university of groningen neutral and cationic alkyl and ... · by: cornelis g. j. tazelaar, sergio...

55
University of Groningen Neutral and cationic alkyl and alkynyl complexes of lanthanum Tazelaar, CGJ; Bambirra, S; van Leusen, D; Meetsma, A; Hessen, B; Teuben, JH; Tazelaar, Cornelis G.J. Published in: Organometallics DOI: 10.1021/om034403u IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2004 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Tazelaar, C. G. J., Bambirra, S., van Leusen, D., Meetsma, A., Hessen, B., Teuben, J. H., & Tazelaar, C. G. J. (2004). Neutral and cationic alkyl and alkynyl complexes of lanthanum: Synthesis, stability, and cis- selective linear alkyne dimerization. Organometallics, 23(5), 936-939. DOI: 10.1021/om034403u Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 10-02-2018

Upload: others

Post on 23-Mar-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

University of Groningen

Neutral and cationic alkyl and alkynyl complexes of lanthanumTazelaar, CGJ; Bambirra, S; van Leusen, D; Meetsma, A; Hessen, B; Teuben, JH; Tazelaar,Cornelis G.J.Published in:Organometallics

DOI:10.1021/om034403u

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite fromit. Please check the document version below.

Document VersionPublisher's PDF, also known as Version of record

Publication date:2004

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):Tazelaar, C. G. J., Bambirra, S., van Leusen, D., Meetsma, A., Hessen, B., Teuben, J. H., & Tazelaar, C.G. J. (2004). Neutral and cationic alkyl and alkynyl complexes of lanthanum: Synthesis, stability, and cis-selective linear alkyne dimerization. Organometallics, 23(5), 936-939. DOI: 10.1021/om034403u

CopyrightOther than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of theauthor(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policyIf you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediatelyand investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons thenumber of authors shown on this cover page is limited to 10 maximum.

Download date: 10-02-2018

Page 2: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Supporting Material to:

Neutral and Cationic Alkyl and Alkynyl Complexes of Lanthanum: Synthesis,

Stability and cis-Selective Alkyne Dimerization

By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma,

Bart Hessen* and Jan H. Teuben

Part I: Experimental Section

General remarks. All preparations were performed under an inert nitrogen

atmosphere, using standard Schlenk or glovebox techniques, unless mentioned

otherwise. Toluene, pentane, and hexane (Aldrich, anhydrous, 99.8%) were passed

over columns of Al2O3 (Fluka), BASF R3-11-supported Cu oxygen scavenger, and

molecular sieves (Aldrich, 4Å). Diethyl ether and THF (Aldrich, anhydrous, 99.8%)

were dried over Al2O3 (Fluka). All solvents were degassed prior to use and stored

under nitrogen. Deuterated solvents (C6D6, C7D8, C4D8O; Aldrich) were vacuum

transferred from Na/K alloy, or dried over and distilled from CaH2 (C6D5Br) prior to

use. Reagents: Me2TACNH1, Me2TACNLi2, ClSiMe2NHtBu3,

Me2TACN(CH2)2NHtBu4, Me3SiCH2Li5, LaBr3(THF)46 were prepared according to

1 Fassbeck, C.; Wieghardt, K. Z. Anorg. Allg. Chem., 1992, 608, 60. 2 Fletcher, J. S.; Male, N. A. H.; Wilson, P. J.; Rees, L. H.; Mountford, P.; Schröder, M. J. Chem. Soc., Dalton Trans., 2000, 4130 3 Wannagat, U.; Schreiner, G. Monath. Chem. 1965, 96, 1889 4 Bambirra, S.; Van Leusen, D.; Meetsma, A.; Hessen, B; Teuben, J. H. Chem. Commun., 2001, 637. 5 Lewis, H. L.; Brown, T. L. J. Am. Chem. Soc. 1970, 92, 4664

Page 3: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

published procedures. Phenylacetylene (Aldrich) was dried over molecular sieves

(Aldrich 4Å) under nitrogen atmosphere before use. NMR spectra were recorded on

Varian Gemini VXR 300 or Varian Inova 500 spectrometers in NMR tubes equipped

with Teflon Young valve. The 1H NMR spectra were referenced to resonances of

residual protons in deuterated solvents. The 13C NMR spectra were referenced to

carbon resonances of deuterated solvents and reported in ppm relative to TMS (δ 0

ppm). GC analyses were performed on a HP 6890 instrument equipped with a HP-1

dimethylpolysiloxane column (19095 Z-123). GC/MS analyses were conducted using

a HP 5973 mass-selective detector attached to a HP 6890 GC instrument. Elemental

analyses were performed at the Microanalytical Department of the Univeristy of

Groningen. Given values are the average of at least two independent determinations.

In initial combustion analysis experiments, the compounds containing La and Si (and

especially compound 2) gave carbon contents that were significantly and consistently

too low, whereas the other elements (H, N) gave values close to those expected. This

may be associated with the formation of inert metal carbides during combustion. To

counteract this, aliquots of V2O5 were added to the solid samples before combustion.

This resulted in a relative increase of the determined amounts of C (albeit still below

the calculated values); the values of these runs are given. IR spectra were recorded on

a Mattson 4020 Galaxy FT-IR spectrometer.

6 LaBr3: Taylor, M. D.; Carter, C. P. J. Inorg. Nucl. Chem. 1962, 24, 387. LaBr3(THF)4: Herzog, S.; Gustav, K.; Krüger, E.; Oberender, H.; Schuster, R. Z. Chem. 1963, 3, 428.

Page 4: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Synthesis of [Me2-TACN-SiMe2NHBut] (HB)

To a solution of 2.20 g (13.49 mmol) of Li[Me2-TACN] in hexane (50 ml) was

added 2.34 g (13.50 mmol) of ClSiMe2NHBut. The mixture was stirred for one hour,

after which the precipitated LiCl was filtered off. The hexane was removed from the

filtrate under reduced pressure to leave the title compound as a light yellow oil. Yield:

3.70 g (12.9 mmol, 96 %). The identity of the product was established by NMR

spectroscopy (purity > 95%) and the product was used without further purification.

