic Pathway in Bloom-Forming

4

the orphan BGCs to AGD. By integrating the genome sequence of the known AGD-85

producing strain Microcystis aeruginosa NIES-98,12 we screened Microcystis public86

genomes and axenic PCC strains for the AGD and its candidate BGC using genome87

mining, PCR and untargeted metabolomics. These data were further combined with88

molecular networking and genome comparison to link AGD to its biosynthetic gene89

cluster and study its diversity at the genetic and themetabolite level. The integrative90

approach allowed to enlarge the AGD compound family with microguanidine amide91

congeners (MGAs) and new variants of microguanidines (MGDs), and provides92

comprehensiveinsightsintotheextraordinaryversatilityofthisbiosyntheticpathway.93

94

RESULTSANDDISCUSSION95

Candidate synthesis BGC for sulfated, geranylated and prenylated compounds.96

Consideringthechemicalstructureofaeruginoguanidine(Figure1A),theBGCinvolved97

in its synthesis was expected to encode nonribosomal peptide synthetase (NRPS)98

modules with specificity for L-arginine and tailoring enzymes such as a99

prenyltransferase and a sulfatase/sulfotransferase. The genomeof theAGD-producing100

strainMicrocystisaeruginosa NIES-98 contained only one cluster with these features,101

which was homologous to the MIC2 cluster previously described in the genomes of102

MicrocystisaeruginosaPCC9806andPCC9717andMicrocystissp.T1-4.9Thecandidate103

BGC encoded two mono-modular NRPS, one of which comprising an integrated N-104

methylationdomainasanticipatedfortheN-methylationoftheArgmoieties.Substrate105

predictionof the secondNRPSwasmore ambiguouswithout excludingArg (Table1).106

The putative AGD BGC, which spans ~34kb in the genome ofMicrocystis aeruginosa107

NIES-98, includes25genes(Table1)organized inthreeoperons(Figure1B).Thetwo108

NRPS AgdE and AgdK are accompanied by a predicted hydroxybenzoate synthase109

(AgdH), anAMP-dependent-ligase (AgdA), a peptidyl carrier protein (AgdB), a radical110

SAMproteinwith decarboxylase function (AgdC) and two thioester reductases (AgdN111

and AgdU). Several proteins consistent with tailoring enzymes involved in AGD112

biosynthetic pathways are present such as two methyltransferases (AgdI, AgdM), an113

aminotransferase (AgdL), an isoprenyltransferase (AgdJ), several114

sulfatase/sulfotransferases (AgdD, AgdG, AgdP and AgdR), plus putative115

permease/transporters(AgdF,AgdO),andthiaminepyrophosphatase(AgdQ)genes.116

This candidate BGC for AGD present in seven genomes, including the public ones of117

Page 6: Unique Biosynthetic Pathway in Bloom-Forming

5

Microcystis aeruginosaTAIHU98,Microcystis sp. SPC777 and CACIAM03, was used to118

optimize specific primers and PCR conditions to detect its presence in Microcystis119

strains.ThetwoprimerpairsdesignedweretargetingtwogenesofthecandidateBGC120

presumablyinvolvedinanearlyandalatestageofAGDbiosynthesis.Bothgenesdonot121

sharehomologieswithotherNRPSBGCs inMicrocystis (agdHandagdJ,TableS1).The122

screeningofthesetwoselectedgenesrevealedsevenadditionalPCCMicrocystisstrains,123

whoseon-goinggenomesequenceshelpedtobetterdefinethelimitsofthisBGC(Table124

S2).Acloseinspectionofthe14genomesrevealedthecandidateAGDBGCwith28genes125

inperfectsynteny,withoutrearrangement,andexpandedthe initialMIC2clusterwith126

conservedneighboringgenes (Figure1B).Noteworthy, the largestNRPSgeneagdK of127

Microcystissp.PCC10613wasreducedtoaremnantfragment,asconfirmedbyPCR.In128

addition,thegeneagdKwassplitintwointhegenomesofMicrocystissp.CACIAM03and129

TAIHU98.Similarly,thegeneagdQwassplitinthegenomeofPCC9624,whileacontig130

border separated agdP and agdQ in the genomes of PCC 9624 and PCC 10613. The131

predictedaminotransferasegeneagdLwaslackinginthegenomesofPCC9717andPCC132

9810,alsoconfirmedbyPCR.Finally,thegenesagdSandagdT,withoutknownfunction,133

appearedduplicatedintenstrains(Figure1B).134

135

AGDandco-assignmentofmicroguanidinebyMolecularNetworking.Detectionof136

AGDwas performed by LC-MS/MS to assess its presence in the AGD producer strain137

NIES-98andintenstrainsofthePCCcontainingthecandidateBGC,aswellasineight138

PCC strains that did not contain it in their genomes. Twomolecular networks (MNs)139

were constructed fromLC-MS/MSdata, one inpositivemode (MN(+)) and another in140

negativemode(MN(–)). Inordertodereplicatethecomplexdataset,signaturesofNPs141

previously found in some of these Microcystis strains were identified using high-142

performanceliquidchromatographyelectrosprayionizationmassspectrometry(HPLC-143

ESI-MS/MS).Specifically,MS/MSfragmentswereidentifiedforthecyanopeptolinsA,B144

andC in PCC7806, aeruginosamidesB andC and ferintoic acid (anabaenopeptins) in145

PCC9432,andferintoicacidinPCC9701aspredictedfromtheirgenomes(FigureS1A).1469,13 The MN(+), consisting of 1998 nodes, was thus reliable in finding the expected147

compounds.However,AGDwasspread inseveralnodesof theMN(+)apart fromeach148

other. Indeed, AGD had a better fragmentation pattern in negative mode as it was149

collapsedintoasinglelargenodeamongthe1876nodesoftheMN(–)(FigureS1B).An150

Page 7: Unique Biosynthetic Pathway in Bloom-Forming

6

extractionoftheAGDnodeinMN(–)encompassedallstrainscarryingthefullcandidate151

BGCforAGDsynthesis,butneitherthestrainPCC10613northestrainslackingthisAGD152

candidatecluster(Figure2A).Upto20differentputativevariantsofAGDwerefoundin153

theseMicrocystis strains,with strainsNIES-98, PCC 9804, PCC 9805 andT1-4 able to154

produce the three knownAGD standards,whereas the other strains produced one or155

twoofthosevariants(Figure2).156

Strikingly, the MN(–) revealed that all the strains containing the AGD candidate BGC157

producedalsoasignificantlysmallerproductof772Da(Figure2B).Literatureresearch158

revealed that a compound with this mass, microguanidine AL772, was previously159

reported foraMicrocystis bloom.14Microguanidines (MGDs) share strikingsimilarities160

with AGDs but display also considerable differences. Instead of the highly unusual161

Hphpa trisulfate moiety, MGDs contain 3-(4-hydroxy-3-hydroxymethylphenyl)-2-162

hydroxy-1-propanol (Hphpol).Further,MGDs featureapermethylationat thea-amino163

groupofArgthathasnotbeenobservedinAGDs.AlongwithMGDAL772(4,Figure3,164

relatedFiguresS3andS4A),anewMGDvariant,MGD-704(5,Figure3,relatedFigures165

S3andS4B,andTableS3)wasdetectedinthemajorityofstrainsdifferingfromthetwo166

othercharacterizedMGDs,KT636andDA368.14-16167

In addition, the structural elucidation of the MGD size range compounds by MS168

fragmentationandhigh-resolutionMSanalysesuncoveredanovelintermediateclassof169

metabolitesmixingfeaturesofAGDandMGD.WhilebothcompoundscontaintheHphpa170

trisulfatemoietylinkedwithanamidebondtotheargininederivativeasinAGDsthey171

werelackingthesecondargininemoietyandcarriedthesamepermethylationatthea-172

aminogroupofArgasinMGDs(6and7,Figure3,relatedFiguresS3andS4CandD,and173

Table S3). To confirm the structure of 6, several 4 and 6 producing strains were174

extractedandsmallamountsof4and6werepurifiedbyreversed-phaseHPLC.The1H175

NMRspectraofAGD98-A(1),AGD98-B(2),AGD98-C(3),MGDAL772(4),andMGA176

(6) showed highly similar signals (Figure S5-S14). Detailed comparison of 1H NMR177

signalsbetween4and6revealed threenotabledifferences,namely theappearanceof178

newamideprotonδ8.48(H11in6),1.02and0.18ppmandhighfieldshiftedmethine179

protonsH8δ5.21(4)toδ4.23(6)andH13δ4.11(4)toδ3.93(6),respectively(Figure180

S5).The1H-1HCOSYcorrelationfromH8toH11andHSQCanalysisof6indicatedthat181

C8 (δ49.8 in6, δ75.3 in4) is adjacent tonitrogen (FigureS15-S18,TableS4).These182

resultsstronglysupportedthatthepredictedstructureof6indeedpossessesanamide183

Page 8: Unique Biosynthetic Pathway in Bloom-Forming

7

bondinsteadoftheesterbondin4.Asthelowamountof6didnotenableasufficient184

quality of 13C NMR and other 2D NMR spectra, chemical shift assignment of 6 was185

performedbythecomparisonwithNMRdataof4.Thestereochemistryof thegeranyl186

groupof6wasdeterminedasZ-form,judgingfromtheclosesimilarityofchemicalshifts187

with 1-3 and 13C NMR data of geraniol (E-form) and nerol (Z-form)188

(www.chemicalbook.com/). This result further revealed that the stereochemistry of189

geranyl group of MGD AL772 (4) also has Z-form. The new intermediate class of190

compoundswasdesignatedmicroguanidineamide,withMGA-771andMGA-787.191

Indeed, the MGA peptides and the two MGD depsipeptides were observed192

simultaneouslywithAGDs in four strains (PCC9804, PCC 9805, PCC 9811 andT1-4).193

Thus, Microcystis harboring the Agd BGC may build two different condensations194

between the modified Arg residue and the phenetylalcohol (ester bond) in MGD195

congenersorthephenetylamine(amidebond)inallAGDcongeners(Figure3).196

The co-existence of AGD and MGD in the majority of Agd BGC positive strains, the197

