unit / module namecascading of multiple board for phase-locked samplings . additionally, a trigger...

33
UM009 FMC12x User Manual r1.18 UM009 www.abaco.com - 1 - FMC122/FMC125/FMC126 User Manual Abaco Systems, USA Support Portal This document is the property of Abaco Systems and may not be copied nor communicated to a third party without the written permission of Abaco Systems. © Abaco Systems 2016

Upload: others

Post on 21-Jan-2020

0 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 1 -

FMC122/FMC125/FMC126 User Manual

Abaco Systems, USA

Support Portal

This document is the property of Abaco Systems and may not be copied nor communicated to a third party without the written permission of Abaco Systems.

© Abaco Systems 2016

Page 2: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 2 -

Revision History

Date Revision Revision

2010-04-13 Initial release 1.0

2010-09-08 Added signal description to pin out tables. 1.1

2010-09-15 Added I2C/SPI architecture description. Added monitoring device parameters.

1.2

2010-09-20 Updated block diagram 1.3

2010-10-12 Updated address 1.4

2011-03-01 Added MICTOR connector references 1.5

2011-03-09 Added coax connector type specification 1.6

2011-04-14 Added FMC connector type specification. Updated trigger input specification.

1.7

2011-08-01 Update external clock/reference input level. 1.8

2011-09-09 Added optional clock output specification. Added I2C signals to the pin-out tables.

1.9

2011-10-04 Corrected internal clock specification and clock tree diagram. Added DIP-Switch description.

1.10

2012-01-10 Updated power consumption. Updated performance numbers. Added FAN control details.

1.11

2012-10-08 Added changes between revision 1 and revision 2 boards

1.12

2013-08-17 Changed the number of channels available on FMC122

1.13

2014-03-06 Changed input power level of external reference 1.14

2014-04-07 Revised some descriptions and fixed typos. 1.15

2014-06-19 Changed pin 20 into “shell” in Table 2. HDMI connector pin out.

1.16

2015-04-30 Updated description of front panel HDMI I/O, section 4.1.3

1.17

2016-04-22 Described in section 4.2.1 that the EEPROM is write protected.

1.18

Page 3: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 3 -

Table of Contents 1 Acronyms and related documents ............................................................................. 4

1.1 Acronyms ................................................................................................................ 4 1.2 Related Documents ................................................................................................. 4

2 General description ..................................................................................................... 5 3 Installation ................................................................................................................... 7

3.1 Requirements and handling instructions .................................................................. 7 3.2 LVDS requirements ................................................................................................. 7

4 Design .......................................................................................................................... 8 4.1 Phycisal specifications ............................................................................................ 8

4.1.1 Board Dimensions ............................................................................................ 8 4.1.2 Front panel ....................................................................................................... 8 4.1.3 Front panel HDMI I/O ....................................................................................... 9

4.2 Electrical specifications ..........................................................................................10 4.2.1 EEPROM ........................................................................................................10 4.2.2 JTAG ...............................................................................................................10 4.2.3 FMC Connector ...............................................................................................10 4.2.4 Main characteristics ........................................................................................10

4.3 Analog input channels ............................................................................................12 4.4 External clock input ................................................................................................12 4.5 External trigger/sync input ......................................................................................12 4.6 Clock Tree ..............................................................................................................12 4.7 Multi-Gigabit Transceivers (optional) ......................................................................13 4.8 Power supply..........................................................................................................15 4.9 DIP-Switches..........................................................................................................17

5 Controlling the FMC12x..............................................................................................17 6 Environment ................................................................................................................20

6.1 Temperature ..........................................................................................................20 6.2 Monitoring ..............................................................................................................20 6.3 Cooling ...................................................................................................................20

6.3.1 Convection cooling ..........................................................................................20 6.3.2 Conduction cooling ..........................................................................................21

7 Safety...........................................................................................................................21 8 EMC .............................................................................................................................21 9 Warranty ......................................................................................................................21 Appendix A LPC pin-out FMC122 ..................................................................................22 Appendix B HPC pin-out FMC125/FMC122 ...................................................................24 Appendix C HPC pin-out FMC126 .................................................................................28 Appendix D CPLD Register map ...................................................................................31

Page 4: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 4 -

1 Acronyms and related documents 1.1 Acronyms

ADC Analog-to-Digital Converter DDR Double Data Rate EPROM Erasable Programmable Read-Only Memory FBGA Fineline Ball Grid Array FMC FPGA Mezzanine Card FPGA Field Programmable Gate Array JTAG Join Test Action Group LED Light Emitting Diode LVTTL Low Voltage Transistor Logic level LSB Least Significant Bit(s) LVDS Low Voltage Differential Signaling MGT Multi-Gigabit Transceiver MSB Most Significant Bit(s) PCB Printed Circuit Board PLL Phase-Locked Loop PSSR Power Supply Rejection Ratio

Table 1: Glossary

1.2 Related Documents

• FPGA Mezzanine Card (FMC) standard ANSI/VITA 57.1-2008 • Datasheet AD9517-1, E2V • Datasheet EV8AQ160, E2V • Datasheet EV10AQ190, E2V • Datasheet ADT7411 Rev B, Analog Devices • Datasheet SC18IS602B Rev 04, NXP

Page 5: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 5 -

2 General description The FMC125/FMC126 is a four channel 1.25Gsps ADC FMC daughter card. The card provides four 8-bit (FMC125) or 10-bit (FMC126) ADC channels that enable simultaneous sampling of four, two, or one channel at a maximum sample rate of 1.25Gsps, 2.5Gsps, or 5Gsps respectively. The FMC122 is a low pin count variant supporting 2 channels at 1.25Gsps or 1 channel at 2.5Gsps maximum sample rate. The sample clock can be supplied externally through a coax connection or supplied by an internal clock source (optionally locked to an external reference). The clock tree enables cascading of multiple boards for phase-locked sampling. Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically and electrically compliant to FMC standard (ANSI/VITA 57.1). The card has a high-pin count connector, front panel I/O, and can be used in a conduction-cooled environment. The design is based on E2V’s 8-bit EV8AQ160 (FMC122/FMC125) or 10-bit EV10AQ190 (FMC126) Quad 1.25Gsps ADC with DDR LVDS outputs. The analog signal inputs are available on the front panel on coax connections and have individual calibration circuits for fine-tuning of gain, offset, and phase. The FMC12x allows flexible control on clock source, sampling frequency, and calibration through serial I2C communication. Furthermore, the card is equipped with power supply and temperature monitoring and offers several power-down modes to switch off unused functions or protect the card from overheating.

A

FMC

High-pin C

ount 400-pinsLVD

S

BoardMonitoring

Clock / SyncTree

B

Board Control

I2CClock / Reference

Trigger / Sync

EEPROM

LVDS Clock [1]

MGT [4]

LVDS Trigger [1]

HD

MI LVTTL [4]

Status&

Control LVDS Sync [1]

C

D

LVDS Clock [1]

LVDS Data [10]

LVDS Clock [1]

LVDS Data [10]

LVDS Clock [1]

LVDS Data [10]

LVDS Clock [1]

LVDS Data [10]

Quad ADCEV10AQ190

CLK

SYNCLVDS Overrange [4]

Tx [5]

MIC

TOR

38-pinsM

ulti Gigabit Transceiver(optional)

MIC

TOR

38-pinsM

ulti Gigabit Transceiver(optional)

Rx [5]

Tx [5]

Rx [5]

Figure 1: FMC126 block diagram

Page 6: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 6 -

A

FMC

High-pin C

ount 400-pinsLVD

S

BoardMonitoring

Clock / SyncTree

B

Board Control

I2CClock / Reference

Trigger / Sync

EEPROM

LVDS Clock [1]

MGT [4]

LVDS Trigger [1]

HD

MI LVTTL [4]

Status&

Control LVDS Sync [1]

C

D

LVDS Clock [1]

LVDS Data [2x8]

LVDS Clock [1]

LVDS Data [2x8]

LVDS Clock [1]

LVDS Data [2x8]

LVDS Clock [1]

LVDS Data [2x8]

Quad ADCEV8AQ160

CLK

SYNCLVDS Overrange [4]

Tx [5]

MIC

TOR

38-pinsM

ulti Gigabit Transceiver(optional)

MIC

TOR

38-pinsM

ulti Gigabit Transceiver(optional)

Rx [5]

Tx [5]

Rx [5]

Figure 2: FMC125 block diagram

A

FMC

Connector

LVDS

BoardMonitoring

Clock / SyncTree

B

Board Control

I2CClock / Reference

Trigger / Sync

EEPROM

LVDS Clock [1]

MGT [1]

LVDS Trigger [1]

HD

MI

Status&

Control

C

D

LVDS Clock [1]

LVDS Data [2x8]

LVDS Clock [1]

LVDS Data [2x8]EV8AQ160

CLK

SYNC

MGT [1]

Disabled

Disabled

Figure 3: FMC122 block diagram

Page 7: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 7 -

3 Installation 3.1 Requirements and handling instructions

• The FMC12x daughter card must be installed on a carrier card compliant to the FMC standard.