1H NMR (200 MHz, 20oC, C6D6): δ 2.95-2.93 (m, 2 H, NCH2), 2.63-2.52 (m, 10 H,

NCH2), 2.27 (s, 6 H, NMe), 1.15 (s, 9 H, But), 1.21 (s, 1 H NH), 0.20 (s, 6 H, SiMe2).

13C NMR (50.2 MHz, 20oC, C6D6): δ 59.8 (t, JCH = 128 Hz, NCH2), 57.7 (t, JCH =

128 Hz, NCH2), 53.5 (s, But C), 50.3 (t, JCH = 134 Hz, NCH2), 46.4 (q, JCH = 135 Hz,

NMe), 33.8 (q, JCH = 121 Hz, NCMe3), 1.3 (q, JCH = 115 Hz, SiMe2).

Synthesis of [Me2-TACN-(CH2)2NBut]La(CH2SiMe3)2 (1)

At ambient temperature, solid LiCH2SiMe3 (0.28 g, 3.0 mmol) was added to a

suspension of LaBr3(THF)4 (0.67 g, 1.0 mmol) in THF (60 ml). Within 5 minutes a

bright yellow solution had formed. The solution was stirred for 3 hours, after which

Me2-TACN-(CH2)2NHBut (0.25 g, 1.0 mmol) was added. This solution was stirred for

three more hours, after which the volatiles were removed in vacuo. The mixture was

extracted with pentane (2 x 50 ml), the obtained extract was concentrated to 20 ml and

cooled (- 30 ºC), yielding crystalline 1 (0.25 g, 0.44 mmol, 44 %).

1H NMR (500 MHz, 25°C, C6D6): δ 3.08 (m, 2 H, NCH2), 2.82 (m, 2H, NCH2),

2.40-2.35 (m, 2 H, NCH2), 2.27 (s, 6 H, NMe2), 2.17-2.13 (m, 4 H, NCH2), 1.79-1.74

Page 5: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

(m, 2 H, NCH2), 1.71-1.66 (m, 3 H, NCH2), 1.44 (s, 9 H, But), 0.46 (s, 18 H,

Me3SiCH2), -0.66 (d, 2JHH = 10.5 Hz, 2 H, Me3SiCH2), -0.80 (d, 2JHH = 10.5 Hz, 2 H,

Me3SiCH2).

13C NMR (125.7 MHz, 25°C, C6D6) δ: 59.7 (t, JCH = 132 Hz, NCH2), 55.7 (t, JCH =

135 Hz, NCH2), 54.9 (s, But C), 54.3 (t, JCH = 133 Hz, NCH2), 52.1 (t, JCH = 130 Hz,

NCH2), 48.1 (t, JCH = 104 Hz, LaCH2), 47.5 (t, JCH = 128 Hz, NCH2), 47.0 (q, JCH =

135 Hz, NMe), 30.2 (q, JCH = 123, But Me), 5.2 (q, JCH = 116 Hz, Me3SiCH2).

13C{1H} NMR (75.4 MHz, 20°C, C6D6/THF-d8) δ: 59.7 ( NCH2), 55.8 (NCH2), 54.9

(s, But C), 54.4 (NCH2), 52.1 (NCH2), 47.9 (LaCH2), 47.5 (NCH2), 47.0 (NMe), 30.1

(But Me), 5.1 (Me3SiCH2).

1H NMR (300 MHz, 20°C, THF-d8) δ: 3.14 (m, 2 H, NCH2), 3.05 (m, 2H, NCH2),

2.97-2.84 (m, 12 H, NCH2), 2.68 (s, 6 H, NMe2), 1.29 (s, 9 H, But), -0.07 (s, 18 H,

Me3SiCH2), -0.98 (d, JHH = 8.0 Hz, 2 H, Me3SiCH2), -1.12 (d, JHH = 8.0 Hz, 2 H,

Me3SiCH2).

13C NMR (75.4 MHz, 20°C, THF-d8) δ: 61.5 (t, JCH = 135.2 Hz, NCH2), 57.8 (t, JCH

= 140.6 Hz, NCH2), 56.5 (t, JCH = 137.9 Hz, NCH2), 56.3 (s, But C), 54.1 (t, JCH =

135.2 Hz, NCH2), 49.1(t, JCH = 127.1 Hz, NCH2), 48.5 (q, JCH = 135.2 Hz, NMe),

48.2 (t, JCH = 102.8 Hz, LaCH2), 31.4 (q, JCH = 124.8, But Me), 5.9 (q, JCH = 116.9

Hz, Me3SiCH2).

Anal. Calcd for C22H53N4LaSi2: C, 46.46; H, 9.39; N, 9.85; Found: C, 45.90; H,

9.21; N, 9.76;

Page 6: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Synthesis of {[(CH2)Me-TACN-SiMe2NBut]La(CH2SiMe3)}2 (2)

Solid LiCH2SiMe3 (1.34 g, 14.3 mmol) and LaBr3(THF)4 (3.16 g, 4.7 mmol) were

mixed with THF (100 ml) at -50 °C. Within 5 minutes a yellowish solution had

formed that was stirred for 2 hours while gradually warming to -10 °C. Subsequently

Me2-TACN-SiMe2NHBut (1.35 g, 4.74 mmol) was added. The yellow solution was

stirred for 2 more hours after which the volatiles were removed in vacuo and the oily

residue was stirred twice with pentane (10 ml) which was subsequently pumped off.

The resulting foamy substance was extracted with pentane (5 x 50 ml). The solvent

was removed from the extract in vacuo, resulting in 1.50 g (1.5 mmol, 62%) of 2 (as

seen by NMR) as a yellowish powder. Nevertheless, this material still contained some

LiBr as seen from a flame test. The material was recrystallised from pentane/toluene

at - 30 ºC yielding 0.44 g (0.4 mmol, 17%) of crystalline 2 as its toluene solvate.

NMR spectroscopy indicates the presence of two isomers (likely to be cis/trans type

isomers with respect to the central La2C2-ring) in a 3:1 ratio.