existenceofanewintermediateclassandthelargeoverlapinanticipatedbiosynthetic198

features leadus to conclude thatAGD andMGD represent alternative products of the199

samebiosyntheticpathway.Remarkably,strainPCC10613lackingtheNRPSgeneagdK200

wasfoundtoproducetheMGDsintheMN(–)(Figure2).Noteworthy,strainPCC9624in201

whichtheAgdBGCdifferedattheleveloftheagdQproducedonlytheAGD-98Aandthe202

MGD-AL772. Similarly, PCC 9810, PCC 9811 and PCC 9717 that lack the predicted203

aminotransferase agdL and several Agd genes of unknown function (agdS’, agdT’)204

produced a lower diversity of AGD variants under the same growing conditions than205

otherAGDproducingMicrocystisstrains.NoneoftheotherMicrocystisstrainsanalyzed,206

notablytheonescontainingtheMcygenecluster,producedAGD,MGAorMGD.207

208

CharacterizationoftheBGCpotentiallyinvolvedintheAGD/MGDsynthesis.Oneof209

the most striking findings of our study is the extraordinary diversity of products210

concurrently generated by the AGD/MGD pathway in single strains. Considering the211

variationsdetectedeveninthebackboneofAGDsandMGDsandinthelinkageoftheir212

individual moieties, the biosynthesis pathway cannot be considered as a classic213

assemblylineofNRPS.Thispathwayisratheratoolkitofenzymesoptionallyproducing214

a cocktail of metabolites that share the same precursors and similar tailoring215

modificationsbutcombinethedifferentbuildingblocks toalternativeproducts.At the216

Page 9: Unique Biosynthetic Pathway in Bloom-Forming

8

sametime,theunprecedenteddiversityofproductsandintermediatesandtheexistence217

of natural mutants lacking individual biosynthetic genes allows for conclusions218

regardinganumberofbiosyntheticstepsofthecomplexpathway.219

The presence of a putative p-hydroxybenzoate synthase (AgdH) in the AGD cluster220

indicates that the trisubstituted benzene unit of Hphpa andHphpolmight be derived221

fromchorismate17.GiventhatHphpaandHphpolpossessararem-hydromethylresidue222

inthebenzenering,AgdHmightactinasimilarwayasisochorismatemutase,whichhas223

been reported to catalyze the transformation of isochorismate to m-224

carboxyphenylpyruvate.18,19We cannotdissect all individual steps towards theHphpa225

and Hphpol moieties, but we propose that the AMP-dependent ligase AgdA might226

activate the o-carboxylic acid group of a p-hydroxyphenylpyruvate intermediate227

followed by the transfer to the free-standing PCP AgdB (Figure 4). The resulting228

thioester is presumably reduced to the corresponding alcohol either by thioester229

reductase AgdN or U through reductive chain termination as shown for myxochelin230

biosynthesis inStigmatellaaurantiaca.20Ayetunassignedhydroxylationstepat theβ-231

position of the m-hydroxymethyl-p-hydroxyphenylpyruvate yields 3-hydroxy-m-232

hydroxymethyl-p-hydroxyphenylpyruvateas theprecursorofbothHphpaandHphpol.233

We hypothesize that this precursor represents a branching point where further234

transformation of the α-keto group by aminotransferase AgdL yields Hphpa, while235

transformationbyareductase(e.g.AgdNorU)yieldsHphpol(Figure4).Thishypothesis236

is supported by the fact that the lack of agdL in strains PCC 9717 and PCC 9810 still237

permitsproductionofMGDvariantscontainingtheHphpolmoiety(4and5)butnotthe238

alternativeHphpamoietyasinMGAs(6and7).Itisofnote,thatsomeofthepredicted239

biosynthetic steps forHphpa andHphpol biosynthesis (Figure 4) share similarities to240

enzyme reactions involved in biosynthesis of the characteristic Choi moiety in the241

aeruginosin pathway 21. In this context, it is worth mentioning that the majority of242

AGD/MGD producers also harbor aeruginosin biosynthesis genes in their genome243

(Figure5),thusnotexcludingthepossibilityofajointuseofprecursorsandenzymes.244

Furthermore, thestrainM.aeruginosaPCC10613canbeconsideredasanaturalagdK245

mutant,thusallowingdeducingtherolesofthetwoNRPSsinthepathway.Thefactthat246

thelackofAgdKinPCC10613stillenablesMGDproductionstronglysuggeststhatAgdE247

istheresponsibleNRPSactivatingArgintheMGDandMGApathways(Figure6).Onthe248

other hand, the NRPS AgdK harbouring an N-methyltransferase domain is likely249

Page 10: Unique Biosynthetic Pathway in Bloom-Forming

9

incorporatingN-Me-Arg in theAGDpathway.Whether or notAgdK acts iteratively or250

cooperates with AgdE to yield the MeArg-MeArg-Hphpa moiety of AGDs cannot be251

dissected based on the current dataset. The biosynthetic intermediate(s) might be252

methylated and decarboxylated by the radical SAM enzyme AgdC. Since AgdC shows253

close homology to the oxygen-independent coproporphyrinogen III oxidase of E.coli254

(HemN) we propose that it utilizes a 5`-deoxyadenosyl radical to trigger a255

decarboxylation reaction as demonstrated for the HemN enzyme family. 22 The256

intermediatemayfurtherbemodifiedbyseveral tailoringenzymaticreactionssuchas257

N-methylation (methyltransferase; AgdI or M) of Arg residue, to the tri-sulfation258

(sulfotransferases; AgdD, P and R, sulfatase; AgdG) of the Hphpa residue, and theN-259

alkylation (isoprenyltransferase; AgdJ) of N-MeArg residues. Some of the proposed260

biosyntheticstepsmayoccurwhilesubstratesaretetheredonPCP-domainsofNRPSsor261

thestandalonepeptidylcarrierproteinAgdB.Thefactthatnodesulfatedintermediates262

were observed in the MS/MS networking may suggest that sulfation of the aromatic263

moietyoccursinthePCP-boundstate.264

Thedistinctalkylationpatternat theguanidinylgroupofN-trimethylArg(ωforAGDs265

and ε for MGDs) may derive from alternative substrate specificities of the266

isoprenyltransferase AgdJ (Figure 6). Comparison of the distinct AGD/MGD product267

profilesof individualMicrocystis strainsthussuggestsanoutstandingversatilityof the268

pathway. A complete assignment of biosynthetic steps will require biochemical269

characterizationofparticipatingenzymesandtargetedfeedingstudies,yettheanalysis270

ofnaturalagdKandagdLmutantsledtodefiniteconclusionsregardingtheroleofthese271

twoenzymes.272

The example of the joint AGD/MGD pathway further strengthens the paradigm that273

cyanobacteria have evolved unique mechanisms to produce diverse NPs of high274

complexity in single strains using limited genetic resources. Other cyanobacterial275

mechanismsincludetheutilizationofalternativestartermodulesforNRPSasshownfor276

theanabaenopeptinsynthetaseofstrainAnabaena90,23theintegrationofmultispecific277

adenylation domains of NRPS as shown for the anabaenopeptin synthetase of278

PlanktothrixNIVA-CYA126,24andthemicrocystinsynthetase inMicrocystisaeruginosa279

NIES 843.25 Recently, a simultaneous production of anabaenopeptins and namalides280

allowedtorevealasinglepathwayfortheirsynthesis.26Wecanonlyspeculatewhether281

Page 11: Unique Biosynthetic Pathway in Bloom-Forming

10

AGDs and MGDs act synergistically or fulfill parallel independent functions in the282

producingstrains.283

An interesting phenomenon observed during this study is that AGD/MGD production284

andMCproductionare almostmutually exclusive amongMicrocystis strains.Theonly285

exceptionwas found in thegenomesof twonon-monoclonalBrazilianstrains,27,28 that286

carry both clusters and for which the production of these compounds is not yet287

documented. There is increasing evidence that MCs are closely interfering with the288

primarymetabolismofMicrocystis in addition to their toxicity.29Whether or notAGD289

andMGDcancomplement for the lossofMCor reflect adifferentnicheadaptationof290

theirrespectiveproducersremainselusive.291

Our study further suggests that the rare detection of AGD and MGD in only two292

MicrocystisaeruginosaisolatedinJapanandinBrazil(NIES986andNPCD-18)andbloom293

materialsofMicrocystisinIsrael14-16respectivelyisnotduetothescarceoccurrenceof294

thesemetabolitesamongMicrocystis,but rather to the lackofattention towards these295

peculiarNPsinpreviousstudies.Thus,theAGD/MGDproducersseemtobeasdispersed296

worldwide as theMCproducing strains, and therefore shouldbe considered in future297

screeningofMicrocystisbloomsandisolates.298

299

CONCLUSIONS300

Cyanobacteriaareinfamousforworldwidebloomformationinfreshwaterbodies.Risk301

assessmentofMicrocystisbloomsprimarilyconsidersthehepatotoxinmicrocystin(MC).302

The present study suggests that the neglected family of compounds, cytotoxic303

aeruginoguanidinesandmicroguanidines,ismorefrequentlyproducedthanpreviously304

anticipated, mainly in non-MC producing Microcystis strains. Remarkably, the two305

structurally divergent groups of compounds are products of a branched and versatile306

biosynthetic pathway. The genetically constraint gene cluster generates a library of307

diverse products in single strains and further strengthens the paradigm that308

cyanobacteria have developed unique mechanisms to generate metabolic diversity.309