• The FMC carrier card must support the high-pin count connector (400-pins) for FMC125/FMC126 and may be installed on a low-pin count connector for FMC122.

• The carrier card must support VADJ/VIO_B voltage of +2.5V (LVDS support) for FMC12X revision 1. The carrier card can support VADJ/VIO_B voltage range of 1.65V to 3.3V for FMC12X revision 2, but typically VADJ will be 1.8V or 2.5V for LVDS operation.

• Do not flex the board and prevent electrostatic discharges by observing ESD precautions when handling the card.

3.2 LVDS requirements The FMC12x features parallel DDR LVDS outputs. The FMC122/FMC125 has a 1:2 DMUX feature. In 1:2 DMUX mode, eight 8-bit LVDS busses run at a maximum of 625Mbps each. The FMC126 does not offer a DMUX mode and has four 10-bit busses running at a maximum of 1.25Gbps each. The FMC12x can output a training pattern on the LVDS outputs to enable phase alignment on the carrier card. It should be noted that successful implementation of LVDS connections running at 1.25Gbps (FMC126) highly depends on carrier board design and layout.

Page 8: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 8 -

4 Design 4.1 Phycisal specifications

4.1.1 Board Dimensions The FMC12x card complies with the FMC standard known as ANSI/VITA 57.1. The card is a single-width, conduction-cooled mezzanine module (with region 1 and front panel I/O). The front area holds connectors that might conflict with the front rib keep out area.

3V3 < 3V8

OSC

A

Analog C

Analog D

Clock Input

Trigger Input

Analog A

Analog BB

C

D

CL

TR T

T

T

T

T

T

3V8 < 12VVCXO

5V0 < 5V5

3V3 < 5V5

1V8 < 3V3

AD9517

CoolRunner

II

HDMI

GPIO 4Tx / 4Rx + 4 LVTTL

5TX/

5RX

5TX/

5RX

ADC

4mm low profile Heatsink (optional)

Figure 4 : FMC122/FMC125/FMC126 dimensions

4.1.2 Front panel There are six coax connectors available from the front panel. From top to bottom; 1st analog input (A), 2nd analog input (B), 3rd analog input (C), 4th analog input (D), clock input (CL), trigger input (TR).

Page 9: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 9 -

Figure 5: Bezel drawing

4.1.3 Front panel HDMI I/O

The 19-pins HDMI connector on the front panel (IO) holds four Multi-gigabit transceivers (two Tx pairs / two Rx pairs) and 4x LVTTL I/O (5V tolerant). Contact Abaco for other configurations.

Pin Number Signal Name Pin Number Signal Name 1 DP_M2C_P<0> SHELL GND 2 Shield 19 N.C. 3 DP_M2C_N<0> 18 N.C. 4 DP_M2C_P<1> 17 N.C. 5 Shield 16 FRONT_IO<1> 6 DP_M2C_N<1> 15 FRONT_IO<0> 7 DP_C2M_P<2> 14 FRONT_IO<3> 8 Shield 13 FRONT_IO<2> 9 DP_C2M_N<2> 12 DP_C2M_N<3> 10 DP_C2M_P<3> 11 Shield

Table 2. HDMI connector pin out

4.1.3.1 Multi-gigabit transceivers Two Tx pairs and two Rx pairs of multi-gigabit transceivers connect directly from the HDMI connector to the FMC connector. Refer to Table 2 for the pin locations on the HDMI connector. The signal names match with AV57.1:

- DP_M2C_P/N0 and DP_M2C_P/N1 are mezzanine to carrier pairs and are inputs on the HDMI connector

- DP_C2M_P/N2 and DP_C2M_P/N3 are carrier to mezzanine pairs and are outputs of the HDMI connector

Note: the DP_C2M_P/N pairs start with pair number 2 instead of 0. By default, the FMC122 (LPC) only supports the DP_M2C_P/N0 pair. The transceivers are DC-coupled, contact Abaco for other configurations.

4.1.3.2 Front I/O (LVTTL/TTL) A voltage translator is used for the (LV)TTL signals available on the front panel. The front side is either 3.3V for LVTTL (default) or 5.0V for TTL (build option). These inputs are 5V tolerant when powered with 3.3V. One side of the voltage translator connects to the front I/O signals; the other side connects directly to the FMC connector with levels that operate at VADJ. The direction of each front I/O signal is controlled by the CPLD.

Page 10: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 10 -

4.2 Electrical specifications The FMC12X uses high-speed LVDS outputs. Revision 1 boards require +2.5V on VADJ power supply (supplied by the carrier card). Revision 2 boards can operate with a VADJ voltage range of 1.65V to 3.3V, but typically VADJ will be 1.8V or 2.5V for LVDS operation. The voltage on VIO_B pins will be at the same level as VADJ as it is connected directly to VADJ on the FMC12X. The data converters operate in LVDS mode (clock and data pairs). All other status and control signals, like serial communication busses, operate at LVCMOS level (VOH = VADJ).

4.2.1 EEPROM The FMC12X card carries a 2Kbit EEPROM which is accessible from the carrier card through the I2C bus. The EEPROM is powered by 3P3VAUX. The standby current is only 0.01µA when SCL and SDA are kept at 3P3VAUX level. These signals may also be left floating since pull-up resistors are present on the card. The EEPROM contains information about the FMC card as defined in AV57.1 and is write protected.

4.2.2 JTAG The CPLD device is included in the JTAG chain accessible from the FMC connection. The user should NOT reprogram or erase the CPLD.

4.2.3 FMC Connector The high-pin count connector has four dedicated LVDS clock pairs and can host up to 80 LVDS (data) pairs of which some are defined as clock capable. The 80 pairs are divided into three banks:

- Bank LA with 34 pairs, of which four are clock capable. - Bank HA with 24 pairs, of which three are clock capable. - Bank HB with 22 pairs, of which three are clock capable.

The low-pin count connector has only bank LA available and only two of the four dedicated LVDS clock pairs. The following arrangement is used:

• ADC output port A and port B will connect to bank LA. (32 data pairs and 2 clock capable pairs on FMC122/FMC125) (20 data pairs and 2 clock capable pairs on FMC126)

• ADC output port C will connect to bank HA. (16 data pairs and 1 clock capable pairs on FMC122/FMC125) (10 data pairs and 1 clock capable pairs on FMC126)

• ADC output port D will connect to bank HB. (16 data pairs and 1 clock capable pairs on FMC122/FMC125) (10 data pairs and 1 clock capable pairs on FMC126)

The over range signal pairs are connected to bank HA/HB and are therefore not available on carrier boards with a low-pin count connector.