1H NMR major isomer (500 MHz, -50 °C, C7D8): δ 3.07-3.03 (m, 4H, NCH2), 2.77

(d, 2JHH = 13.5 Hz, 2H, NCHHLa), 2.58-2.51 (m, 8H, NCH2), 2.22 (s, 6 H, NMe),

2.02-1.94 (m, 4 H, NCH2), 1.90-1.85 (m, 8 H, NCH2), 1.70 (s, 18 H, But), 1.49 (d,

2JHH = 13.5 Hz, 2H, NCHHLa), 0.50 (s, 18 H, CH2SiMe3), 0.34 (s, 6 H, SiMeMe),

0.23 (s, 6 H, SiMeMe), -0.62 (d, 2JHH = 11.0 Hz, 2H, LaCHHSiMe3), -0.94 (d, 2JHH =

11.0 Hz, 2H, LaCHHSiMe3). 13C{1H} NMR (125.7 MHz, -50 °C, C7D8): δ 77.4

(NCH2La), 59.0 (NCH2), 58.2 (NCH2), 56.2 (LaCH2), 54.0 (NMe), 52.5 (But C), 48.2

(NCH2), 47.7 (NCH2), 43.4 (NCH2), 36.2 (NCMe3), 5.3 (CH2SiMe3), 4.7 (SiMeMe),

3.3 (SiMeMe).

Page 7: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

1H NMR minor isomer (500 MHz, -50 °C, C7D8): δ 2.90-2.81(m, 4H, NCH2), 2.64

(d, 2JHH = 13.5 Hz, 2H, NCHHLa), 2.58-2.51 (m, 8H, NCH2), 2.35 (s, 6 H, NMe),

2.02-1.94 (m, 4 H, NCH2), 1.90-1.85 (m, 8 H, NCH2), 1.66 (s, 18 H, But), 1.41 (d,

2JHH = 13.5 Hz, 2H, NCHHLa), 0.54 (s, 18 H, CH2SiMe3), 0.18 (s, 6 H, SiMe2), 0.04

(s, 6 H, SiMe2), -0.44 (d, 2JHH = 11.0 Hz, 2H, LaCHHSiMe3), -0.89 (d, 2JHH = 11.0

Hz, 2H, LaCHHSiMe3). 13C{1H} NMR (500 MHz, -50 °C, C7D8): δ 77.0 (NCH2La),

57.9 (NCH2), 57.5 (NCH2), 54.4 (LaCH2), 53.5 (NMe), 53.2 (But C), 48.0 (NCH2),

46.0 (NCH2), 45.3 (NCH2), 36.1 (NCMe3), 5.6 (CH2SiMe3), 3.6 (SiMe2), 3.2 (SiMe2).

Anal. Calcd for C43H94N8Si4La2: C, 46.39; H, 8.51; N, 10.06. Found: C, 42.93; H,

8.32; N, 9.78. The analyzed C contents deviate grossly from the calculated value,

even when V2O5 is added to the sample before combustion analysis. The data given

are from the 2.toluene material obtained from toluene/pentane as described above.

This material was pure by NMR spectroscopy and was also used for the single crystal

X-ray structure determination.

Synthesis of [Me2-TACN-(CH2)2NBut)]La(CCPh)2}2 (3)

61.7 mg (108 µmol) of 1 was dissolved in 0.3 mL toluene. Phenyl acetylene (23.8

µL, 217 µmol) was added and the mixture was allowed to stand overnight. The next

day crystals had formed from a green solution. The supernatant was decanted and the

crystals were washed with toluene (1 ml) and pentane (2 ml). Drying in vacuo yielded

44.7 mg (33.6 µmol, 62 %) of cream-coloured crystals of 3.(toluene)1.5.

1H-NMR (500 MHz, -52 °C, THF-d8): δ 7.24-7.08 (m, 8H, Ph), 7.05-6.99 (m, 2H,

Ph), 4.73 (m, 1H, CH2N), 4.15 (m, 2H, CH2N, 3.36-3.08 (m, 4H, CH2N), 3.01 (s, 3H,

Page 8: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

NCH3), 2.95 (s, 3H, NCH3), 2.72-2.45 (m, 6H, CH2N), 2.37-2.24 (m, 3H, CH2N),

1.22 (s, 9H CCH3).

13C{1H} NMR (500 MHz, -40 °C, THF-d8): δ 163.9 (CCPh), 161.2 (CCPh), 132.7

(Ph), 130.5 (Ph), 129.5 (Ph), 126.4 (Ph), 106.4 (CCPh), 105.4 (CCPh), 62.6 (CH2N),

60.7 (CH2N), 60.1 (CH2N), 58.4 (CH2N), 56.5 (CH2N), 55.6 (CH2N), 55.2 (CH2N),

50.4 (CH2N), 49.6 (CH2N), 49.2 (CH2N), 30.6 (CMe3).

IR (KBr, cm-1): 3051(w), 2953(s), 2857(s), 2817(vs), 2660(w), 2193(w), 2041(w),

1592(s), 1482(vs), 1460(s), 1370(m), 1349(m), 1304(m), 1193(vs), 1108(m), 1075(s),

1013(vs), 962(s), 923(m), 859(m), 756(vs), 692(vs), 601(w), 574(w), 530(w), 494(m),

407(w)

Anal. Calc for C30H41LaN4: C, 60.40; H, 6.93; N, 9.39. Found: C, 58.67; H, 6.87; N,

8.63

Generation of {[Me2TACN(CH2)2NtBu]La(CH2SiMe3)( THF-d8)x}[B(C6F5)4] (4)

A solution of 1 (38.2 mg, 69.4 µmol) in C6D6 (0.6 ml) was added to

[HNMe2Ph][B(C6F5)4] (55.5 mg, 69.4 µmol). After addition of some THF-d8 (0.1 ml)

the obtained solution was transferred to a NMR tube and analyzed by NMR

spectroscopy, which showed full conversion to the cationic species 4, SiMe4 and free

PhNMe2.

1H NMR (300 MHz, 20 °C, C6D6/ THF-d8): δ 7.22 (t, 3JHH = 8.0 Hz, 2 H, m-H

PhNMe2), 6.79 (t, 3JHH = 7.0 Hz, 1 H, p-H PhNMe2), 6.61 (d, 3JHH = 8.0 Hz, 2 H, o-H

PhNMe2), 2.91 (m, 2 H, NCH2), 2.61 (m, 2 H, NCH2), 2.49 (s, 6 H, PhNMe2), 2.20

Page 9: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

(m, 4 H, NCH2), 2.11 (s, 6 H, TACN NMe), 1.75 (m, 4 H, NCH2), 1.28 (s, 9 H, But),

0.42 (s, 9 H, CH2SiMe3), 0.00 (s, 12 H, SiMe4), -0.82 (br, 2 H, LaCH2).