Thesefindingsopennewperspectivesforfuturestudiesonorphannaturalproductsand310

evolutionoftheirbiosyntheticpathways.311

312

313

314

Page 12: Unique Biosynthetic Pathway in Bloom-Forming

11

MATERIALSANDMETHODS315

Strainculturesanddetectionofthecluster.AxenicMicrocystisstrainsfromthePCC316

and from the NIES collections were grown at 25 °C in 40 mL BG110 medium30317

supplementedwith2mMNaNO3and10mMNaHCO3undercontinuouslight(TableS2).318

For nucleic acid extraction, chemical and PCR analysis, the details are described in319

Supportinginformation.320

Sequencing & genomics analysis. For the strains suspected to carry the agd gene321

cluster, whole genome sequencing was performed by the Mutualized Platform for322

MicrobiologyatInstitutPasteur.GenomeswereintegratedintheMicroScopeplatform31323

forfurtheranalysis.ThegenomesequencingisdescribedinSupplementalinformation.324

Thespeciestreewasgeneratedbyaconcatenationof586conservedproteinsselected325

from the phylogeneticmarkers previously validated for Cyanobacteria.32 Phylogenetic326

analysisisdetailedinSupplementalinformation.AntiSMASH3.033wasusedtoidentify327

thetargetedBGCineachgenomesequence.Incaseswheretheagdgeneclusterspanned328

severalcontigs/scaffoldsPCRswereperformedtoconfirmthecolocalizationofthegene329

clusterpartsinthesamegenomiclocus(TableS1).330

Cyanobacterialcellextraction.Lyophilizedcyanobacterialcellsfrom200mLcultures331

of19Microcystisaeruginosa strainswereextractedwith80%aqueousmethanol (v/v,332

25mL)usingasonicator(SonoplusMS73,Bandelin,30%power,5cycles for2minat333

roomtemperature).Eachextractwascentrifugedat8,000×gfor15minat15°C.The334

residueswere extractedwith 80%aqueousmethanol (v/v, 25mL) andmethanol (25335

mL),respectively,astheabove-mentionedprocedure.Theextractswerecombinedand336

dried under a reduced pressure. The crude residueswere dissolved in 50% aqueous337

methanol(v/v,1mL)andkeptinafridgeuntilanalysis.338

HPLC-MSmeasurement. LC-MS/MSmeasurements were carried out by Bruker HCT339

Ultraiontrapmassspectrometry(BrukerDaltonics,Bremen,Germany)coupledwithan340

Agilent Technologies 1100 series liquid chromatogram system (Agilent, Waldbronn,341

Germany). The HR-LCMS measurements were performed by HPLC-HRMS series of342

Thermo Accela (LC) and Thermo Exactive (HRMS), an ESI source operating in both343

polaritymodeandanorbitrapanalyzer(ThermoFisherScientific,Bremen).Thedetails344

ofbothmeasurementsaredescribedinSupportingInformation.345

Molecularnetworking.LC-MS/MS data acquired fromBruker instrumentwere used346

for molecular networking. Twomolecular networks (MNs) were performed with LC-347

Page 13: Unique Biosynthetic Pathway in Bloom-Forming

12

MS/MSdata,oneinpositivemode(MN(+))andanotherwithnegativemodedata(MN(–348

))withLC-MS/MSdatafromMicrocystisstrainsandAGDA,BandCstandards.Thesteps349

followedforbothMNsaredescribedinSupportingInformation.350

351

REFERENCES352

1.Harke,M. J.,Steffen,M.M.,Gobler,C. J.,Otten,T.G.,Wilhelm,S.W.,Wood,S.A.,and353

Paerl,H.W.(2016)Areviewof theglobalecology,genomics,andbiogeographyof354

thetoxiccyanobacterium,Microcystisspp,HarmfulAlgae54,4—20.355

2.Merel,S.,Walker,D.,Chicana,R.,Snyder,S.,Baures,E.,andThomas,O.(2013)Stateof356

knowledgeandconcernsoncyanobacterialbloomsandcyanotoxins,Environ.Int.59,357

303—327.358

3. Welker, M., and von Dohren, H. (2006) Cyanobacterial peptides - nature's own359

combinatorialbiosynthesis,FEMSMicrobiol.Rev.30,530—563.360

4.Kehr, J.C.,GattePicchi,D.,andDittmann,E. (2011)Naturalproductbiosyntheses in361

cyanobacteria:Atreasuretroveofuniqueenzymes,BeilsteinJ.Org.Chem.7,1622—362

1635.363

5. Dittmann, E., Gugger, M., Sivonen, K., and Fewer, D. P. (2015) Natural product364

biosynthetic diversity and comparative genomics of the Cyanobacteria, Trends365

Microbiol.23,642—652.366

6.Ishida,K.,Matsuda,H.,Okita,Y.,andMurakami,M.(2002)Aeruginoguanidines98-A-367

98-C: cytotoxic unusual peptides from the cyanobacteriumMicrocystisaeruginosa,368

Tetrahedron58,7645—7652.369

7. Welker, M., Marsalek, B., Sejnohova, L., and von Dohren, H. (2006) Detection and370

identification of oligopeptides inMicrocystis (cyanobacteria) colonies: Toward an371

understandingofmetabolicdiversity,Peptides27,2090—2103.372

8.Silva-Stenico,M.,daSilva,C.,Lorenzi,A.,Shishido,T.,Etchegaray,A.,Lira,S.,Moraes,373

L., and Fiore, M. (2011) Non-ribosomal peptides produced by Brazilian374

cyanobacterialisolateswithantimicrobialactivity,Microbiol.Res.166,161—175.375

9.Humbert,J.F.,Barbe,V.,Latifi,A.,Gugger,M.,Calteau,A.,Coursin,T.,Lajus,A.,Castelli,376

V.,Oztas,S.,Samson,G.,Longin,C.,Medigue,C.,anddeMarsac,N.T.(2013)Atribute377

to disorder in the genome of the bloom-forming freshwater cyanobacterium378

Microcystisaeruginosa,PLoSOne8,e70747.379

Page 14: Unique Biosynthetic Pathway in Bloom-Forming

13

10. Duncan, K. R., Crusemann,M., Lechner, A., Sarkar, A., Li, J., Ziemert, N.,Wang,M.,380

Bandeira, N., Moore, B. S., Dorrestein, P. C., and Jensen, P. R. (2015) Molecular381

networkingandpattern-basedgenomemining improvesdiscoveryofbiosynthetic382

geneclustersandtheirproductsfromSalinisporaspecies,Chem.Biol.22,460—471.383

11.Moss,N.A.,Bertin,M. J.,Kleigrewe,K., Leao,T. F., Gerwick, L., andGerwick,W.H.384

(2016)Integratingmassspectrometryandgenomicsforcyanobacterialmetabolite385

discovery,J.Ind.Microbiol.Biotechnol.43,313—324.386

12.Yamaguchi,H.,Suzuki,S.,Sano,T.,Tanabe,Y.,Nakajima,N.,andKawachi,M.(2016)387

Draft genome sequence of Microcystis aeruginosa NIES-98, a non-microcystin-388

producing cyanobacterium from Lake Kasumigaura, Japan, Genome Announc. 4,389

e01187—01116.390

13. Briand, E., Bormans, M., Gugger, M., Dorrestein, P. C., and Gerwick, W. H. (2016)391

Changes in secondary metabolic profiles of Microcystis aeruginosa strains in392

responsetointraspecificinteractions,Environ.Microbiol.18,384—400.393

14. Gesner-Apter, S., and Carmeli, S. (2008) Three novelmetabolites from a bloom of394

cyanobacteriumMicrocystissp.,Tetrahedron64,6628—6634.395

15. Adiv, S., and Carmeli, S. (2013) Protease inhibitors from Microcystis aeruginosa396

bloommaterialcollectedfromtheDaltonReservoir, Israel, J.Nat.Prod.76,2307—397

2315.398

16. Lifshits, M., and Carmeli, S. (2012) Metabolites of Microcystis aeruginosa bloom399

materialfromLakeKinneret,Israel,J.Nat.Prod.75,209—219.400

17. Siebert, M., Severin, K., and Heide, L. (1994) Formation of 4-hydroxybenzoate in401

Escherichia coli: Characterization of the ubiC gene and its encoded enzyme402

chorismatepyruvate-lyase.,Microbiology140,897-904.403

18. Zamir, L. O., Nikolokakis, A., Bonner, C. A., and Jensen, R. A. (1993) Evidence for404

enzymatic formation of isoprephenate from isochorismate,BioorganicMed.Chem.405

Lett.3,1441—1446.406

19.Blasiak,L.C.,andClardy,J.J.(2010)Discoveryof3-formyl-tyrosinemetabolitesfrom407

Pseudoalteromonastunicata through heterologous expression,Am.Chem.Soc. 132,408

926—927.409

20.Li,Y.,Weissman,K.,andMüller,R.(2008)Myxochelinbiosynthesis:Directevidence410

for two- and four-electron reduction of a carrier protein-bound thioester, J. Am.411

Chem.Soc.130,7554—7555.412

Page 15: Unique Biosynthetic Pathway in Bloom-Forming

14

21.Ishida,K.,Christiansen,G.,Yoshida,W.,Kurmayer,R.,Welker,M.,Valls,N.,Bonjoch,J.,413

Hertweck,C.,Börner,T.,Hemscheidt,T.,andDittmann,E. (2007)Biosynthesisand414

structureofaeruginoside126Aand126B,cyanobacterialpeptideglycosidesbearing415

a2-carboxy-6-hydroxyoctahydroindolemoiety,Chem.Biol.14,565—576.416

22.Layer,G.,Pierik,A.J.,Trost,M.,Rigby,S.E.,Leech,H.K.,Grage,K.,Breckau,D.,Astner,417