4.2.4 Main characteristics Analog inputs

Number of channels 4, 2, or 1 (programmable)

Channel resolution 8-bit (FMC122/FMC125)

Page 11: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 11 -

10-bit (FMC126)

Input voltage range 0.5Vp-p

Input impedance 50Ω AC-coupled

Connector type SSMC (AEP 7110-1511-000)

Analogue input bandwidth 500/600/1500/2000MHz programmable (FMC122/FMC125) 1000/3000MHz programmable (FMC126)

Performance (Fin = 406 MHz)

SFDR = 56 dBc, SNR = 44 dBFS (FMC122/FMC125, 1.25Gsps mode) SFDR = 61 dBc, SNR = 50 dBFS (FMC126, 1.25Gsps mode)

Calibration Gain ±18% Offset ±50mV Phase ±14ps

External Clock/Reference input

Input level -6dBm to +7dBm

Input impedance 50Ω AC-coupled

Connector type SSMC (AEP 7110-1511-000)

Frequency range 10 – 100 MHz (reference clock) 400 – 2500 MHz (sample clock)

External Clock Output (optional)

Output level -4dBm to +3dBm

Output waveform Square, AC-coupled

Connector type SSMC (AEP 7110-1511-000)

External Trigger/Sync input

Input threshold level 1.25V typical (LVTTL level supported)

Input impedance 2.5kΩ DC-coupled

Connector type SSMC (AEP 7110-1511-000)

Frequency range Up to 625 MHz

ADC Output

Output data width LVDS 1:2, 8x 8-pairs DDR (FMC122/FMC125) LVDS 1:1, 4x 10-pairs DDR (FMC126)

Data Format Offset binary

FMC connector type HPC (ASP-134488-01)

Sampling Frequency Range 200 – 1250 MHz (4-channel mode) 400 – 2500 MHz (2-channel mode) 800 – 5000 MHz (1-channel mode)

Internal Clock/Reference

Format LVPECL

Frequency Range

100 MHz (reference clock) 2500MHz (sample clock, enables full speed sampling in 4-, 2-, and 1-channel mode) Optionally the onboard VCXO clock (2500MHz) can be divided down to allow lower sampling frequencies. Divider factors are 2,3,4,5, and 6.

Page 12: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 12 -

Table 3 : FMC12x daughter card main characteristics

4.3 Analog input channels The FMC125/FMC126 has four analog inputs which are AC-coupled to the Quad ADC. There is a flexible analog input switch enabling 4- , 2-, and 1-channel mode. In two channel mode one input connects to either input A or B. The other input connects to either input C or D. In one channel mode the analog signal may be connecter to either one of the four inputs A, B, C, or D. On the FMC122 a maximum of two analog inputs (A and B) can be sampled simultaneously. 4.4 External clock input The actual sampling clock (FS) can be derived from the external clock input (FEXT) as follows:

• 4-channel mode: FS = FEXT / 2 (FS,MAX = 1.25Gsps)

• 2-channel mode: FS = FEXT (FS,MAX = 2.50Gsps)

• 1-channel mode: FS = FEXT x 2 (FS,MAX = 5.00Gsps)

4.5 External trigger/sync input The external trigger input can be configured in different ways (build options). The trigger input can be 50Ω terminated accepting most common high-speed signalling standards like single-ended LVPECL. By default, the 50Ω termination is not mounted in order to support LVTTL/LVCMOS and similar input standards. Differential input is also possible using the coax shield as inverted signal. By default, the input is single-ended DC coupled with an impedance of approximately 2.5kΩ. The input threshold is approximately 1.25V. Optionally, the trigger input can be used as sync input, synchronizing local A/D converters or multiple FMC12x cards.

TRIGGER Any Levelto LVDS

1:2 Fanout

SYNC_FROM_FPGA_P/N

From Clock Tree

LVDSMUX ADC

SYNC

to FMC

SYNCSRC_SEL[1:0]

S‘0’

Figure 6: A/D Synchronization topology

4.6 Clock Tree The FMC12x offers a clock architecture that combines flexibility and high performance. Components have been chosen in order to minimize jitter and phase noise to reduce degradation of the data conversion performance. The user may choose to use an external or internal sampling clock. The clock tree has a PLL and clock distribution section. The PLL ensures locking of the internal clock to an external supplied reference. The onboard reference is used if no external reference is present.

Page 13: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 13 -

A 2500MHz VCO (CRO2500A-LF) is used as internal clock source and can connect to the distribution section instead of the external clock input. The distribution section drives the Quad ADC. One additional clock signal is connected to the FMC connector for test and monitoring purposes. Note that the LF input on the AD9517 is not connected to the loop filter. It is therefore not possible to use the internal VCO of the AD9517.

Clock

To FMC

VC(X)O2.5 GHz

XTAL100MHz

LoopFilter

ADC

RFSwitch

RFSwitch

To Sync

CTRL1

CTRL2

CTRL3

Π-attn

Clk out

Figure 7: Clock tree

Control The clock tree contains two RF switches (ADG918) and requires the following control signals (driven from the CPLD):

• CLKSRC_SEL0 connects the external clock input to the reference input of the AD9517 or the 2nd RF switch.

• CLKSRC_SEL1 connect either the onboard VCXO or the external clock to the clock input of the AD9517. This signal also controls the VCXO power supply1.

• CLKSRC_SEL2 enables/disables the onboard reference oscillator. 4.7 Multi-Gigabit Transceivers (optional) The FMC connector hosts 10 MGT pairs (10 Tx and 10 Rx pairs). These are connected to two 38-pins MICTOR headers in an arrangement that supports different interconnect topologies.

1 The VCXO should be powered down to avoid interference with the external clock when external clock is used.

Page 14: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 14 -

5Rx/

5Tx

5Rx/

5Tx

5Rx/

5Tx

5Rx/

5Tx

5Rx/5Tx

5Rx/5Tx

5Rx/5Tx

5Rx/5Tx

5Rx/5Tx

5Rx/5Tx

Figure 8: MGT interconnect topologies

FMC

20,3

2

10.0

07.

12

13.7

1

FPGA

MICTOR 2Rx-Tx 5-9

MICTOR 1Rx-Tx 0-4

TOP VIEW

Figure 9: Abaco CPCI board stack (slot-to-slot)

Page 15: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 15 -

MICTOR 1

MICTOR 2

Pin Signal Midplate Signal Pin

Pin Signal Midplate Signal Pin

1 GND GND GND 2

1 GND GND GND 2 3 TX0_P* GND RX0_P* 4

3 RX9_P GND TX9_P 4

5 TX0_N* GND RX0_N* 6

5 RX9_N GND TX9_N 6 7 GND GND GND 8

7 GND GND GND 8

9 TX1_P* GND RX1_P* 10

9 RX8_P GND TX8_P 10 11 TX1_N* GND RX1_N* 12

11 RX8_N GND TX8_N 12

13 GND GND GND 14

13 GND GND GND 14 15 TX2_P* GND RX2_P* 16

15 RX7_P GND TX7_P 16

17 TX2_N* GND RX2_N* 18

17 RX7_N GND TX7_N 18 19 GND GND GND 20

19 GND GND GND 20

21 TX3_P* GND RX3_P* 22

21 RX6_P GND TX6_P 22 23 TX3_N* GND RX3_N* 24

23 RX6_N GND TX6_N 24

25 GND GND GND 26

25 GND GND GND 26 27 TX4_P GND RX4_P 28

27 RX5_P GND TX5_P 28

29 TX4_N GND RX4_N 30

29 RX5_N GND TX5_N 30 31 GND GND GND 32

31 GND GND GND 32

33 IO0 GND 34

33 IO2 GND 34 35 IO1 GND 36

35 IO3 GND 36

37 GND GND GND 38

37 GND GND GND 38

Table 4. MGT connector pinout2

A low phase noise 125MHz XTAL is used as reference clock. A 1:2 LVDS fan-out buffer is used to feed to reference clock to both connections on the FMC connector. The pairs marked with * connects to either the MICTOR header or the HDMI connector. The assembly is determined with 0Ω resistors. A maximum of four pairs can connect to the HDMI connector. Contact Abaco for custom configurations. NOTE: These connectors will breach the FMC specification and are therefore a build option. Please contact the factory for more information. N.B. These connectors are not available on the FMC12X revision 2. 4.8 Power supply Power is supplied to the FMC12x card through the FMC connector. The pin current rating is 2.7A, but the overall maximum as specified by the FMC standard is limited according to Table 5.