13C{1H} NMR (75.4 MHz, 20°C, C6D6/ THF-d8): δ 151.1 (s, ipso-C PhNMe2),

149.1 (d, 1JCF = 240 Hz, o-CF, B(C6F5)4), 139.0 (d, 1JCF = 235 Hz, p-CF, B(C6F5)4),

137.1 (d, 1JCF = 235 Hz, m-CF, B(C6F5)4), 129.3 (o-CH PhNMe2), 125.8 (br, ipso-C,

B(C6F5)4), 117.0 (p-CH PhNMe2), 113.0 (m-CH PhNMe2), 60.0 (NCH2), 55.4

(NCH2), 55.4 (LaCH2), 54.7 (s, But C), 53.7 (NCH2), 52.6 ( NCH2), 47.0 (NMe), 45.2

(NCH2), 40.2 (PhNMe2), 29.7 (NCMe3), 4.3 (LaCH2SiMe3), 0.0 (SiMe4).

Reaction of 3 with [HNMe2Ph][B(C6F5)4]

A cold solution (-30 °C) of [HNMe2Ph][B(C6F5)4] (15.9 mg, 19.8 µmol) in a mixture

of bromobenzene-d5 (0.4 mL) and THF-d8 (8 µL) was added to 3 (11.7 mg, 8.8 µmol).

The solution turned bright red and immediately an orange oil was deposited in the

NMR tube. 1H NMR (500 MHz, -30 °C, bromobenzene-d5 / THF-d8) showed some

broad signals between δ 0.2 and 3.0, and signals for free N,N-dimethyl aniline (δ

7.23, 6.77, 6.58, 2.62) and for cis-1,4-diphenyl-buta-1-ene-3-yne: δ 7.94, 7.47, 7.28-

7.00, 6.52 (d, 3JHH = 11.7 Hz), 5.89 (d, 3JHH = 11.7 Hz).

For comparison a cold solution (-30 °C) of [HNMe2Ph][B(C6F5)4] (15.9 mg, 19.8

µmol) in a mixture of bromobenzene-d5 (0.4 mL) and THF –d8 (8 µL) was added to 1

(11.3 mg, 19.9 µmol). 1H NMR indicated full conversion to 4. Subsequently phenyl

acetylene (2.2 µL, 20.0 µmol) was added to the solution. Again an orange oily

precipitate was formed. 1H NMR (500 MHz, -30 °C, bromobenzene-d5 / THF-d8) only

Page 10: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

showed some broad signals between δ 0.2 and 3.0, and signals for free N,N-dimethyl

aniline (δ 7.23, 6.77, 6.58, 2.62) and tetramethyl silane (δ 0.0).

Catalytic dimerization of phenylacetylene

In one experiment a solution of 50 µL (0.45 mmol) of phenyl acetylene in 0.4 mL of

bromobenzene-d5 was added to a solid mixture of 1 and [PhNMe2H][B(C6F5)4] (10

µmol each; substrate/catalyst ratio 45:1). The reaction mixture was transferred to an

NMR tube and warmed to 50oC. The reaction was monitored by 1H NMR, showing

full conversion in 15 min. The reaction mixture was quenched by the addition of 25

µL of methanol and the products were analyzed by GC and GC-MS. The dimer

fraction contained 99% of cis-enyne and 1% of trans-enyne. Approximately 1% of

trimer (based on the initial amount of phenylacetylene; 3 isomers) was also observed.

The same procedure, but now using 500 µL (0.45 mmol) of phenylacetylene in 0.4

mL of bromobenzene-d5 (substrate/catalyst ratio 450:1), led to full conversion in 240

min. The relatively low observed conversion rate in this experiment may be due to the

reduced polarity of the reaction medium. Analysis of the mixture as described above

showed that the dimer fraction contained 99% of cis-enyne and 1% of trans-enyne. A

trace amount of trimer was also observed.

Page 11: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Part II: Structure determination of [Me 2-TACN-(CH 2) 2NBut]La(CH 2SiMe 3) 2 (1)

Experimental

X-ray diffraction: Crystal and Molecular Structure.

Suitable colorless colored block-shaped crystals were obtained by recrystallisation

from toluene. A crystal with the dimensions of 0.210 x 0.190 x 0.110 mm was

mounted on top of a glass fiber, by using inert-atmosphere handling techniques, and

aligned on a Bruker1 SMART APEX CCD diffractometer (Platform with full three-

circle goniometer). The diffractometer was equipped with a 4K CCD detector set 60.0

mm from the crystal. The crystal was cooled to 100(1) K using the Bruker

KRYOFLEX low-temperature device. Intensity measurements were performed using

graphite monochromated Mo-Kα radiation from a sealed ceramic diffraction tube

(SIEMENS). Generator settings were 50 KV/ 40 mA. SMART was used for

preliminary determination of the unit cell constants and data collection control. The

intensities of reflections of a hemisphere were collected by a combination of 3 sets of

exposures (frames). Each set had a different φ angle for the crystal and each exposure

covered a range of 0.3° in ω. A total of 1800 frames were collected with an exposure

time of 10.0 seconds per frame. The overall data collection time was 8.0 h. Data

integration and global cell refinement was performed with the program SAINT. The

final unit cell was obtained from the xyz centroids of 8942 reflections after

integration. Intensity data were corrected for Lorentz and polarization effects, scale

variation, for decay and absorption: a multi-scan absorption correction was applied,

based on the intensities of symmetry-related reflections measured at different angular

settings (SADABS)2, and reduced to Fo2. The program suite SHELXTL was used for

space group determination (XPREP).1

The unit cell3 was identified as monoclinic; reduced cell calculations did not indicate

any higher metric lattice symmetry.4 The space group P21/n, was derived from the

systematic extinctions. Examination of the final atomic coordinates of the structure

did not yield extra metric symmetry elements.6,7

The structure was solved by Patterson methods and extension of the model was

accomplished by direct methods applied to difference structure factors using the

program DIRDIF.8 The positional and anisotropic displacement parameters for the

non-hydrogen atoms were refined. A subsequent difference Fourier synthesis resulted

Page 12: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

in the location of all the hydrogen atoms, which coordinates and isotropic

displacement parameters were refined.