I., Jansch, L., Heathcote, P., Warren, M. J., Heinz, D. W., and Jahn, D. (2006) The418

substrate radical of Escherichia coli oxygen-independent coproporphyrinogen III419

oxidaseHemN,J.Biol.Chem.281,15727—15734.420

23. Rouhiainen, L., Jokela, J., Fewer, D. P., Urmann, M., and Sivonen, K. (2010) Two421

alternative starter modules for the non-ribosomal biosynthesis of specific422

anabaenopeptinvariantsinAnabaena(Cyanobacteria),Chem.Biol.17,265—273.423

24.Kaljunen,H.,Schiefelbein,S.,Stummer,D.,Kozak,S.,Meijers,R.,Christiansen,G.,and424

Rentmeister,A.(2015)StructuralelucidationofthebispecificityofAdomainsasa425

basisforactivatingnon-naturalaminoacids,Angew.Chem.Int.Ed.Engl.54,8833—426

8836.427

25. Meyer, S., Kehr, J., Mainz, A., Dehm, D., Petras, D., Süssmuth, R., and Dittmann, E.428

(2016)Biochemicaldissectionofthenaturaldiversificationofmicrocystinprovides429

lessonsforsyntheticbiologyofNRPS,CellChem.Biol.23,462—471.430

26. Shishido, T. K., Jokela, J., Fewer, D. P., Wahlsten, M., Fiore, M. F., and Sivonen, K.431

(2017) Simultaneous production of anabaenopeptins and namalides by the432

cyanobacteriumNostocsp.CEN543,ACSChem.Biol.12,2746—2755.433

27.Fiore,M.F.,Alvarenga,D.O.,Varani,A.M.,Hoff-Risseti,C.,Crespim,E.,Ramos,R.T.,434

Silva, A., Schaker, P. D., Heck, K., Rigonato, J., and Schneider, M. P. (2013) Draft435

genomesequenceoftheBraziliantoxicbloom-formingcyanobacteriumMicrocystis436

aeruginosastrainSPC777,GenomeAnnounc.1,e00547—00513.437

28.Castro,W.O.,Lima,A.R.,Moraes,P.H.,Siqueira,A.,Aguiar,D.,Baraúna,A.,Martins,438

L.,Fuzii,H.,deLima,C.,Vianez-Júnior,J.,Nunes,M.,Dall'Agnol,L.,andGonçalves,E.439

(2016) Draft genome sequence of Microcystis aeruginosa CACIAM 03, a440

cyanobacterium isolated from an Amazonian freshwater environment, Genome441

Announc.4,e01299.442

29. Neilan, B., Pearson, L., Muenchhoff, J., Moffitt, M., and Dittmann, E. (2013)443

Environmental conditions that influence toxin biosynthesis in cyanobacteria,444

Environ.Microbiol.15,1239—1253.445

Page 16: Unique Biosynthetic Pathway in Bloom-Forming

15

30. Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M., and Stanier, R. Y. (1979)446

Generic assignments, strain histories and properties of pure cultures of447

Cyanobacteria,J.Gen.Microbiol.111,1—61.448

31. Vallenet, D., Calteau, A., Cruveiller, S., Gachet, M., Lajus, A., Josso, A., Mercier, J.,449

Renaux, A., Rollin, J., Rouy, Z., Roche, D., Scarpelli, C., and Medigue, C. (2017)450

MicroScopein2017:Anexpandingandevolvingintegratedresourceforcommunity451

expertiseofmicrobialgenomes,NucleicAcidsRes.45,D517—D528.452

32.Pancrace,C.,Barny,M.,Ueoka,R.,Calteau,A.,Scalvenzi,T.,Pedron,J.,Barbe,V.,Piel,J.,453

andHumbert,J.(2017)InsightsintothePlanktothrixgenus:Genomicandmetabolic454

comparisonofbenthicandplankticstrains,Sci.Rep.7,41181.455

33.Weber,T.,Blin,K.,Duddela,S.,Krug,D.,Kim,H.U.,Bruccoleri,R.,Lee,S.Y.,Fischbach,456

M.A.,Muller,R.,Wohlleben,W.,Breitling,R.,Takano,E.,andMedema,M.H.(2015)457

antiSMASH 3.0-a comprehensive resource for the genomemining of biosynthetic458

geneclusters,NucleicAcidsRes.43,W237—243.459

460

FIGURELEGENDS461

Figure1.Aeruginoguanidinesandthecorrespondingbiosyntheticgenecluster.(A)The462

structureofaeruginoguanidines(AGDs),1;AGD-98A,2;AGD-98B,3;AGD-98C;(B)AGD463

biosyntheticgeneclusterofMicrocystisaeruginosaNIES-98anditsvariationin13other464

Microcystis genomes sharing 94 to 98% of similarity. The genes are color-codedwith465

orangeforcarbohydratesulfotransferase,sulfotransferaseandsulfatase;blackforNRPS466

and thioesterase; green for methyl-, isoprenyl- and aminotransferase; blue for467

permease;greyforproteinswithputativeandunknownfunction.Thebluelineindicates468

thespanoftheMIC2clusterpreviouslydescribed.9469

Figure 2. Molecular network of AGD (A) and of MGD with MGA (B). Characterized470

structuralvariantsareindicatedasred-colorednodesandnewcongenerscharacterized471

in this study are highlighted in green. Diversity and distribution of AGD and MGD472

variants foreachstrain.DetailsofMN(+),MN(–),and theAGDandMGDnetworksare473

presentedinFiguresS1-S3.474

Figure 3. Microguanidine and microguanidine amide variants detected in strains475

containing the AGD biosynthetic gene cluster. The MGD depsipeptides contain ester-476

bonds,whilethepeptidicMGAscontainamide-bondsintheirstructures.Detailsof the477

high-resolutionMSdataofMGAandMGDarepresentedinTableS3.478

Page 17: Unique Biosynthetic Pathway in Bloom-Forming

16

Figure 4. Proposed Hphpa and Hphpol biosynthesis. 3-hydroxy-m-hydroxymethyl-p-479

hydroxyphenylpyruvate is synthesized as a precursor of both Hphpa and Hphpol via480

severalstepsfromisochorismate.Theresultingintermediateisfurthertransformedby481

eitheranaminotransferase(AgdL)orareductase(AgdNorU)toyieldHphpaorHphpol,482

respectivelyand further transferredto the free-standingPCP(AgdB)afteradenylation483

byAgdA.TheAgdLenzymeforwhichnaturalmutantswereidentifiedinthecourseof484

thisstudyishighlightedinred.485

Figure5.DistributionoftheknownandunknownBGCsintheframeofthephylogenyof486

the23Microcystisgenomesbasedonmaximumlikelihoodtreebuiltupon586marker487

genes.TheknownBGCsare involved in thesynthesisofaeruginoguanidine(AGD)and488

microguanidine (MGD) and/or MGA only, of microcystin, of cyanobactins including489

aeruginosamide, of aeruginosin, of microviridin, of cyanopeptolin, of anabaenopeptin490

including ferintoic acid, and of microginin. One BGC only predicted in one strain is491

involved in synthesis of puwainaphycin.12 The numbers indicate the unknown BGCs492

detectedinthegenome;theoriginofeachstrainisindicatedinparenthesis.493

Figure 6. Proposed AGD, MGA and MGD biosynthetic pathways. Top line; AGD494

biosynthesisroute:Hphpawhichislinkedtothefree-standingPCPAgdBistransferred495

to AgdE and condensed with the dipeptide, which is derived from AgdK and E. The496

thioester-tetheredintermediateismethylatedbyaradicalSAMenzyme(AgdC)followed497

by decarboxylation and released from the enzyme. The resulting molecule is further498

modifiedbysulfationandfarnesylation.Middleline:MGA(6and7)biosynthesisroute,499

almostthesamepathwayasAGDbiosynthesis,butonlyAgdEisusedandtheα-amino500

groupofArgispermethylatedbyAgdIorM.Bottomline;MGD(4and5)biosynthesis501

route,almostthesamepathwayasMGAs,butusingHphpolastheintermediateinstead502

ofHphpa.TheenzymeAgdKforwhichanaturalmutantwasidentifiedinthecourseof503

thisstudyishighlightedinred.504

505

TABLE506

Table 1. Proposed function of proteins encoded in the AGD gene cluster and flanking507

ORFs inMicrocystis aeruginosa NIES-98. The strand position and the size of gene in508

amino acids are indicated with the corresponding Best BLASTp hit and identity, all509

foundinMicrocystisgenomes.NRPSdomains:Cforcondensation,Aforadenylationwith510

substrateprediction,PCPforpeptidylcarrierprotein,andnMTforN-methyltransferase.511

Page 18: Unique Biosynthetic Pathway in Bloom-Forming

17

512

ASSOCIATEDCONTENT513

SupportingInformation514

ThesupportingInformationisavailablefreeofchargeviatheACS Publications website 515

at DOI 516

MethodsofpreparationoftheextractsandofrecoveringcompleteAGDcluster,HLPC-517

MSmeasurementandmolecularnetworking;foursupportingtablesand18supporting518

figures on the detailed molecular network and the spectra of the new structures, as519

indicatedinthetext(PDF).520

AccessionCodes521

New sequence data are archived in GenBank under accession numbers MH049490 to 522

MH049500. 523

524

AUTHORINFORMATION525

CorrespondingAuthor526

* email: [email protected] 527

* email: [email protected] 528

ORCID529

Muriel Gugger: 0000-0001-6728-1976 530

Enora Briand: 0000-0001-8996-0072 531

Elke Dittmann: 0000-0002-7549-7918 532

Christian Hertweck: 0000-0002-0367-337X 533

Douglas Gatte Pichi: 0000-0001-9164-8969 534

Thibault Scalvenzi: 0000-0002-5760-1574 535

536

Notes 537

The author declare no competing financial interest 538

539

ACKNOWLEDGMENTS540

CP was supported by the Ile-de-France ARDoC Grant for PhD. Funding was provided by the 541