2 Signals IO[0:3] connects to the CPLD and has no defined function yet.

Page 16: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 16 -

Voltage # pins Max Amps Max Watt +3.3V 4 3 A 10 W +12V 2 1 A 12 W

VADJ (+2.5V) 4 4 A 10 W VIO_B (+2.5V) 2 1.15 A 2.3 W

Table 5: FMC standard power specification

The power provided by the carrier card can be very noisy. Special care is taken with the power supply generation on the FMC12x card to minimize the effect of power supply noise on clock generation and data conversion. Clean analog supply (+3.3V) is derived from +12V in two steps for maximum efficiency. The first step uses a highly efficient switched regulator to generate a +3.8V power rail. From this power rail, the analog supply is derived with a low dropout, low noise, high PSRR, linear regulator. There is additional noise filtering at several stages in the power supply. The regulators have sufficient copper area to dissipate the heat in combination with proper airflow (see section 6.3 Cooling)

Power plane Typical Maximum VADJ 665mA 685mA 3P3V 50mA 95mA 12P0V 900mA 920mA 3P3VAUX (Operating) 3P3VAUX (Standby)

0.1 mA 0.01 µA

3 mA 1 µA

Table 6a: Typical/Maximum current drawn from FMC12X revision 1

Power plane Typical Maximum VADJ 25mA 25mA 3P3V 540mA 610mA 12P0V 900mA 920mA 3P3VAUX (Operating) 3P3VAUX (Standby)

0.1 mA 0.01 µA

3 mA 1 µA

Table 6b: Typical/Maximum current drawn from FMC12X revision 2

The total power consumption: 13W

Page 17: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 17 -

4.9 DIP-Switches The DIP-Switches should be in the state as indicated in the following table. Any other configuration might affect the analog conversion performance.

1 2 3 4 FMC122 OFF OFF ON OFF

FMC125 OFF OFF ON OFF

FMC126 ON ON OFF OFF

Table 6: Default DIP-Switch state

5 Controlling the FMC12x The FMC12x is fully controlled from the carrier hardware through a single I2C communication bus. Three devices are connected, refer to Table 7. The device addresses depend on the global address pins defined by the FMC standard (GA0, GA1). Note that the ADT7411 uses only GA0.

Device Description I2C Address

24LC02B 2K I2C Serial EEPROM 1 0 1 0 0 GA1 GA0

SC18IS602B I2C-bus to SPI bridge 0 1 0 1 0 GA1 GA0

ADT7411 Digital Temperature Sensor and A/D 1 0 0 1 0 GA0 GA0

Table 7: I2C devices

The I2C-bus to SPI bridge (SC18IS602B) supports four SPI slaves. The following slaves are assigned:

SS0: AD9517 SS1: A/D device SS2: - SS3: CPLD

SCLSDA

24LC02B SC18IS602B ADT7411

AD9517 ADC CPLD

SCLKMOSIMISO

SS0

SS1

SS2

SS3

N_CS N_CS N_CS

Figure 10: I2C / SPI architecture

Page 18: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 18 -

The CPLD has the following tasks:

• Select clock source based on a SPI command (CLKSRC_SEL) • Select sync source based on a SPI command (SYNCSRC_SEL) • Generate SPI reset for AD9517 (CLK_N_RESET) and A/D (ADC_N_RESET) • Control the direction of the front I/O transceivers (FRONT_IO_DIR) • Control the FAN header power (FAN_N_EN) • Collect local status signals and store them in a register which can be accessed from

the carrier hardware • Drive a LED according to the level of the status signals

CPLD

CLKSRC_SEL[0:2]SYNCSRC_SEL[0:1]

REFMONLD

STATUS

VM_N_INT

AND

CPLD_N_CS

MOSI

SCLK

SPI SideLocal Side

LED

REG0REG1REG2

Shift register

FMC_TO_CPLD(3)N_INT

CtrlCLK_N_RESETADC_N_RESET

FRONT_IO_DIR[0:3]FAN_N_EN[0:1]

MISO

Figure 11: CPLD architecture

R/W A6 A5 A4 A3 A2 A1 A0 D7 D6 D5 D4 D3 D3 D1 D0

N_CS

SCLK

MOSI

8-bit instruction 8-bit register data

MISO

Figure 12: Write instruction to CPLD registers A1:A0

Page 19: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 19 -

R/W A6 A5 A4 A3 A2 A1 A0

N_CS

SCLK

MOSI

8-bit instruction 8-bit register data

MISO D7 D6 D5 D4 D3 D3 D1 D0

Figure 13: Read instruction to CPLD registers A1:A0

Page 20: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 20 -

6 Environment 6.1 Temperature Operating temperature

• 0°C to +70°C (Commercial) Storage temperature:

• -40°C to +120°C 6.2 Monitoring The onboard monitoring may be used to monitor the voltage on the different power rails as well as the temperature of the Quad ADC and the clock tree. It is recommended that the carrier card and/or host software uses the power-down features of the Quad ADC and the clock tree if the temperature is too high. Normal operations can resume once the temperature is within the operating conditions boundaries.

Parameter: Device 1 Formula

On-chip temperature ADT7411 Die Temperature

On-chip AIN0 (VDD) +3.3V

External temperature ADC Die Temperature

External AIN3 VADJ AIN3

External AIN4 +2.5V Analog AIN4

External AIN5 +3.3V Digital AIN5 * 2

External AIN6 +3.3V Analog AIN6 * 2

External AIN7 VCP AIN7 * 2

External AIN8 +1.8V Digital AIN8

Table 8: Temperature and voltage parameters

6.3 Cooling Two different types of cooling are available for the FMC12x.

6.3.1 Convection cooling The air flow provided by the fans of the chassis the FMC12x is enclosed in will dissipate the heat generated by the onboard components. A minimum airflow of 300 LFM is recommended. Optionally, a low profile heat sink/fan can be glued on top of the Quad ADC. The card has a fan power connection that can be switch on and off under carrier card control. The FAN power voltage is 3.3V and can be switched on and off through a CPLD register (refer to Table 14). For standalone operations (such as on a Xilinx development kit), it is highly recommended to blow air across the FMC and ensure that the temperature of the devices is within the allowed

Page 21: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 21 -

range. Abaco’s warranty does not cover boards on which the maximum allowed temperature has been exceeded.

6.3.2 Conduction cooling In demanding environments, the ambient temperature inside a chassis could be close to the operating temperature defined in this document. It is very likely that in these conditions the junction temperature of power consuming devices will exceed the operating conditions recommended by the device manufacturers (mostly +85°C). The FMC12x is designed for maximum heat transfer to conduction-cooled ribs. A customized cooling frame that connects directly to the surface of the Quad ADC is allowed (contact Abaco for detailed mechanical information). This conduction-cooling mechanism should be applied in combination with proper chassis air flow.

7 Safety This module presents no hazard to the user.

8 EMC This module is designed to operate within an enclosed host system built to provide EMC shielding. Operation within the EU EMC guidelines is not guaranteed unless it is installed within an adequate host system. This module is protected from damage by fast voltage transients originating from outside the host system which may be introduced through the system.

9 Warranty

Hardware Software/Firmware

Basic Warranty (included)

1 Year from Date of Shipment 90 Days from Date of Shipment

Extended Warranty (optional)

2 Years from Date of Shipment 1 Year from Date of Shipment

Page 22: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 22 -

Appendix A LPC pin-out FMC122

AV57.1 LPC Pin FMC122 Signal AV57.1 LPC Pin FMC122 Signal AV57.1 LPC Pin FMC122 Signal