Final refinement on F2 carried out by full-matrix least-squares techniques converged

at wR(F2) = 0.0676 for 6852 reflections and R(F) = 0.0290 for 5628 reflections with

Fo ≥ 4.0 σ(Fo) and 474 parameters. The final difference Fourier map was essentially

featureless: no significant peaks (1.09(9) e/Å3) having chemical meaning above the

general background were observed.

The positional and anisotropic displacement parameters for the non-hydrogen atoms

and isotropic displacement parameters for hydrogen atoms were refined on F2 with

full-matrix least-squares procedures minimizing the function Q = h[w(│(Fo2) -

k(Fc2)│)2], where w = 1/[σ2(Fo

2) + (aP)2 + bP], P = [max(Fo2,0) + 2Fc

2] / 3, F0 and Fc

are the observed and calculated structure factor amplitudes, respectively; ultimately

the suggested a (=0.0282) and b (= 0.1125) were used in the final refinement.

Crystal data and numerical details on data collection and refinement are given in

Table 1. Final fractional atomic coordinates, equivalent displacement parameters and

anisotropic displacement parameters for the non-hydrogen atoms are given in Table 2.

Molecular geometry data are collected in Table 3. Tables of atom positions,

displacement parameters, comprehensive distances and angles and tables of (Fo2),

(Fc2) and σ(Fo

2) are given as supplementary material8 for this paper. Neutral atom

scattering factors and anomalous dispersion corrections were taken from International

Tables for Crystallography.11

All refinement calculations and graphics were performed on a Pentium-III / Debian-

Linux computer at the University of Groningen with the program packages SHELXL12

(least-square refinements), a locally modified version of the program PLUTO13

(preparation of illustrations) and PLATON10 package (checking the final results for

missed symmetry with the MISSYM option, solvent accessible voids with the SOLV

option, calculation of geometric data and the ORTEP10 illustrations).

References. 1. Bruker (2000). SMART, SAINT, SADABS, XPREP and SHELXTL/NT. Area

Detector Control and Integration Software. Smart Apex Software Reference Manuals. Bruker Analytical X-ray Instruments. Inc., Madison, Wisconsin, USA.

2. Sheldrick, G.M. (2001). SADABS. Version 2. Multi-Scan Absorption Correction Program. University of Göttingen, Germany.

3. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.

Page 13: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

4. Spek, A.L. (1988). J. Appl. Cryst. 21, 578-579. 5. Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269. 6. Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984. 7. Beurskens, P.T., Beurskens, G., Gelder, R. de, García-Granda, S., Gould,

R.O., Israël, R. & Smits, J.M.M. (1999). The DIRDIF-99 program system, Crystallography Laboratory, University of Nijmegen, The Netherlands.

8. Hall, S.R, Allen, F.H. & Brown, I.D. (1991). Acta Cryst. A47, 655-685. 9. Spek, A.L. (2002). PLATON. Program for the Automated Analysis of

Molecular Geometry (A Multipurpose Crystallographic Tool). Version of Feb. 2002. University of Utrecht, The Netherlands.

10. International Tables for Crystallography (1992). Vol. C. Edited by A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht. The Netherlands.

11. Sheldrick, G.M. (1997b). SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

12. Meetsma, A. (2002). PLUTO. Molecular Graphics Program. University of Groningen, The Netherlands.

13. Bondi, A. (1964). J. Phys. Chem. 68, 441-451. 14. Spek, A.L. (1990). Acta Cryst. A46, C-34. 15. Spek, A.L. (1994). Am. Crystallogr. Assoc. Abstr. 22, 66. 16. International Tables for Crystallography (1983). Vol. A. Space-group

symmetry, edited by T. Hahn. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht).

17. Fisher, R.X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776.

Page 14: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Table 1. a. Crystal data and details of the structure determination. Moiety_Formula C22H53LaN4Si2

Formula_Weight, g.mol-1 568.77

Crystal system monoclinic

Space group, no.17 P21/n, 14

a, Å 8.5787(3)

b, Å 17.6777(7)

c, Å 19.8289(8)

β, deg 99.498(1)

V, Å3 2965.9(2)

Θ range unit cell: min.-max., deg;

reflections

2.30 - 29.69 ; 8942

Formula_Z 4

SpaceGroup_Z 4

Z’ (= Formula_Z / SpaceGroup_Z) 1

ρcalc, g.cm-3 1.274

F(000), electrons 1192

µ(Mo Kα ), cm-1 15.35

Color, habit Colorless, block-triangle

Approx. crystal dimension, mm 0.21 x 0.19 x 0.11

Page 15: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

b. Data collection. λ( Mo Kα ), Å 0.71073

Monochromator Graphite

Measurement device type CCD area-detector diffractometer

Detector Area resolution (pixels / mm) 4096 x 4096 / 62 x 62 (binned

512)

Temperature, K 100(1)

Measurement method ϕ- and ω-scans

θ range; min. max., deg 2.30, 28.70

Index ranges h: -11→11; k: -23→23; l: -25→26

Min.- Max. absorption transmission factor 0.734 – 0.828

X-ray exposure time, h 8.0

Total data 20516

Unique data 6852

Data with criterion: (Fo ≥ 4.0 σ (Fo)) 5628

Rint = ∑ [|Fo2 - Fo

2 (mean)|] / ∑ [Fo

2] 0.0346

Rsig = ∑ σ(Fo2) / ∑ [Fo

2] 0.0450

Page 16: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

c. Refinement. Number of reflections 6852

Number of refined parameters 474

Final agreement factors:

wR(F2) = [ ∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.0676

Weighting scheme: a, b 0.0282, 0.1125

w = 1/[σ2(Fo2) + (aP)2 + bP]

And P = [max(Fo2,0) + 2Fc

2] / 3

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo | 0.0290

For Fo > 4.0 σ (Fo)

GooF = S = [ ∑ [w(Fo2 - Fc

2)2] / (n-p)] 1/2 1.027

n = number of reflections

p = number of parameters refined

Residual electron density in final

Difference Fourier map, e/Å3 -0.53, 1.09(9)

Max. (shift/σ) final cycle <0.001

Average (shift/σ) final cycle 0.000

Page 17: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Table 2. Final fractional atomic coordinates and equivalent isotropic displacement parameters with s.u.'s in parentheses.