Institut Pasteur. ED was supported by a grant of the German Research Foundation (DFG, 542

Di910/10-1). Financial support by the DFG-funded Collaborative Research Centre 543

Page 19: Unique Biosynthetic Pathway in Bloom-Forming

18

ChemBioSys (SFB 1127) to ED and CH is gratefully acknowledged. We thank A. Perner and 544

H. Heinecke for Thermo Exactive LC-MS measurements. All PCC cyanobacteria of this study 545

are available from the Institut Pasteur. All data are contained in the main text and 546

supplementary materials. 547

Page 20: Unique Biosynthetic Pathway in Bloom-Forming

Table1.ProposedfunctionofproteinsencodedintheAGDgeneclusterandflankingORFsinMicrocystisaeruginosaNIES-98.Thestrandpositionandthesizeofgeneinaminoacidsareindicated with the corresponding Best BLASTp hit and identity, all found inMicrocystisgenomes.NRPSdomains:C for condensation,A for adenylationwith substrateprediction,PCPforpeptidylcarrierprotein,andnMTforN-methyltransferase.Gene(Strand)

Size(aa)

Proposedfunction(NRPSwithsubstratprediction) BestBLASTphit(Accessionnumber) Identity

(%)

Orf(-) 160 Conservedproteinofunknownfunction HypotheticalproteinO53_4696(ELP52967.1) 100

agdP(+) 238 CarbohydratesulfotransferaseII HypotheticalproteinO53_4419(ELP52967.1) 100

agdQ(+) 589 Thiaminepyrophosphateenzyme Acetolactatesynthaselargesubunit(EPF22845.1) 100

agdR(+) 296 SulfotransferaseI Sulfotransferasedomainprotein(ELP52945.1) 100

agdS(+) 271 Conservedproteinofunknownfunction HypotheticalproteinO53_4433(ELP52708.1) 95

agdT(+) 274 Conservedproteinofunknownfunction Conservedhypotheticalprotein(CCH98454.1) 99

agdS’(+) 268 Conservedproteinofunknownfunction HypotheticalproteinMAESPC_01420(EPF22841.1) 99

agdT’(+) 270 Conservedproteinofunknownfunction

PutativeuncharacterizedORF3domainprotein(ELP52673.1) 99

agdU(+) 405 Thioesterreductase PolyketidesynthasehetM(CCI12982.1) 98agdE(-) 1093 NRPS(AArg,/Lys/Orn-PCP-C) LineargramicidinsynthasesubunitD(EPF22838.1) 98agdD(-) 441 SulfotransferaseIII ZincchelationproteinSecC(WP_069474152.1) 100

agdC(-) 438 RadicalSAMRadicalSAMsuperfamilyprotein(ELP52520.1)putativeoxygen-independentcoproporphyrinogenIIIsynthase

100

agdB(-) 94 Peptidylcarrierprotein Phosphopantetheineattachmentsitefamilyprotein(ELP52599.1) 100

agdA(-) 473 AMP-dependentsynthetaseandligase AMP-dependentsynthetase(WP_069474153.1) 100

agdF(+) 196 Permease Conservedhypotheticalprotein(CCI31673.1) 97agdG(+) 852 Sulfatase Sulfatasefamilyprotein(ELP52537.1) 99

agdH(+) 191 4-Hydroxybenzoatesynthetase HypotheticalproteinO53_4514(ELP52787.1) 100

agdI(+) 342 O-Methyltransferase Methyltransferase(WP_069474155.1) 100

agdJ(+) 231 Isoprenyl-transferase Di-trans,poly-cis-decaprenylcistransferase(ELP52925.1) 99

agdK(+) 1588 NRPS(AArg-nMT-PCP-C) ChondramidesynthasecmdD(EPF22828.1) 99agdL(+) 455 Aminotransferase UncharacterizedaminotransferaseyodT(CCI31679.1) 99Orf(+) 71 Hypotheticalprotein Hypotheticalprotein(WP_069474158.1) 100agdM(+) 346 O-Methyltransferase O-Methyltransferasefamilyprotein(ELP53140.1) 99

agdN(+) 401 Thioesterreductase Thioesterreductasedomainprotein(ELP52682.1) 99

agdO(+) 671 ABCtransporter ABCTransportertransmembraneregion2familyprotein(ELP52531.1) 99

Orf(+) 671 Conservedproteinofunknownfunction HypotheticalproteinO53_4447(ELP52722.1) 99

Orf(+) 156 Conservedproteinofunknownfunction HypotheticalproteinO53_4299(ELP52574.1) 100

Orf(+) 554 GUN4-likefamilyprotein Hypotheticalprotein(WP_069474163.1) 100

Page 21: Unique Biosynthetic Pathway in Bloom-Forming

Figure 1. Aeruginoguanidines and the corresponding biosynthetic gene cluster. (A) Thestructure of aeruginoguanidines (AGDs), 1; AGD-98A, 2; AGD-98B, 3; AGD-98C; (B) AGDbiosynthetic gene cluster ofMicrocystis aeruginosa NIES-98 and its variation in 13 otherMicrocystisgenomessharing94to98%ofsimilarity.Thegenesarecolor-codedwithorangefor carbohydrate sulfotransferase, sulfotransferase and sulfatase; black for NRPS andthioesterase; green formethyl-, isoprenyl- and aminotransferase; blue for permease; greyfor proteins with putative and unknown function. The dashed arrows under the clusterindicatethethreeoperons.Theblue line indicatesthespanoftheMIC2clusterpreviouslydescribed.9

Page 22: Unique Biosynthetic Pathway in Bloom-Forming

Figure2.MolecularnetworkofAGD(A)andofMGDwithMGA(B).Characterizedstructuralvariantsareindicatedasred-colorednodesandnewcongenerscharactizedinthisstudyarehighlightedingreen.DiversityanddistributionofAGDandMGDvariantsforeachstrain.DetailsofMN(+),MN(–),andtheAGDandMGDnetworksarepresentedinFiguresS1-S3.

Page 23: Unique Biosynthetic Pathway in Bloom-Forming

Figure 3. Microguanidine and short aeruginoguanidine variants detected in strainscontainingtheAGDbiosyntheticgenecluster.TheMGDdepsipeptidescontainester-bonds,while the peptidic sAGDs contain amide-bonds in their structures. Details of the high-resolutionMSdataofsAGDandMGDarepresentedinTableS3.

Page 24: Unique Biosynthetic Pathway in Bloom-Forming

Figure 4. Proposed Hphpa and Hphpol biosynthesis. 3-hydroxy-m-hydroxymethyl-p-hydroxyphenylpyruvate is synthesized as a precursor ofbothHphpaandHphpolviaseveralstepsfromisochorismate.Theresultingintermediateisfurthertransformedbyeitheranaminotransferase(AgdL) or a reductase (AgdN or U) to yield Hphpa or Hphpol, respectively and further transferred to the free-standing PCP (AgdB) afteradenylationbyAgdA.TheAgdLenzymeforwhichnaturalmutantswereidentifiedinthecourseofthisstudyishighlightedinred.

Page 25: Unique Biosynthetic Pathway in Bloom-Forming

Figure 5. Distribution of the known and unknownBGCs in the frameof the phylogeny of the 23Microcystis genomes based onmaximumlikelihoodtreebuiltupon586markergenes.TheknownBGCsare involvedinthesynthesisofaeruginoguanidine(AGD)andmicroguanidine(MGD)and/ormicroguanidineamide(MGA)only,ofmicrocystin,ofcyanobactinsincludingaeruginosamide,ofaeruginosin,ofmicroviridin,ofcyanopeptolin,ofanabaenopeptinincludingferintoicacid,andofmicroginin.OneBGConlypredictedinonestrainisinvolvedinsynthesisofpuwainaphycin.12Thenumbers indicatetheunknownBGCsdetected inthegenome;theabbreviations inparenthesisafterthenameofthestrainindicateitsorigin(TableS2).

Page 26: Unique Biosynthetic Pathway in Bloom-Forming

Figure6.ProposedAGD,MGAandMGDbiosyntheticpathways.Topline;AGDbiosynthesisroute:Hphpawhichislinkedtothefree-standingPCPAgdBistransferredtoAgdEandcondensedwiththedipeptide,whichisderivedfromAgdKandE.Thethioester-tetheredintermediateismethylatedbya radical SAMenzyme (AgdC) followedbydecarboxylationand released from theenzyme. The resultingmolecule is furthermodifiedbysulfationandfarnesylation.Middle line:MGAs(6and7)biosynthesisroute,almostthesamepathwayasAGDbiosynthesis,butonlyAgdEisusedandtheα-aminogroupofArg ispermethylatedbyAgdIorM.Bottomline;MGD(4and5)biosynthesisroute,almostthesamepathwayassAGDs,butusingHphpolastheintermediateinsteadofHphpa.TheenzymeAgdKforwhichanaturalmutantwasidentifiedinthecourseofthisstudyishighlightedinred.

Page 27: Unique Biosynthetic Pathway in Bloom-Forming

1

Auniquebiosyntheticpathwayinbloom-formingcyanobacteriajointlyassembles

cytotoxicaeruginoguanidinesandmicroguanidines

ClairePancrace,KeishiIshida,EnoraBriand,DouglasGattePichi,AnnikaR.Weiz,Arthur

Guljamow, Thibault Scalvenzi, Nathalie Sassoon, Christian Hertweck, Elke Dittmann,

MurielGugger

SupplementalInformation

Additionalmaterialsandmethods

Microcystisculturesfornucleicacidextraction,andchemicalanalysis.Nucleicacid

extraction of cyanobacterial cells to obtain DNA were carried out as previously

described1.ForHPLC,MSandMS/MSanalyses,cellpelletswerecentrifuged,rinsedwith

sterilewater,flashfrozenandlyophilizeduntilfurtherprocessing.