CLK0_M2C_N H5 CLK_TO_FPGA_N GBTCLK0_M2C_N D5 GBTCLK0_N

CLK0_M2C_P H4 CLK_TO_FPGA_P GBTCLK0_M2C_P D4 GBTCLK0_P

CLK1_M2C_N G3 TRIGGER_TO_FPGA_N

CLK1_M2C_P G2 TRIGGER_TO_FPGA_P

LA00_N_CC G7 ADR_N LA17_N_CC D21 BDR_N DP0_C2M_N C3 DP_C2M_N<0>

LA00_P_CC G6 ADR_P LA17_P_CC D20 BDR_P DP0_C2M_P C2 DP_C2M_P<0>

LA01_N_CC D9 ALD_N<0> LA18_N_CC C23 BLD_N<0> DP0_M2C_N C7 DP_M2C_N<0>

LA01_P_CC D8 ALD_P<0> LA18_P_CC C22 BLD_P<0> DP0_M2C_P C6 DP_M2C_P<0>

LA02_N H8 AHD_N<0> LA19_N H23 BHD_N<0>

LA02_P H7 AHD _P<0> LA19_P H22 BHD _P<0>

LA03_N G10 ALD_N<1> LA20_N G22 BLD_N<1>

LA03_P G9 ALD_P<1> LA20_P G21 BLD_P<1>

LA04_N H11 AHD_N<1> LA21_N H26 BHD_N<1>

LA04_P H10 AHD_P<1> LA21_P H25 BHD_P<1>

LA05_N D12 ALD_N<2> LA22_N G25 BLD_N<2>

LA05_P D11 ALD_P<2> LA22_P G24 BLD_P<2>

LA06_N C11 AHD_N<2> LA23_N D24 BHD_N<2>

LA06_P C10 AHD_P<2> LA23_P D23 BHD_P<2>

LA07_N H14 ALD_N<3> LA24_N H29 BLD_N<3>

LA07_P H13 ALD_P<3> LA24_P H28 BLD_P<3>

LA08_N G13 AHD_N<3> LA25_N G28 BHD_N<3>

LA08_P G12 AHD_P<3> LA25_P G27 BHD_P<3>

LA09_N D15 ALD_N<6> LA26_N D27 BLD_N<6>

LA09_P D14 ALD_P<6> LA26_P D26 BLD_P<6>

LA10_N C15 ALD_N<7> LA27_N C27 BLD_N<7>

LA10_P C14 ALD_P<7> LA27_P C26 BLD_P<7>

LA11_N H17 ALD_N<4> LA28_N H32 BLD_N<4>

LA11_P H16 ALD_P<4> LA28_P H31 BLD_P<4>

LA12_N G16 AHD_N<4> LA29_N G31 BHD_N<4>

LA12_P G15 AHD_P<4> LA29_P G30 BHD_P<4>

LA13_N D18 ALD_N<5> LA30_N H35 BLD_N<5>

LA13_P D17 ALD_P<5> LA30_P H34 BLD_P<5>

LA14_N C19 AHD_N<5> LA31_N G34 BHD_N<5>

LA14_P C18 AHD_P<5> LA31_P G33 BHD_P<5>

LA15_N H20 AHD_N<6> LA32_N H38 BHD_N<6>

LA15_P H19 AHD_P<6> LA32_P H37 BHD_P<6>

LA16_N G19 AHD_N<7> LA33_N G37 BHD_N<7> SCL C30 I2C_SCL

LA16_P G18 AHD_P<7> LA33_P G36 BHD_P<7> SDA C31 I2C_SDA

Page 23: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 23 -

Table 9: FMC122 signal description

Signal Group Direction I/O Standard

Description

ADR_N ADR_P

A/D A Output LVDS Digital data clock from ADC. The ADC can operate in mux mode, using data port L(ow) and data port H(igh)

ALD_N<7..0> ALD_P<7..0>

A/D A Output LVDS Data port L(ow), data is valid on both edges of the clock (DDR)

AHD_N<7..0> AHD_P<7..0>

A/D A Output LVDS Data port H(igh), data is valid on both edges of the clock (DDR)

BDR_N BDR_P

A/D B Output LVDS Digital data clock from ADC. The ADC can operate in mux mode, using data port L(ow) and data port H(igh)

BLD_N<7..0> BLD_P<7..0>

A/D B Output LVDS Data port L(ow), data is valid on both edges of the clock (DDR)

BHD_N<7..0> BHD_P<7..0>

A/D B Output LVDS Data port H(igh), data is valid on both edges of the clock (DDR)

CLK_TO_FPGA_N CLK_TO_FPGA_P

MONITOR Output LVDS Spare clock signal from the clock tree. Can be used to monitor onboard/external clock.

TRIGGER_TO_FPGA_N TRIGGER_TO_FPGA_P

I/O Output LVDS Representation of the signal connected to the external trigger input.

I2C_SCL CONTROL Input LVTTL 3.3V I2C Clock. The I2C bus is the main control bus.

I2C_SDA CONTROL Bidir LVTTL 3.3V I2C Data. The I2C bus is the main control bus.

DP_M2C_P/N0 O Output CML/ECL Gigabit transceiver from HDMI connector

Page 24: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 24 -

Appendix B HPC pin-out FMC125/FMC122

AV57.1 HPC Pin FMC125 Signal AV57.1 HPC Pin FMC125 Signal AV57.1 HPC Pin FMC125 Signal