Atoms of the Asymmetric Unit. Non-Hydrogen parameters Atom x y z Ueq (Å

2)* La 0.01586(2) 0.24576(1) 0.18532(1) 0.01232(4) Si1 -0.26276(8) 0.05375(3) 0.12101(4) 0.01874(19) Si2 -0.21132(8) 0.43169(3) 0.11126(4) 0.01837(19) N1 0.1925(2) 0.27511(11) 0.11041(11) 0.0186(6) N2 0.2805(2) 0.31466(10) 0.25211(11) 0.0169(6) N3 0.2402(2) 0.15321(10) 0.26242(11) 0.0190(6) N4 0.0395(3) 0.25604(9) 0.32523(11) 0.0166(6) C1 0.0374(4) 0.19306(16) 0.02961(16) 0.0267(9) C2 0.3282(4) 0.19508(16) 0.03410(16) 0.0274(9) C3 0.1623(4) 0.30476(15) -0.01437(16) 0.0266(9) C4 0.1833(3) 0.24348(12) 0.04147(14) 0.0184(7) C5 0.3300(3) 0.32279(14) 0.13207(15) 0.0238(9) C6 0.3129(3) 0.36552(14) 0.19673(14) 0.0224(8) C7 0.4178(3) 0.26516(14) 0.27731(17) 0.0228(8) C8 0.3950(3) 0.18421(14) 0.25269(16) 0.0225(8) C9 0.2129(3) 0.07980(14) 0.22763(17) 0.0265(9) C10 0.2251(3) 0.14554(13) 0.33528(14) 0.0212(8) C11 0.0698(3) 0.17745(13) 0.34978(15) 0.0199(8) C12 -0.1193(3) 0.27834(15) 0.33839(16) 0.0230(9) C13 0.1613(3) 0.30952(13) 0.35874(14) 0.0198(8) C14 0.2279(3) 0.35886(13) 0.30724(14) 0.0200(8) C15 -0.2001(3) 0.13862(13) 0.17037(15) 0.0200(8) C16 -0.3055(4) 0.07298(18) 0.02698(16) 0.0305(10) C17 -0.1116(4) -0.02399(16) 0.1347(2) 0.0361(12) C18 -0.4468(3) 0.00886(15) 0.14361(17) 0.0263(9) C19 -0.1681(3) 0.36440(13) 0.18149(14) 0.0200(8) C20 -0.3595(4) 0.50696(16) 0.12363(19) 0.0356(10) C21 -0.0284(4) 0.48409(17) 0.09805(19) 0.0337(10) C22 -0.2923(4) 0.38281(18) 0.02910(17) 0.0318(10) Hydrogen parameters

Atom x y z Ueq (Å2)*

H1 0.048(4) 0.1522(19) 0.0641(18) 0.058(10) H1' 0.025(4) 0.1699(17) -0.0135(17) 0.038(9) H1" -0.064(4) 0.2245(18) 0.0320(16) 0.042(9) H2 0.426(4) 0.2271(16) 0.0395(16) 0.036(8) H2' 0.312(4) 0.1647(17) -0.0105(17) 0.044(9) H2" 0.334(3) 0.1580(16) 0.0676(16) 0.037(9) H3 0.077(4) 0.3348(17) -0.0098(16) 0.045(9) H3' 0.152(3) 0.2815(15) -0.0628(15) 0.027(7) H3" 0.259(4) 0.3397(17) -0.0109(16) 0.043(9) H5 0.345(3) 0.3622(14) 0.0962(14) 0.028(7) H5' 0.432(3) 0.2896(15) 0.1407(14) 0.027(7) H6 0.410(3) 0.3967(13) 0.2132(12) 0.016(6)

Page 18: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

H6' 0.230(3) 0.3993(14) 0.1852(13) 0.017(7) H7 0.438(3) 0.2687(13) 0.3288(16) 0.020(7) H7' 0.509(3) 0.2859(14) 0.2623(13) 0.020(7) H8 0.399(3) 0.1828(13) 0.2031(14) 0.019(7) H8' 0.481(3) 0.1522(14) 0.2754(13) 0.023(7) H9 0.293(3) 0.0427(13) 0.2447(12) 0.017(6) H9' 0.214(3) 0.0877(14) 0.1747(15) 0.025(7) H9" 0.112(3) 0.0584(14) 0.2362(14) 0.029(7) H10 0.316(3) 0.1715(13) 0.3647(13) 0.018(7) H10' 0.229(3) 0.0918(14) 0.3501(13) 0.026(7) H11 -0.018(3) 0.1472(14) 0.3275(13) 0.023(7) H11' 0.069(3) 0.1731(14) 0.3959(15) 0.022(7) H12 -0.208(4) 0.2453(14) 0.3082(19) 0.041(10) H12' -0.138(3) 0.3310(14) 0.3256(12) 0.018(6) H12" -0.125(4) 0.2723(17) 0.3876(19) 0.049(10) H13 0.239(3) 0.2797(14) 0.3875(13) 0.013(6) H13' 0.114(3) 0.3414(14) 0.3889(14) 0.025(7) H14 0.145(3) 0.3947(13) 0.2873(12) 0.013(6) H14' 0.315(3) 0.3898(12) 0.3324(12) 0.012(6) H15 -0.198(4) 0.1264(16) 0.2163(17) 0.040(9) H15' -0.280(3) 0.1775(14) 0.1606(14) 0.025(7) H16 -0.370(4) 0.118(2) 0.0194(19) 0.066(12) H16' -0.351(4) 0.0291(19) 0.0013(17) 0.058(11) H16" -0.207(4) 0.0819(18) 0.0107(16) 0.054(10) H17 -0.016(4) -0.0108(17) 0.1177(17) 0.042(9) H17' -0.145(3) -0.0711(17) 0.1095(16) 0.043(9) H17" -0.088(4) -0.0388(16) 0.1823(17) 0.04(1) H18 -0.435(3) -0.0052(14) 0.1922(15) 0.027(8) H18' -0.473(3) -0.0375(14) 0.1175(14) 0.025(7) H18" -0.542(3) 0.0419(15) 0.1329(14) 0.031(8) H19 -0.257(4) 0.3388(16) 0.1874(15) 0.038(9) H19' -0.135(3) 0.3939(15) 0.2237(15) 0.032(8) H20 -0.460(4) 0.4851(16) 0.1262(15) 0.035(9) H20' -0.376(4) 0.5436(17) 0.0888(16) 0.047(9) H20" -0.312(4) 0.5334(19) 0.1683(19) 0.067(12) H21 0.016(4) 0.5119(17) 0.1394(18) 0.047(10) H21' -0.049(4) 0.5226(17) 0.0632(16) 0.046(9) H21" 0.050(4) 0.4499(17) 0.0829(15) 0.043(9) H22 -0.222(4) 0.3469(18) 0.0146(17) 0.058(11) H22' -0.322(4) 0.4210(19) -0.0019(17) 0.048(10) H22" -0.380(4) 0.3543(16) 0.0341(15) 0.036(8) *) Ueq = 1/3 ∑ i ∑ jUijai