PCR screening for AGD cluster. Primer pairs targeting putative hydroxybenzoate

synthaseandprenyltransferaseofMIC2geneclusterweredesignedtoamplifya563b-

longampliconwith1F_agdH/1R_agdH,anda686b-longampliconwith2F_agdJ/2R_agdJ

(Table S1). These two genes are detected concomitantly only in Microcystis strain

containing this pathway. Screening of 30 Microcystis strains available at the PCC

(http://cyanobacteria.web.pasteur.fr/)was performed by PCR using LA Taq TAKARA.

PCRprogramwasasfollow:initialdenaturation2minat95°C,35cyclesconsistingof30

sat95°C,30sat60°Cforprimerpair1F_agdH/1R_agdHand58°Cfor2F_agdJ/2R_agdJ,

and1minat72°C,followedbyafinalelongationstep10minat95°C.Ampliconswere

visualizedunderUVlightafterelectrophoresison1.5%agarosegel.

Genomesequencing.ForthestrainssuspectedtocarrytheAgdgenecluster,thewhole

genomesequencingwascarriedoutusingtheNexteraXTDNAsamplepreparationkit

(Illumina) for 2x150 bps paired-ends reads (insert size ~300 bps). All sequenced

paired-ends reads were clipped and trimmed with AlienTrimmer2 (v. 0.4.0), and

subjected to a sequencing error correction with Musket3 (v. 1.1) as well as a digital

normalization procedurewith khmer4 (v. 1.3). For each sample, remaining processed

readswereassembledwithSPAdes5(v.3.7.0).

Page 28: Unique Biosynthetic Pathway in Bloom-Forming

2

Phylogeneticanalysis.Thespeciestreegeneratedbyaconcatenationof586conserved

proteins was performed as follow: Ambiguous and saturated regions were removed

with BMGE v1.1242 (with the gap rate parameter set to 0.5). AMaximum-Likelihood

phylogenetictreewasgeneratedwiththealignmentusingRAxMLv7.4.343withtheLG

aminoacidsubstitutionmodel.ThegenomesofCyanothecesp.PCC7422andPCC7822

wereusedasoutgroupinordertorootthephylogenetictreewiththeclosestrelativesof

theMicrocystisinacyanobacterialphylumwidephylogeny6.

HPLC-MSmeasurement. LC-MS/MSmeasurements were carried out by Bruker HCT

Ultra ion trap mass spectrometry (Bruker Daltonics) coupled with an Agilent

Technologies 1100 series liquid chromatogram system (Agilent) consisting of binary

pumpG1312A,twodegassersG1322A/G4225,well-platesamplerG1367A,diodearray

detector G1315A, and column thermostat G1316A. The ionization mode was electro-

spray(ESI),polaritypositiveandnegativeseparately,massrangemodeultra-scan,and

nitrogen was used as a drying and nebulizer gas. The following parameters were

applied: nebulizer 70psi, dry gas 12 L/min, dry temperature 365 °C, scan rangem/z

300−2000, No-of precursor ions 2. Ten µL of samples were subjected to a reversed-

phase HPLC column Symmetry Shield RP18 (Waters, 3.5 µm, 4.6 × 100mm) using a

gradient system; solventA;water containing0.1% formicacid, solventB; acetonitrile,

10%Bfor10minto99%Bin25minandkept99%Bfor4min,to10%Bin1min.

TheHR-LCMSmeasurementswereperformedbyHPLC-HRMSseriesofThermoAccela

(LC)andThermoExactive(HRMS),anESIsourceoperating inbothpolaritymodeand

anorbitrapanalyzer(ThermoFisherScientific).FiveµLofsamplesweresubjectedtoa

reversed-phase HPLC column Betasil C18 (Waters, 3.0 µm, 2.1 × 150 mm) using a

gradient system; solventA;water containing0.1% formicacid, solventB; acetonitrile,

10%Bfor2minto99.5%Bin20minandkept99.5%Bfor7min,to10%Bin1min.

Molecularnetworking.Twomolecularnetworks(MNs)wereperformed,onewithLC-

MS/MS data in positive mode (MN(+)) and the second one with negative mode data

(MN(–)).ThefollowingstepsweredoneforbothMNs.LC-MS/MSdatafromMicrocystis

strains and AGD A, B and C standards were converted to mzXML format using

MSConvert, part of the ProteoWizard package7 and were subjected to the molecular

Page 29: Unique Biosynthetic Pathway in Bloom-Forming

3

networkingworkflowofGlobalNaturalProductsSocialMolecularNetworkingwebsite8

(GNPSathttp://gnps.ucsd.edu)usingtheGroupMappingfeature.Theinputdatawere

searched against annotated reference spectra of the MS2 library within GNPS.

Computationally, the algorithms compare MS2 spectra by their similarity and assign

similarity scores9. For the networks presented in this paper, the parent mass peak

tolerancewassetto2Daandtheiontoleranceformassfragmentswassetto0.95Da.

Pairsofconsensusspectrawerealignedifbothspectrafellwithinthetop10alignments

foreachoftherespectivespectra,thecosineoftheirpeakmatchscoreswas≥0.7and

the minimum matched peaks was 6. The maximum size of connected components

allowedinthenetworkwas100andtheminimumnumberofspectratoformacluster

was 2. For visualization, the created molecular networks were imported into the

program Cytoscape10 2.8.3. Each nodewas labeledwith their respective parentmass.

Theedgesbetweennodesindicatedthelevelofsimilaritybetweennodes,withthicker

lines indicatinghighersimilarity.Nodescreatedbysolventbackgroundwereremoved

from the network. Each node that corresponded to detection of unclear or trace ions

potentiallyrelated toAGDandMGDclusterofMNwasconfirmedbyThermoExactive

HR-HPLCandfurthervalidatedrunningafreshindependentextractionthroughBruker

LC-MS/MS.

Extractionof cyanobacterial cellsand isolationofMGDAL772(4)andshortAGD

(6).LyophilizedcellsofM.aeruginosaPCC9624(132mg),PCC9804(507,400,100,355

mg),PCC9805(71mg),PCC9806(34mg),PCC9810(79mg),PCC9811(200,40,238

mg), PCC 10108 (191mg)were extractedwith 80% aqueousmethanol (v/v, 40mL)

using a sonicator (SonoplusMS73, Bandelin, 30% power, 5 cycles for 2min at room

temperature),respectively.Eachextractwascentrifugedat8,000×gfor15minat15°C.

The residues were further extracted with 80% aqueous methanol (v/v, 40 mL),

respectively,astheabove-mentionedprocedure.Theextractsweredirectlysubjectedto

solidphaseextractionChromabondC18ec(1000mg,Macherey-Nagel)andelutedwith

80%aqueousmethanol(v/v,30mL),respectively.Eachoftheflow-throughandeluted

fractions were combined and concentrated under a reduced pressure. The resulting

residuewas dissolved inN,N-dimethylformamide and filtered. This crude extractwas

subjectedtoreversed-phaseHPLC(PhenomenexfusionRP,particlesize5µm,poresize

80Å,21.2×250mm,Phenomenex)usingagradientsystem:solventA,watercontaining

Page 30: Unique Biosynthetic Pathway in Bloom-Forming

4

0.1%trifluoroaceticacid(TFA),solventB,83%aqueousacetonitrile(v/v),20%Bfor10

min,to100%Bin30min,ataflowrate12mlmin-1.Obtainedfractionscontaining4and

6were subjected to reversed-phaseHPLC (Phenomenex fusionRP,particle size5µm,

pore size80Å, 10×250mm,Phenomenex)using a gradient system: solventA,water

containing0.1%TFA, solventB, 83%aqueous acetonitrile (v/v), 10%B for 10min, to

30%Bin10minandkeptfor30min,ataflowrate6mlmin-1,respectively.Themain

fractionscontaining4and6weresubjectedtoreversed-phaseHPLC(PhenomenexLuna

C18,particlesize10µm,poresize100Å,4.6×250mm,Phenomenex)usingagradient

system:solventA,watercontaining0.1%formicacid,solventB,acetonitrile,0.5%Bfor2

min,to99.5%Bin20min,ataflowrate1mlmin-1toyieldcrude4and6,respectively.

These crudes 4 and 6 were further subjected to reversed-phase HPLC (Nucleodur

sphinx,particlesize5µm,poresize100Å,4.6×250mm,Phenomenex)usingagradient

system:solventA,watercontaining0.1%TFA,solventB,acetonitrile,5%Bfor15min,to

25%Bin5min,tokeep25min,to99%Bin5min)ataflowrate1mlmin-1toyield4(ca.

300 µg) and 6 (ca. 500 µg), respectively. NMR spectra of obtained peptides were

measured on Bruker Avance 600 MHz spectrometers with cryo probe in DMSO-d6.

Spectrawerereferencedtotheresidualsolventpeak.

Page 31: Unique Biosynthetic Pathway in Bloom-Forming

5

Table S1. Primers used in this study. The list of primer pairs are indicated on the

genetic locus schemebelow,withprimer in redused todetect theAGD locus, in blue

primertoclosegapsingenomicdata.

Name Sequence5'-3' Expectedampliconsize1F_agdH CCAGCGAAACCAGCGAATCG 5631R_agdH GACGAAATAACTCTCAGGAAATT2F_agdJ ACTAACCAACATCTCTACTAAAC 6862R_agdJ TTTTCCAAAGCGACGCTC3F_agdU TAACAGAGCTATCTATCTCCTGTC

2183R_agdE TAACCGAGATTTCATGCAGATA 3F_agdK GTTCAACAGGAGATGCTTGCTG 1500-1662/3725a3R_agdM ATAATCGAGATGTGGAAGGCAT4F_agdE ATTCTCCTCAATTGGCTGTAAT

13444R_agdD ACAGTTTAGCTCAGGTCCCACT 5F_agdP AACATCGTGATTATCGAGAATA 7065R_agdQ TCAGCATAAGCTGAGGCTAATC6F_agdR TTGTCAACCATTATGTCAAGAG 1858/3616b6R_agdU GTTGAGTCACAGGTTTAGTCAT7F_agdG ACCGGTAAGGGCAGTAATGGCA 22767R_agdH TGGAGTGTGCTTAACTCCGAA

a.ampliconsizeinPCC9810,inPCC9717andinPCC9806b.Primerpair6istargetinggeneduplication.