CLK0_M2C_N H5 CLK_TO_FPGA_N CLK2_BIDIR_N K5 SYNC_FROM_FPGA_N GBTCLK0_M2C_N D5 GBTCLK0_N

CLK0_M2C_P H4 CLK_TO_FPGA_P CLK2_BIDIR_P K4 SYNC_FROM_FPGA_P GBTCLK0_M2C_P D4 GBTCLK0_P

CLK1_M2C_N G3 TRIGGER_TO_FPGA_N CLK3_BIDIR_N J3 N.C. GBTCLK1_M2C_N B21 GBTCLK1_N

CLK1_M2C_P G2 TRIGGER_TO_FPGA_P CLK3_BIDIR_P J2 N.C. GBTCLK1_M2C_P B20 GBTCLK1_P

LA00_N_CC G7 ADR_N HA00_N_CC F5 CDR_N HB00_N_CC K26 DDR_N

LA00_P_CC G6 ADR_P HA00_P_CC F4 CDR_P HB00_P_CC K25 DDR_P

LA01_N_CC D9 ALD_N<0> HA01_N_CC E3 CLD_N<0> HB01_N J25 DLD_N<0>

LA01_P_CC D8 ALD_P<0> HA01_P_CC E2 CLD_P<0> HB01_P J24 DLD_P<0>

LA02_N H8 AHD_N<0> HA02_N K8 CHD_N<0> HB02_N F23 DHD_N<0>

LA02_P H7 AHD _P<0> HA02_P K7 CHD _P<0> HB02_P F22 DHD _P<0>

LA03_N G10 ALD_N<1> HA03_N J7 CLD_N<1> HB03_N E22 DLD_N<1>

LA03_P G9 ALD_P<1> HA03_P J6 CLD_P<1> HB03_P E21 DLD_P<1>

LA04_N H11 AHD_N<1> HA04_N F8 CHD_N<1> HB04_N F26 DHD_N<1>

LA04_P H10 AHD_P<1> HA04_P F7 CHD_P<1> HB04_P F25 DHD_P<1>

LA05_N D12 ALD_N<2> HA05_N E7 CLD_N<2> HB05_N E25 DLD_N<2>

LA05_P D11 ALD_P<2> HA05_P E6 CLD_P<2> HB05_P E24 DLD_P<2>

LA06_N C11 AHD_N<2> HA06_N K11 CHD_N<2> HB06_N_CC K29 DHD_N<2>

LA06_P C10 AHD_P<2> HA06_P K10 CHD_P<2> HB06_P_CC K28 DHD_P<2>

LA07_N H14 ALD_N<3> HA07_N J10 CLD_N<3> HB07_N J28 DLD_N<3>

LA07_P H13 ALD_P<3> HA07_P J9 CLD_P<3> HB07_P J27 DLD_P<3>

LA08_N G13 AHD_N<3> HA08_N F11 CHD_N<3> HB08_N F29 DHD_N<3>

LA08_P G12 AHD_P<3> HA08_P F10 CHD_P<3> HB08_P F28 DHD_P<3>

LA09_N D15 ALD_N<6> HA09_N E10 CLD_N<6> HB09_N E28 DLD_N<6>

LA09_P D14 ALD_P<6> HA09_P E9 CLD_P<6> HB09_P E27 DLD_P<6>

LA10_N C15 ALD_N<7> HA10_N K14 CLD_N<7> HB10_N K32 DLD_N<7>

LA10_P C14 ALD_P<7> HA10_P K13 CLD_P<7> HB10_P K31 DLD_P<7>

LA11_N H17 ALD_N<4> HA11_N J13 CLD_N<4> HB11_N J31 DLD_N<4>

LA11_P H16 ALD_P<4> HA11_P J12 CLD_P<4> HB11_P J30 DLD_P<4>

LA12_N G16 AHD_N<4> HA12_N F14 CHD_N<4> HB12_N F32 DHD_N<4>

LA12_P G15 AHD_P<4> HA12_P F13 CHD_P<4> HB12_P F31 DHD_P<4>

LA13_N D18 ALD_N<5> HA13_N E13 CLD_N<5> HB13_N E31 DLD_N<5>

LA13_P D17 ALD_P<5> HA13_P E12 CLD_P<5> HB13_P E30 DLD_P<5>

LA14_N C19 AHD_N<5> HA14_N J16 CHD_N<5> HB14_N K35 DHD_N<5>

LA14_P C18 AHD_P<5> HA14_P J15 CHD_P<5> HB14_P K34 DHD_P<5>

LA15_N H20 AHD_N<6> HA15_N F17 CHD_N<6> HB15_N J34 DHD_N<6>

LA15_P H19 AHD_P<6> HA15_P F16 CHD_P<6> HB15_P J33 DHD_P<6>

LA16_N G19 AHD_N<7> HA16_N E16 CHD_N<7> HB16_N F35 DHD_N<7>

LA16_P G18 AHD_P<7> HA16_P E15 CHD_P<7> HB16_P F34 DHD_P<7>

LA17_N_CC D21 BDR_N HA17_N_CC K17 CLOR_N HB17_N_CC K38 DLOR_N

LA17_P_CC D20 BDR_P HA17_P_CC K16 CLOR_P HB17_P_CC K37 DLOR_P

LA18_N_CC C23 BLD_N<0> HA18_N J19 CHOR_N HB18_N J37 DHOR_N

LA18_P_CC C22 BLD_P<0> HA18_P J18 CHOR_P HB18_P J36 DHOR_P

LA19_N H23 BHD_N<0> HA19_N F20 ALOR_N HB19_N E34 FMC_TO_CPLD<3>

LA19_P H22 BHD _P<0> HA19_P F19 ALOR_P HB19_P E33 FMC_TO_CPLD<2>

LA20_N G22 BLD_N<1> HA20_N E19 AHOR_N HB20_N F38 FRONT_IO_FMC<1>

LA20_P G21 BLD_P<1> HA20_P E18 AHOR_P HB20_P F37 FRONT_IO_FMC<0>

Page 25: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 25 -

LA21_N H26 BHD_N<1> HA21_N K20 BLOR_N HB21_N E37 FRONT_IO_FMC<3>

LA21_P H25 BHD_P<1> HA21_P K19 BLOR_P HB21_P E36 FRONT_IO_FMC<2>

LA22_N G25 BLD_N<2> HA22_N J22 BHOR_N

LA22_P G24 BLD_P<2> HA22_P J21 BHOR_P

LA23_N D24 BHD_N<2> HA23_N K23 FMC_TO_CPLD<1> SCL C30 I2C_SCL

LA23_P D23 BHD_P<2> HA23_P K22 FMC_TO_CPLD<0> SDA C31 I2C_SDA

LA24_N H29 BLD_N<3> DP0_C2M_N C3 DP_C2M_N<0> DP0_M2C_N C7 DP_M2C_N<0>

LA24_P H28 BLD_P<3> DP0_C2M_P C2 DP_C2M_P<0> DP0_M2C_P C6 DP_M2C_P<0>

LA25_N G28 BHD_N<3> DP1_C2M_N A23 DP_C2M_N<1> DP1_M2C_N A3 DP_M2C_N<1>

LA25_P G27 BHD_P<3> DP1_C2M_P A22 DP_C2M_P<1> DP1_M2C_P A2 DP_M2C_P<1>

LA26_N D27 BLD_N<6> DP2_C2M_N A27 DP_C2M_N<2> DP2_M2C_N A7 DP_M2C_N<2>

LA26_P D26 BLD_P<6> DP2_C2M_P A26 DP_C2M_P<2> DP2_M2C_P A6 DP_M2C_P<2>

LA27_N C27 BLD_N<7> DP3_C2M_N A31 DP_C2M_N<3> DP3_M2C_N A11 DP_M2C_N<3>

LA27_P C26 BLD_P<7> DP3_C2M_P A30 DP_C2M_P<3> DP3_M2C_P A10 DP_M2C_P<3>

LA28_N H32 BLD_N<4> DP4_C2M_N A35 DP_C2M_N<4> DP4_M2C_N A15 DP_M2C_N<4>

LA28_P H31 BLD_P<4> DP4_C2M_P A34 DP_C2M_P<4> DP4_M2C_P A14 DP_M2C_P<4>

LA29_N G31 BHD_N<4> DP5_C2M_N A39 DP_C2M_N<5> DP5_M2C_N A19 DP_M2C_N<5>

LA29_P G30 BHD_P<4> DP5_C2M_P A38 DP_C2M_P<5> DP5_M2C_P A18 DP_M2C_P<5>

LA30_N H35 BLD_N<5> DP6_C2M_N B37 DP_C2M_N<6> DP6_M2C_N B17 DP_M2C_N<6>

LA30_P H34 BLD_P<5> DP6_C2M_P B36 DP_C2M_P<6> DP6_M2C_P B16 DP_M2C_P<6>

LA31_N G34 BHD_N<5> DP7_C2M_N B33 DP_C2M_N<7> DP7_M2C_N B13 DP_M2C_N<7>

LA31_P G33 BHD_P<5> DP7_C2M_P B32 DP_C2M_P<7> DP7_M2C_P B12 DP_M2C_P<7>

LA32_N H38 BHD_N<6> DP8_C2M_N B29 DP_C2M_N<8> DP8_M2C_N B9 DP_M2C_N<8>

LA32_P H37 BHD_P<6> DP8_C2M_P B28 DP_C2M_P<8> DP8_M2C_P B8 DP_M2C_P<8>

LA33_N G37 BHD_N<7> DP9_C2M_N B25 DP_C2M_N<9> DP9_M2C_N B5 DP_M2C_N<9>

LA33_P G36 BHD_P<7> DP9_C2M_P B24 DP_C2M_P<9> DP9_M2C_P B4 DP_M2C_P<9>

Table 10: FMC125/FMC122 signal description

Signal Group Direction I/O Standard

Description

ADR_N ADR_P

A/D A Output LVDS Digital data clock from ADC. The ADC can operate in mux mode, using data port L(ow) and data port H(igh)

ALD_N<7..0> ALD_P<7..0>

A/D A Output LVDS Data port L(ow), data is valid on both edges of the clock (DDR)

ALOR_N ALOR_P

A/D A Output LVDS Over-range bit synchronous to the samples present on port L(ow).

AHD_N<7..0> AHD_P<7..0>

A/D A Output LVDS Data port H(igh), data is valid on both edges of the clock (DDR)

AHOR_N AHOR_P

A/D A Output LVDS Over-range bit synchronous to the samples present on port H(igh).

Page 26: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 26 -

BDR_N BDR_P

A/D B Output LVDS Digital data clock from ADC. The ADC can operate in mux mode, using data port L(ow) and data port H(igh)

BLD_N<7..0> BLD_P<7..0>

A/D B Output LVDS Data port L(ow), data is valid on both edges of the clock (DDR)

BLOR_N BLOR_P

A/D B Output LVDS Over-range bit synchronous to the samples present on port L(ow).

BHD_N<7..0> BHD_P<7..0>

A/D B Output LVDS Data port H(igh), data is valid on both edges of the clock (DDR)

BHOR_N BHOR_P

A/D B Output LVDS Over-range bit synchronous to the samples present on port H(igh).

CDR_N CDR_P

A/D C Output LVDS Digital data clock from ADC. The ADC can operate in mux mode, using data port L(ow) and data port H(igh)

CLD_N<7..0> CLD_P<7..0>

A/D C Output LVDS Data port L(ow), data is valid on both edges of the clock (DDR)

CLOR_N CLOR_P

A/D C Output LVDS Over-range bit synchronous to the samples present on port L(ow).

CHD_N<7..0> CHD_P<7..0>

A/D C Output LVDS Data port H(igh), data is valid on both edges of the clock (DDR)

CHOR_N CHOR_P

A/D C Output LVDS Over-range bit synchronous to the samples present on port H(igh).

DDR_N DDR_P

A/D D Output LVDS Digital data clock from ADC. The ADC can operate in mux mode, using data port L(ow) and data port H(igh)

DLD_N<7..0> DLD_P<7..0>

A/D D Output LVDS Data port L(ow), data is valid on both edges of the clock (DDR)

DLOR_N DLOR_P

A/D D Output LVDS Over-range bit synchronous to the samples present on port L(ow).