*aj*ai.aj

18

Page 19: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Anisotropic (displacement) parameters (Å2) Residue: 1. U11 U22 U33 U23 U13

U12

La 0.01163(8) 0.01441(6) 0.01072(9) 0.00025(5) 0.00126(6) -0.00036(5) Si1 0.0182(3) 0.0169(3) 0.0196(4) -0.0007(3) -0.0014(3) -0.0007(3) Si2 0.0205(3) 0.0171(3) 0.0160(4) 0.0007(3) -0.0014(3) 0.0018(3) N1 0.0157(10) 0.0232(9) 0.0172(14) -0.0007(8) 0.0038(10) -0.0014(8) N2 0.0159(11) 0.0205(9) 0.0138(13) 0.0019(8) 0.0012(9) -0.0001(8) N3 0.0200(11) 0.0204(9) 0.0158(13) -0.0013(8) 0.001(1) 0.0018(8) N4 0.0139(10) 0.0203(9) 0.0155(13) 0.0007(8) 0.0022(9) 0.0004(7) C1 0.0337(17) 0.0316(13) 0.0151(18) -0.0053(12) 0.0047(14) -0.0042(12) C2 0.0282(16) 0.0329(13) 0.0220(19) 0.0013(12) 0.0068(14) 0.0082(12) C3 0.0315(16) 0.0295(13) 0.0195(18) 0.0084(11) 0.0064(14) 0.0055(12) C4 0.0193(12) 0.0248(11) 0.0116(15) 0.0003(9) 0.0037(11) 0.0009(9) C5 0.0214(14) 0.0277(12) 0.0229(18) 0.0009(11) 0.0054(12) -0.0051(11) C6 0.0228(14) 0.0238(11) 0.0204(17) 0.0019(10) 0.0033(12) -0.0074(11) C7 0.0126(12) 0.0317(12) 0.0225(19) 0.0013(11) -0.0014(12) -0.0016(10) C8 0.0150(13) 0.0269(12) 0.0252(18) 0.0039(11) 0.0023(12) 0.0066(10) C9 0.0301(16) 0.0206(11) 0.028(2) 0.0006(11) 0.0023(14) 0.0050(11) C10 0.0224(14) 0.0220(11) 0.0174(17) 0.0054(10) -0.0018(12) 0.0018(10) C11 0.0248(14) 0.0206(11) 0.0143(16) 0.0041(10) 0.0034(12) 0.0008(10) C12 0.0209(14) 0.0295(12) 0.0203(18) 0.0009(11) 0.0087(13) 0.0048(11) C13 0.0227(14) 0.0226(11) 0.0131(16) -0.0025(10) 0.0000(12) -0.0005(10) C14 0.0211(13) 0.0198(10) 0.0183(16) -0.005(1) 0.0009(12) -0.0055(10) C15 0.0210(13) 0.0183(10) 0.0206(17) 0.0016(10) 0.0027(12) -0.0017(10) C16 0.0302(16) 0.0425(16) 0.0179(19) -0.0039(12) 0.0015(14) -0.0083(14)

Page 20: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C17 0.0304(17) 0.0254(13) 0.048(3) -0.0107(14) -0.0067(17) 0.0043(12) C18 0.0274(15) 0.0256(12) 0.0242(19) 0.0014(12) -0.0009(14) -0.0075(11) C19 0.0223(14) 0.0183(10) 0.0192(17) 0.0012(10) 0.0030(12) 0.0036(10) C20 0.0396(19) 0.0278(14) 0.039(2) 0.0051(14) 0.0049(17) 0.0151(13) C21 0.0322(17) 0.0306(14) 0.036(2) 0.0115(14) -0.0015(16) -0.0053(12) C22 0.0323(17) 0.0375(15) 0.023(2) -0.0048(13) -0.0034(15) -0.0013(14) Thermal vibration amplitudes (Å2)

F(h) = Fo(h) exp (-2π2

i=1

3

Σj=1

3

ΣhihIai*aj

*Uij)

or F(h) = Fo(h) exp (-8π2Uiso(sin(θ)/λ)2) Table 3. Data on the geometry. Standard deviations in the last decimal place are given in parentheses. Interatomic Distances (Å) La -N1 2.3483(19) N2 -C6 1.481(3) La -N2 2.7202(19) N2 -C7 1.486(3) La -N3 2.7833(19) N2 -C14 1.474(3) La -N4 2.754(2) N3 -C8 1.478(3) La -C15 2.632(2) N3 -C9 1.470(3) La -C19 2.618(2) N3 -C10 1.478(3) Si1 -C15 1.823(3) N4 -C11 1.481(3) Si1 -C16 1.871(3) N4 -C12 1.482(4) Si1 -C17 1.878(3) N4 -C13 1.483(3) Si1 -C18 1.886(3) C1 -C4 1.523(4) Si2 -C19 1.822(3) C2 -C4 1.536(4) Si2 -C20 1.884(3) C3 -C4 1.538(4) Si2 -C21 1.877(3) C5 -C6 1.516(4) Si2 -C22 1.873(3) C7 -C8 1.514(4) N1 -C4 1.467(3) C10 -C11 1.517(4) N1 -C5 1.456(3) C13 -C14 1.524(4)