Page 32: Unique Biosynthetic Pathway in Bloom-Forming

6

TableS2.Microcystisstrainsorgenomesstudied.19strainswereculturedformetabolomicsinvestigations.

a.Genomeonly

Microcystis Origin Genomeaccession Refs Biomassanalyzed

PCC7806 TheNetherlands,1972 AM778843–958 11 +PCC7941 Ontario,Canada,1954 CAIK00000000 1 +PCC9432 Canada,1954 CAIH00000000 1 +PCC9443 CentralAfricanRepublic,1994 CAIJ00000000 1 +PCC9624 Seine,France,1996 Thisstudy +PCC9701 Guerlesquin,France,1996 CAIQ00000000 1 +PCC9717 Rochereau,France,1996 CAII00000000 1 +PCC9804 Camberra,Australia,1985 Thisstudy +PCC9805 Camberra,Australia,1985 Thisstudy +PCC9806 Oskosh,USA,1975 CAIL00000000 1 +PCC9807 Pretoria,SouthAfrica,1973 CAIM00000000 1 +

PCC9808 NewSouthWales,Australia,1972 CAIN00000000 1 +

PCC9809 Wisconsin,USA,1982 CAIO00000000 1 +PCC9810 Alabama,USA,1982 Thisstudy +PCC9811 Wisconsin,USA,1982 Thisstudy +PCC10613 Orsonville,France,2006 Thisstudy +

4A3 Wuhan,China Thisstudy CACIAM03a Tucuruíreservoir,Pará,Brazil, MCIH00000000 12

T1-4 Bangkok,Thaïland CAIP00000000 1 +

NIES-98 LakeKasumigauraIbaraki,Japan,1982 MDZH00000000 13 +

NIES-843 LakeKasumigauraIbaraki,Japan,1997 AP009552.1 14 +

SPC777aBillingsreservoir,SaoPaulo,Brazil ASZQ00000000 15

TAIHU98a LakeTaihu,China,1997 ANKQ00000000.1 16

Page 33: Unique Biosynthetic Pathway in Bloom-Forming

7

TableS3.HighresolutionMSdataofmicroguanidineAL772anditsnewcongenersobservedbyThermoExactive(OrbiTrap)LCMSMicroguanidine [M-H]-found [M-H]-calculated Elementcomposition

AL772(4) 771.2261 771.2245 C29H47O14N4S35 703.1654 703.1619 C24H39O14N4S36 770.2430 770.2405 C29H48O13N5S37 786.2377 786.2354 C29H48O14N5S3

TableS4.1Hand13CNMRdataofMGA-771(6)andMGDAL772(4)inDMSO-d6 MGA-771(6) MGDAL772(4)Position δC(mult) δH(J=Hz) δC(mult) δH(J=Hz)1 125.1(d) 7.35(brs) 125.7(d) 7.38(brs)2 129.5(s) 129.7(s) 3 149.1(s) 149.3(s) 4 120.1(d) 7.21(d8.5) 120.4(d) 7.24(d8.6)5 125.3(d) 7.13(dd8.5,2.0) 126.0(d) 7.16(m)6 135.1(s) 133.5(s) 7 78.3(d) 5.11(d4.3) 77.4(d) 5.16(m)8 49.8(d) 4.23(m) 75.3(d) 5.21(m)9 17.9(q) 1.06(d6.6) 15.6(q) 1.17(d6.4)10 62.7(t) 4.78(d13.6),4.88(d13.6) 62.8(t) 4.84(d14.0),4.92(d14.0)11 8.48(d9.4) - -12 nd 166.3(s) 13 72.5(d) 3.93(m) 73.2(d) 4.11(dd11.5,3.4)14 23.1(d) 1.56(m),1.73(m) 23.0(t) 1.86(m),1.96(m)15 22.4(d) 1.43(m),1.78(m) 23.2(t) 1.36(m),1.50(m)16 47.0(t) 3.22(m) 46.9(t) 3.24(m)18 nd 155.6(s) 19 nd nd20 nd nd22,22’,22’’ 51.4(q) 2.86(s) 51.5(q) 3.03(s)23 45.6(d) 3.88(m) 46.0(t) 3.90(m)24 118.8(d) 5.06(m 119.0(d) 5.08(m)25 140.4(d) 140.3(s) 26 31.6(t) 2.04(m) 31.5(t) 2.05(m)27 26.1(t) 2.03(m) 25.9(t) 1.41(m),2.03(m)28 123.4(d) 5.08(m) 123.7(d) 5.09(m)29 131.4(s) 131.4(s) 30 17.8(q) 1.57(s) 17.6(q) 1.57(s)31 23.1(q) 1.70(s) 23.0(q) 1.70(s)32 25.4(q) 1.64(s) 25.5(q) 1.64(s)nd: not determined.

Page 34: Unique Biosynthetic Pathway in Bloom-Forming

8

FigureS1.Molecularnetworkderivedfrompositivemode(A)andnegativemode

(B)massspectrometricanalysisofextractsof the19Microcystis strainsand the

threeAGDstandards.RednodesindicateconsensusMS/MSspectratocompoundsina

MS/MS library of known compounds. The respective name of identified class of

compounds or molecule is given next to the black square. MCs: microcystins, Cya:

cyanopeptolin, Fer: ferintoic acid, Aeg: aeruginosamide, AGD: aeruginoguanidine, and

MGD:microguanidine.

Page 35: Unique Biosynthetic Pathway in Bloom-Forming

9

FigureS1.A

Page 36: Unique Biosynthetic Pathway in Bloom-Forming

10

FigureS1.B

Page 37: Unique Biosynthetic Pathway in Bloom-Forming

11

FigureS2.Molecularnetworkofaeruginoguanidinemolecularfamilyandtableof

detectedanaloguesinAGDstandardsandMicrocystisPCCstrains.

Page 38: Unique Biosynthetic Pathway in Bloom-Forming

12

Figure S3. Molecular network of microguanidine molecular family and table of

detectedanaloguesinAGDstandardsandMicrocystisPCCstrains.

Page 39: Unique Biosynthetic Pathway in Bloom-Forming

13

FigureS4.NegativeMS/MSspectrumobtainedbyOrbiTrapofmicroguanidineAL772(A),ofthenewMGD5(B),andMGAs6(C)and7(D).

Page 40: Unique Biosynthetic Pathway in Bloom-Forming

14

FigureS5.1HNMRSpectralcomparisonofAGDandMGDrelatedcompounds.The

numbersonsignalsindicatethepositionineachcompound.MGA-771(6)ishighlighted

asabluelinewiththreechemicalshiftsindicatedbyrednumbers.

FigureS6.1HNMRspectrumofAGD98-A(1)inDMSO-d6at300K.

AGD 98-A (1)

AGD 98-B (2)

AGD 98-C (3)

MGD AL772(4)

MGA-771(6)

30 32 31

9

22 22' 22'' 10 24 7 8

5 4 1 28 23 13

14 27 26

5

16

15

1 4 10 11 (NH) 15

32 9 30 31 22

22' 22''

14 16 27 24

23 7 28 13 8

Page 41: Unique Biosynthetic Pathway in Bloom-Forming

15

FigureS7.1HNMRspectrumofAGD98-B(2)inDMSO-d6at300K.

FigureS8.1HNMRspectrumofAGD98-C(3)inDMSO-d6at300K.

Page 42: Unique Biosynthetic Pathway in Bloom-Forming

16

FigureS9.1HNMRspectrumofMGDAL772(4)inDMSO-d6at300K.

FigureS10.13CNMRspectrumofMGDAL772(4)inDMSO-d6at300K.

Page 43: Unique Biosynthetic Pathway in Bloom-Forming

17

FigureS11.1H-1HCOSYspectrumofMGDAL772(4)inDMSO-d6at300K.

FigureS12.HSQCspectrumofMGDAL772(4)inDMSO-d6at300K.

Page 44: Unique Biosynthetic Pathway in Bloom-Forming

18

FigureS13.HMBCspectrumofMGDAL772(4)inDMSO-d6at300K.

FigureS14.1HNMRofMGA-771(6)inDMSO-d6at300K.

Page 45: Unique Biosynthetic Pathway in Bloom-Forming

19

FigureS15.1H-1HCOSYspectrumofMGA-771(6)inDMSO-d6at300K.

FigureS16.HSQCspectrumofMGA-771(6)inDMSO-d6at300K.

Page 46: Unique Biosynthetic Pathway in Bloom-Forming

20

FigureS17.HMBCspectrumofMGA-771(6)inDMSO-d6at300K.

FigureS18.Observed1H-1HCOSY(boldline)andHMBC(arrow)correlations.

Page 47: Unique Biosynthetic Pathway in Bloom-Forming

21

References1.Humbert,J.F.,Barbe,V.,Latifi,A.,Gugger,M.,Calteau,A.,Coursin,T.,Lajus,A.,Castelli,

V.,Oztas,S.,Samson,G.,Longin,C.,Medigue,C.,anddeMarsac,N.T.(2013)Atributeto disorder in the genome of the bloom-forming freshwater cyanobacteriumMicrocystisaeruginosa,PLoSOne8,e70747.

2.Criscuolo,A.,andBrisse,S.(2013)AlienTrimmer:Atooltoquicklyandaccuratelytrimoffmultipleshortcontaminantsequences fromhigh-throughputsequencingreads,Genomics102,500—506.