DHD_N<7..0> A/D D Output LVDS Data port H(igh), data is

Page 27: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 27 -

DHD_P<7..0> valid on both edges of the clock (DDR)

DHOR_N DHOR_P

A/D D Output LVDS Over-range bit synchronous to the samples present on port H(igh).

CLK_TO_FPGA_N CLK_TO_FPGA_P

MONITOR Output LVDS Spare clock signal from the clock tree. Can be used to monitor onboard/external clock.

TRIGGER_TO_FPGA_N TRIGGER_TO_FPGA_P

I/O Output LVDS Representation of the signal connected to the external trigger input.

FRONT_IO<3..0> I/O Bidir CMOS VADJ Connected to the transceivers on the HDMI connector (Table 2). The direction of the transceivers is controlled through a CPLD register.

DP_M2C_P/N<1..0> O Output CML/ECL Gigabit transceiver from HDMI connector

DP_C2M_P/N<3..2> I Input CML/ECL Gigabit transceiver to HDMI connector

SYNC_FROM_FPGA_N SYNC_FROM_FPGA_P

CONTROL Input LVDS Signal used to apply a sync pulse to both ADC in order to align the digital outputs on sample basis.

FMC_TO_CPLD<3..0> CONTROL Bidir CMOS VADJ Reserved.

I2C_SCL CONTROL Input LVTTL 3.3V I2C Clock. The I2C bus is the main control bus.

I2C_SDA CONTROL Bidir LVTTL 3.3V I2C Data. The I2C bus is the main control bus.

Page 28: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 28 -

Appendix C HPC pin-out FMC126

AV57.1 HPC Pin FMC126 Signal AV57.1 HPC Pin FMC126 Signal AV57.1 HPC Pin FMC126 Signal

CLK0_M2C_N H5 CLK_TO_FPGA_N CLK2_BIDIR_N K5 SYNC_FROM_FPGA_N GBTCLK0_M2C_N D5 GBTCLK0_N

CLK0_M2C_P H4 CLK_TO_FPGA_P CLK2_BIDIR_P K4 SYNC_FROM_FPGA_P GBTCLK0_M2C_P D4 GBTCLK0_P

CLK1_M2C_N G3 TRIGGER_TO_FPGA_N CLK3_BIDIR_N J3 N.C. GBTCLK1_M2C_N B21 GBTCLK1_N

CLK1_M2C_P G2 TRIGGER_TO_FPGA_P CLK3_BIDIR_P J2 N.C. GBTCLK1_M2C_P B20 GBTCLK1_P

LA00_N_CC G7 ADR_N HA00_N_CC F5 CDR_N HB00_N_CC K26 DDR_N

LA00_P_CC G6 ADR_P HA00_P_CC F4 CDR_P HB00_P_CC K25 DDR_P

LA01_N_CC D9 AD_N<0> HA01_N_CC E3 CD_N<0> HB01_N J25 DD_N<0>

LA01_P_CC D8 AD_P<0> HA01_P_CC E2 CD_P<0> HB01_P J24 DD_P<0>

LA02_N H8 AD_N<1> HA02_N K8 CD_N<1> HB02_N F23 DD_N<1>

LA02_P H7 AD _P<1> HA02_P K7 CD _P<1> HB02_P F22 DD _P<1>

LA03_N G10 AD_N<2> HA03_N J7 CD_N<2> HB03_N E22 DD_N<2>

LA03_P G9 AD_P<2> HA03_P J6 CD_P<2> HB03_P E21 DD_P<2>

LA04_N H11 AD_N<3> HA04_N F8 CD_N<3> HB04_N F26 DD_N<3>

LA04_P H10 AD_P<3> HA04_P F7 CD_P<3> HB04_P F25 DD_P<3>

LA05_N D12 AD_N<4> HA05_N E7 CD_N<4> HB05_N E25 DD_N<4>

LA05_P D11 AD_P<4> HA05_P E6 CD_P<4> HB05_P E24 DD_P<4>

LA06_N C11 AD_N<5> HA06_N K11 CD_N<5> HB06_N_CC K29 DD_N<5>

LA06_P C10 AD_P<5> HA06_P K10 CD_P<5> HB06_P_CC K28 DD_P<5>

LA07_N H14 AD_N<6> HA07_N J10 CD_N<6> HB07_N J28 DD_N<6>

LA07_P H13 AD_P<6> HA07_P J9 CD_P<6> HB07_P J27 DD_P<6>

LA08_N G13 AD_N<7> HA08_N F11 CD_N<7> HB08_N F29 DD_N<7>

LA08_P G12 AD_P<7> HA08_P F10 CD_P<7> HB08_P F28 DD_P<7>

LA09_N D15 AD_N<8> HA09_N E10 CD_N<8> HB09_N E28 DD_N<8>

LA09_P D14 AD_P<8> HA09_P E9 CD_P<8> HB09_P E27 DD_P<8>

LA10_N C15 AD_N<9> HA10_N K14 CD_N<9> HB10_N K32 DD_N<9>

LA10_P C14 AD_P<9> HA10_P K13 CD_P<9> HB10_P K31 DD_P<9>

LA11_N H17 N.C. HA11_N J13 N.C. HB11_N J31 N.C.

LA11_P H16 N.C. HA11_P J12 N.C. HB11_P J30 N.C.

LA12_N G16 N.C. HA12_N F14 N.C. HB12_N F32 N.C.

LA12_P G15 N.C. HA12_P F13 N.C. HB12_P F31 N.C.

LA13_N D18 N.C. HA13_N E13 N.C. HB13_N E31 N.C.

LA13_P D17 N.C. HA13_P E12 N.C. HB13_P E30 N.C.

LA14_N C19 N.C. HA14_N J16 N.C. HB14_N K35 N.C.

LA14_P C18 N.C. HA14_P J15 N.C. HB14_P K34 N.C.

LA15_N H20 N.C. HA15_N F17 N.C. HB15_N J34 N.C.

LA15_P H19 N.C. HA15_P F16 N.C. HB15_P J33 N.C.

LA16_N G19 N.C. HA16_N E16 N.C. HB16_N F35 N.C.

LA16_P G18 N.C. HA16_P E15 N.C. HB16_P F34 N.C.

LA17_N_CC D21 BDR_N HA17_N_CC K17 COR_N HB17_N_CC K38 DOR_N

LA17_P_CC D20 BDR_P HA17_P_CC K16 COR_P HB17_P_CC K37 DOR_P

LA18_N_CC C23 BD_N<0> HA18_N J19 N.C. HB18_N J37 N.C.

LA18_P_CC C22 BD_P<0> HA18_P J18 N.C. HB18_P J36 N.C.

LA19_N H23 BD_N<1> HA19_N F20 AOR_N HB19_N E34 FMC_TO_CPLD<3>

LA19_P H22 BD _P<1> HA19_P F19 AOR_P HB19_P E33 FMC_TO_CPLD<2>

LA20_N G22 BD_N<2> HA20_N E19 N.C. HB20_N F38 FRONT_IO_FMC<1>

LA20_P G21 BD_P<2> HA20_P E18 N.C. HB20_P F37 FRONT_IO_FMC<0>

Page 29: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 29 -

LA21_N H26 BD_N<3> HA21_N K20 BOR_N HB21_N E37 FRONT_IO_FMC<3>

LA21_P H25 BD_P<3> HA21_P K19 BOR_P HB21_P E36 FRONT_IO_FMC<2>

LA22_N G25 BD_N<4> HA22_N J22 N.C.

LA22_P G24 BD_P<4> HA22_P J21 N.C.

LA23_N D24 BD_N<5> HA23_N K23 FMC_TO_CPLD<1> SCL C30 I2C_SCL

LA23_P D23 BD_P<5> HA23_P K22 FMC_TO_CPLD<0> SDA C31 I2C_SDA

LA24_N H29 BD_N<6> DP0_C2M_N C3 DP_C2M_N<0> DP0_M2C_N C7 DP_M2C_N<0>

LA24_P H28 BD_P<6> DP0_C2M_P C2 DP_C2M_P<0> DP0_M2C_P C6 DP_M2C_P<0>

LA25_N G28 BD_N<7> DP1_C2M_N A23 DP_C2M_N<1> DP1_M2C_N A3 DP_M2C_N<1>

LA25_P G27 BD_P<7> DP1_C2M_P A22 DP_C2M_P<1> DP1_M2C_P A2 DP_M2C_P<1>

LA26_N D27 BD_N<8> DP2_C2M_N A27 DP_C2M_N<2> DP2_M2C_N A7 DP_M2C_N<2>

LA26_P D26 BD_P<8> DP2_C2M_P A26 DP_C2M_P<2> DP2_M2C_P A6 DP_M2C_P<2>

LA27_N C27 BD_N<9> DP3_C2M_N A31 DP_C2M_N<3> DP3_M2C_N A11 DP_M2C_N<3>

LA27_P C26 BD_P<9> DP3_C2M_P A30 DP_C2M_P<3> DP3_M2C_P A10 DP_M2C_P<3>

LA28_N H32 N.C. DP4_C2M_N A35 DP_C2M_N<4> DP4_M2C_N A15 DP_M2C_N<4>

LA28_P H31 N.C. DP4_C2M_P A34 DP_C2M_P<4> DP4_M2C_P A14 DP_M2C_P<4>

LA29_N G31 N.C. DP5_C2M_N A39 DP_C2M_N<5> DP5_M2C_N A19 DP_M2C_N<5>

LA29_P G30 N.C. DP5_C2M_P A38 DP_C2M_P<5> DP5_M2C_P A18 DP_M2C_P<5>

LA30_N H35 N.C. DP6_C2M_N B37 DP_C2M_N<6> DP6_M2C_N B17 DP_M2C_N<6>

LA30_P H34 N.C. DP6_C2M_P B36 DP_C2M_P<6> DP6_M2C_P B16 DP_M2C_P<6>

LA31_N G34 N.C. DP7_C2M_N B33 DP_C2M_N<7> DP7_M2C_N B13 DP_M2C_N<7>

LA31_P G33 N.C. DP7_C2M_P B32 DP_C2M_P<7> DP7_M2C_P B12 DP_M2C_P<7>

LA32_N H38 N.C. DP8_C2M_N B29 DP_C2M_N<8> DP8_M2C_N B9 DP_M2C_N<8>

LA32_P H37 N.C. DP8_C2M_P B28 DP_C2M_P<8> DP8_M2C_P B8 DP_M2C_P<8>

LA33_N G37 N.C. DP9_C2M_N B25 DP_C2M_N<9> DP9_M2C_N B5 DP_M2C_N<9>

LA33_P G36 N.C. DP9_C2M_P B24 DP_C2M_P<9> DP9_M2C_P B4 DP_M2C_P<9>

Table 11: FMC126 signal description

Signal Group Direction I/O standard

Description

ADR_N ADR_P

A/D A Output LVDS Digital data clock from ADC.

AD_N<9..0> AD_P<9..0>

A/D A Output LVDS Data port, data is valid on both edges of the clock (DDR)

AOR_N AOR_P

A/D A Output LVDS Over-range bit synchronous to the samples present on data port

BDR_N BDR_P

A/D B Output LVDS Digital data clock from ADC.

BD_N<9..0> BD_P<9..0>

A/D B Output LVDS Data port, data is valid on both edges of the clock (DDR)

BOR_N BOR_P

A/D B Output LVDS Over-range bit synchronous to the samples present on data port

Page 30: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 30 -

CDR_N CDR_P

A/D C Output LVDS Digital data clock from ADC.

CD_N<9..0> CD_P<9..0>

A/D C Output LVDS Data port, data is valid on both edges of the clock (DDR)

COR_N COR_P

A/D C Output LVDS Over-range bit synchronous to the samples present on data port

DDR_N DDR_P

A/D D Output LVDS Digital data clock from ADC.

DD_N<9..0> DD_P<9..0>

A/D D Output LVDS Data port, data is valid on both edges of the clock (DDR)

DOR_N DOR_P

A/D D Output LVDS Over-range bit synchronous to the samples present on data port

CLK_TO_FPGA_N CLK_TO_FPGA_P

MONITOR Output LVDS Spare clock signal from the clock tree. Can be used to monitor onboard/external clock.

TRIGGER_TO_FPGA_N TRIGGER_TO_FPGA_P

I/O Output LVDS Representation of the signal connected to the external trigger input.

FRONT_IO<3..0> I/O Bidir CMOS VADJ Connected to the transceivers on the HDMI connector (Table 2). The direction of the transceivers is controlled through a CPLD register.

DP_M2C_P/N<1..0> O Output CML/ECL Gigabit transceiver from HDMI connector

DP_C2M_P/N<3..2> I Input CML/ECL Gigabit transceiver to HDMI connector

SYNC_FROM_FPGA_N SYNC_FROM_FPGA_P

CONTROL Input LVDS Signal used to apply a sync pulse to both ADC in order to align the digital outputs on sample basis.

FMC_TO_CPLD<3..0> CONTROL Bidir CMOS VADJ Reserved.

I2C_SCL CONTROL Input LVTTL 3.3V I2C Clock. The I2C bus is the main control bus.

I2C_SDA CONTROL Bidir LVTTL 3.3V I2C Data. The I2C bus is the main control bus.

Page 31: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 31 -

Appendix D CPLD Register map

Bit nr. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Name ‘0’ ADCR CLKR SYNCSRC CLKSRC

Table 12: Register CPLD_REG0 definition

Field Description

CLKSRC Selection of clock source ‘000’ External clock ‘011’ Internal clock, External Reference ‘110’ Internal clock, Internal Reference others Do not use

SYNCSRC Selection of synchronisation source ‘00‘ External Trigger ‘01‘ Carrier (trough SYNC_FROM_FPGA_P/N) ‘10‘ Clock Tree ‘11‘ No Sync

CLKR Clock tree SPI reset ‘0‘ Normal operation ‘1‘ Reset, resetting the clock tree is normally not required. This bit is not

self-clearing.

ADCR A/D device SPI reset ‘0‘ Normal operation ‘1‘ Reset, resetting the A/D device is normally not required. This bit is

not self-clearing.

Table 13 Register CPLD_REG0 description

Bit nr. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Name Rsvd FAN1 FAN0 DIR3 DIR2 DIR1 DIR0

Table 14: Register CPLD_REG1 definition

Page 32: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 32 -

Field Description

DIRx Direction of Front IO transceiver (x = 0 to 3)

‘0’ Signal x is input (FMC12X is receiver) ‘1’ Signal x is output (FMC12X is transmitter)

FANx Power control for FAN header (x = 0 to 1)

‘0‘ Apply power to FAN header x ‘1‘ Cut power to FAN header x

Table 15 Register CPLD_REG1 description

Bit nr. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Name Reserved IRQ VM STATUS LD REFMON

Table 16: Register CPLD_REG2 definition (read)

Field Description

REFMON Reflect the status of the REFMON output of the AD9517

LD Reflect the status of the LD output of the AD9517

STATUS Reflect the status of the STATUS output of the AD9517

VM Reflect the status of the INT# output of the ADT7411 (inverted)

‘0‘ INT# is not asserted ‘1‘ INT# is asserted, access to the ADT7411 trough the I2C bus is required to

determine the source of the interrupt

IRQ Logic function: NOT (REFMON AND LD AND STATUS AND INT#)

‘0‘ All status signals indicate OK ‘1‘ One or more status signals indicate ERROR

Table 17 Register CPLD_REG2 description (read)

Bit nr. Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0

Name Reserved LED_SEL

Table 18: Register CPLD_REG2 definition (write)

Page 33: Unit / Module Namecascading of multiple board for phase-locked samplings . Additionally, a trigger input for customized sampling control is available. The FMC12x daughter card is mechanically

UM009 FMC12x User Manual r1.18

UM009 www.abaco.com - 33 -

Field Description

LED_SEL Writing to this register determines which status signal is reflected on the LED.

‘XXXX1‘ REFMON ‘XXX10‘ LD ‘XX100‘ STATUS ‘X1000‘ VM ‘10000‘ IRQ

Table 19 Register CPLD_REG2 description (write)