3. Liu, Y., Schroder, J., and Schmidt, B. (2013)Musket: Amultistage k-mer spectrum-basederrorcorrectorforIlluminasequencedata,Bioinformatics29,308—315.

4. Crusoe, M. R., Alameldin, H. F., Awad, S., Boucher, E., Caldwell, A., Cartwright, R.,Charbonneau,A.,Constantinides,B.,Edvenson,G.,Fay,S.,Fenton,J.,Fenzl,T.,Fish,J.,Garcia-Gutierrez,L.,Garland,P.,Gluck,J.,Gonzalez,I.,Guermond,S.,Guo,J.,Gupta,A.,Herr,J.R.,Howe,A.,Hyer,A.,Harpfer,A.,Irber,L.,Kidd,R.,Lin,D.,Lippi,J.,Mansour,T., McA'Nulty, P., McDonald, E., Mizzi, J., Murray, K. D., Nahum, J. R., Nanlohy, K.,Nederbragt, A. J., Ortiz-Zuazaga, H., Ory, J., Pell, J., Pepe-Ranney, C., Russ, Z. N.,Schwarz,E.,Scott,C.,Seaman,J.,Sievert,S.,Simpson,J.,Skennerton,C.T.,Spencer,J.,Srinivasan, R., Standage, D., Stapleton, J. A., Steinman, S. R., Stein, J., Taylor, B.,Trimble,W.,Wiencko,H.L.,Wright,M.,Wyss,B.,Zhang,Q.,Zyme,E.,andBrown,C.T.(2015) The khmer software package: enabling efficient nucleotide sequenceanalysis,F1000Research4,900.

5.Bankevich,A.,Nurk,S.,Antipov,D.,Gurevich,A.A.,Dvorkin,M.,Kulikov,A.S.,Lesin,V.M.,Nikolenko,S.I.,Pham,S.,Prjibelski,A.D.,Pyshkin,A.V.,Sirotkin,A.V.,Vyahhi,N.,Tesler, G., Alekseyev, M. A., and Pevzner, P. A. (2012) SPAdes: a new genomeassemblyalgorithmanditsapplicationstosingle-cellsequencing,J.Comput.Biol.19,455—477.

6. Shih, P. M., Wu, D., Latifi, A., Axen, S. D., Fewer, D. P., Talla, E., Calteau, A., Cai, F.,TandeaudeMarsac,N.,Rippka,R.,Herdman,M.,Sivonen,K.,Coursin,T.,Laurent,T.,Goodwin,L.,Nolan,M.,Davenport,K.W.,Han,C.S.,Rubin,E.M.,Eisen,J.A.,Woyke,T., Gugger, M., and Kerfeld, C. A. (2013) Improving the coverage of thecyanobacterialphylumusingdiversity-drivengenome sequencing,Proc.NatlAcad.Sci.U.S.A.110,1053—1058.

7.Kessner,D., Chambers,M.,Burke,R.,Agus,D., andMallick,P. (2008)ProteoWizard:open source software for rapid proteomics tools development,Bioinformatics 24,2534—2536.

8.Wang,M.X.,andCarver, J. J.,andPhelan,V.V.,andSanchez,L.M.,andGarg,N.,andPeng,Y.,andNguyen,D.D.,andWatrous,J.,andKapono,C.A.,andLuzzatto-Knaan,T.,andPorto,C.,andBouslimani,A.,andMelnik,A.V.,andMeehan,M.J.,andLiu,W.T., and Criisemann, M., and Boudreau, P. D., and Esquenazi, E., and Sandoval-Calderon,M.,andKersten,R.D.,andPace,L.A.,andQuinn,R.A.,andDuncan,K.R.,andHsu,C.C.,andFloros,D.J.,andGavilan,R.G.,andKleigrewe,K.,andNorthen,T.,andDutton,R.J.,andParrot,D.,andCarlson,E.E.,andAigle,B.,andMichelsen,C.F.,andJelsbak,L.,andSohlenkamp,C.,andPevzner,P.,andEdlund,A.,andMcLean,J.,andPiel, J.,andMurphy,B.T.,andGerwick,L.,andLiaw,C.C.,andYang,Y.L.,andHumpf,H.U.,andMaansson,M.,andKeyzers,R.A.,andSims,A.C.,andJohnson,A.R.,andSidebottom,A.M.,andSedio,B.E., andKlitgaard,A.,andLarson,C.B.,andBoya,C.A.,andTorres-Mendoza,D.,andGonzalez,D.J.,andSilva,D.B.,andMarques,L. M., and Demarque, D. P., and Pociute, E., and O'Neill, E. C., and Briand, E., and

Page 48: Unique Biosynthetic Pathway in Bloom-Forming

22

Helfrich,E.J.N.,andGranatosky,E.A.,andGlukhov,E.,andRyffel,F.,andHouson,H.,andMohimani,H.,andKharbush,J.J.,andZeng,Y.,andVorholt,J.A.,andKurita,K.L.,andCharusanti,P.,andMcPhail,K.L.,andNielsen,K.F.,andVuong,L.,andElfeki,M.,andTraxler,M.F.,andEngene,N.,andKoyama,N.,andVining,O.B.,andBaric,R.,andSilva,R.R.,andMascuch,S.J.,andTomasi,S.,andJenkins,S.,andMacherla,V.,andHoffman,T.,andAgarwal,V.,andWilliams,P.G.,andDai,J.Q.,andNeupane,R.,andGurr,J.,andRodriguez,A.M.C.,andLamsa,A.,andZhang,C.,andDorrestein,K.,andDuggan,B.M.,andAlmaliti,J.,andAllard,P.M.,andPhapale,P.,andNothias,L.F., andAlexandrovr, T., and Litaudon,M., andWolfender, J. L., andKyle, J. E., andMetz, T. O., and Peryea, T., andNguyen, D. T., and VanLeer, D., and Shinn, P., andJadhav,A.,andMuller,R.,andWaters,K.M.,andShi,W.Y.,andLiu,X.T.,andZhang,L. X., and Knight, R., and Jensen, P. R., and Palsson, B. O., and Pogliano, K., andLinington,R.G.,andGutierrez,M.,andLopes,N.P.,andGerwick,W.H.,andMoore,B.S.,andDorrestein,P.C.,andBandeira,N.(2016)SharingandcommunitycurationofmassspectrometrydatawithGlobalNaturalProductsSocialMolecularNetworking,Nat.Biotechnol.34,828—837.

9.Watrous, J.,Roach,P.,Alexandrov,T.,Heath,B. S.,Yang, J.Y.,Kersten,R.D., vanderVoort,M.,Pogliano,K.,Gross,H.,Raaijmakers,J.M.,Moore,B.S.,Laskin,J.,Bandeira,N., and Dorrestein, P. C. (2012) Mass spectral molecular networking of livingmicrobialcolonies,Proc.NatlAcad.Sci.U.S.A.109,E1743—1752.

10.Smoot,M.E.,Ono,K.,Ruscheinski,J.,Wang,P.L.,andIdeker,T.(2011)Cytoscape2.8:New features for data integration and network visualization, Bioinformatics 27,431—432.

11.Frangeul,L.,Quillardet,P.,Castets,A.,Humbert,J.,Matthijs,H.,Cortez,D.,Tolonen,A.,Zhang,C.,Gribaldo,S.,Kehr, J.,Zilliges,Y.,Ziemert,N.,Becker,S.,Talla,E.,Latifi,A.,Billault, A., Lepelletier, A., Dittmann, E., Bouchier, C., and deMarsac, N. T. (2008)Highly plastic genome of Microcystis aeruginosa PCC 7806, a ubiquitous toxicfreshwatercyanobacterium,BMCgenomics9,274.

12.Castro,W.O.,Lima,A.R.,Moraes,P.H.,Siqueira,A.,Aguiar,D.,Baraúna,A.,Martins,L.,Fuzii,H.,deLima,C.,Vianez-Júnior,J.,Nunes,M.,Dall'Agnol,L.,andGonçalves,E.(2016) Draft genome sequence of Microcystis aeruginosa CACIAM 03, acyanobacterium isolated from an Amazonian freshwater environment, GenomeAnnounc.4,e01299.

13.Yamaguchi,H.,Suzuki,S.,Sano,T.,Tanabe,Y.,Nakajima,N.,andKawachi,M.(2016)Draft genome sequence of Microcystis aeruginosa NIES-98, a non-microcystin-producing cyanobacterium from Lake Kasumigaura, Japan, Genome Announc. 4,e01187—01116.

14.Kaneko,T.,Nakajima,N.,Okamoto,S.,Suzuki,I.,Tanabe,Y.,Tamaoki,M.,Nakamura,Y.,Kasai,F.,Watanabe,A.,Kawashima,K.,Kishida,Y.,Ono,A.,Shimizu,Y.,Takahashi,C., Minami, C., Fujishiro, T., Kohara, M., Katoh, M., Nakazaki, N., Nakayama, S.,Yamada,M.,Tabata,S.,andWatanabe,M.(2007)Completegenomicstructureofthebloom-formingtoxiccyanobacteriumMicrocystisaeruginosaNIES-843,DNARes.14,247—256.

15.Fiore,M.F.,Alvarenga,D.O.,Varani,A.M.,Hoff-Risseti,C.,Crespim,E.,Ramos,R.T.,Silva, A., Schaker, P. D., Heck, K., Rigonato, J., and Schneider, M. P. (2013) DraftgenomesequenceoftheBraziliantoxicbloom-formingcyanobacteriumMicrocystisaeruginosastrainSPC777,GenomeAnnounc.1,e00547—00513.

Page 49: Unique Biosynthetic Pathway in Bloom-Forming

23

16. Yang, C., Lin, F., Li, Q., Li, T., and Zhao, J. (2015) Comparative genomics revealsdiversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, afreshwaterbloom-formingcyanobacterium,Front.Microbiol.6,394.