Page 21: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Bond Angles (deg.) N1 -La -N2 68.60(7) La -N2 -C14 105.39(13) N1 -La -N3 91.00(6) C6 -N2 -C7 111.81(19) N1 -La -N4 132.43(7) C6 -N2 -C14 110.25(18) N1 -La -C15 127.12(8) C7 -N2 -C14 112.7(2) N1 -La -C19 104.68(7) La -N3 -C8 105.37(14) N2 -La -N3 63.25(5) La -N3 -C9 102.65(15) N2 -La -N4 64.10(7) La -N3 -C10 115.26(13) N2 -La -C15 153.19(7) C8 -N3 -C9 110.06(19) N2 -La -C19 96.09(7) C8 -N3 -C10 112.8(2) N3 -La -N4 63.65(6) C9 -N3 -C10 110.17(19) N3 -La -C15 92.81(7) La -N4 -C11 104.42(15) N3 -La -C19 147.74(7) La -N4 -C12 106.13(16) N4 -La -C15 95.42(8) La -N4 -C13 115.01(15) N4 -La -C19 85.42(7) C11 -N4 -C12 108.0(2) C15 -La -C19 99.41(8) C11 -N4 -C13 112.2(2) C15 -Si1 -C16 112.17(13) C12 -N4 -C13 110.60(19) C15 -Si1 -C17 112.90(14) N1 -C4 -C1 106.5(2) C15 -Si1 -C18 113.76(13) N1 -C4 -C2 112.4(2) C16 -Si1 -C17 107.10(16) N1 -C4 -C3 112.60(19) C16 -Si1 -C18 106.21(15) C1 -C4 -C2 108.5(2) C17 -Si1 -C18 104.06(13) C1 -C4 -C3 107.8(2) C19 -Si2 -C20 114.71(14) C2 -C4 -C3 108.9(2) C19 -Si2 -C21 111.06(14) N1 -C5 -C6 110.6(2) C19 -Si2 -C22 111.28(13) N2 -C6 -C5 112.4(2) C20 -Si2 -C21 105.49(14) N2 -C7 -C8 113.3(2) C20 -Si2 -C22 106.12(15) N3 -C8 -C7 112.3(2) C21 -Si2 -C22 107.74(16) N3 -C10 -C11 111.9(2) La -N1 -C4 124.34(14) N4 -C11 -C10 113.5(2) La -N1 -C5 121.15(16) N4 -C13 -C14 112.3(2) C4 -N1 -C5 114.3(2) N2 -C14 -C13 112.84(19) La -N2 -C6 98.89(14) La -C15 -Si1 142.41(14) La -N2 -C7 116.84(14) La -C19 -Si2 126.20(13)

Page 22: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Part III: Structure determination of

{[(CH2)Me-TACN-SiMe2NBut]La(CH2SiMe3)}2 (2)

Experimental

X-ray diffraction: Crystal and Molecular Structure.

Suitable colorless colored block-shaped crystals were obtained by recrystallisation

from toluene. A crystal with the dimensions of 0.39 x 0.31 x 0.16 mm was mounted

on top of a glass fiber, by using inert-atmosphere handling techniques, and aligned on

a Bruker1 SMART APEX CCD diffractometer (Platform with full three-circle

goniometer). The diffractometer was equipped with a 4K CCD detector set 60.0 mm

from the crystal. The crystal was cooled to 100(1) K using the Bruker KRYOFLEX

low-temperature device. Intensity measurements were performed using graphite

monochromated Mo-Kα radiation from a sealed ceramic diffraction tube

(SIEMENS). Generator settings were 50 KV/ 40 mA. SMART was used for

preliminary determination of the unit cell constants and data collection control. The

intensities of reflections of a hemisphere were collected by a combination of 3 sets of

exposures (frames). Each set had a different φ angle for the crystal and each exposure

covered a range of 0.3° in ω. A total of 1800 frames were collected with an exposure

time of 10.0 s per frame. The overall data collection time was 8.0 h. Data integration

and global cell refinement was performed with the program SAINT. The final unit cell

was obtained from the xyz centroids of 8203 reflections after integration. Intensity

data were corrected for Lorentz and polarization effects, scale variation, for decay and

absorption: a multi-scan absorption correction was applied, based on the intensities of

symmetry-related reflections measured at different angular settings (SADABS)2, and

reduced to Fo2. The program suite SHELXTL was used for space group determination

(XPREP).1

The unit cell3 was identified as triclinic, space group P-1: the E-statistics were

indicative of a centrosymmetric space group.4 Reduced cell calculations did not

indicate any higher metric lattice symmetry5 and examination of the final atomic

coordinates of the structure did not yield extra metric symmetry elements.6,7

The structure was solved by Patterson methods and extension of the model was

accomplished by direct methods applied to difference structure factors using the

Page 23: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

program DIRDIF.8 The positional and anisotropic displacement parameters for the

non-hydrogen atoms were refined. A subsequent difference Fourier synthesis resulted

in the location of all the hydrogen atoms, which coordinates and isotropic

displacement parameters were refined.

Final refinement on F2 carried out by full-matrix least-squares techniques converged

at wR(F2) = 0.0570 for 13308 reflections and R(F) = 0.0230 for 12090 reflections

with Fo ≥ 4.0 σ(Fo) and 860 parameters. The final difference Fourier map was

essentially featureless: no significant peaks (0.81(8) e/Å3) having chemical meaning

above the general background were observed.

The positional and anisotropic displacement parameters for the non-hydrogen atoms

and isotropic displacement parameters for hydrogen atoms were refined on F2 with

full-matrix least-squares procedures minimizing the function Q = h[w(│(Fo2) -

k(Fc2)│)2], where w = 1/[σ2(Fo

2) + (aP)2 + bP], P = [max(Fo2,0) + 2Fc

2] / 3, F0 and Fc

are the observed and calculated structure factor amplitudes, respectively; ultimately

the suggested a (=0.0284) and b (= 0.9545) were used in the final refinement.

Crystal data and numerical details on data collection and refinement are given in

Table 1. Final fractional atomic coordinates, equivalent displacement parameters and

anisotropic displacement parameters for the non-hydrogen atoms are given in Table 2.

Molecular geometry data are collected in Table 3. Tables of atom positions,

displacement parameters, comprehensive distances and angles and tables of (Fo2),

(Fc2) and σ(Fo

2) are given as supplementary material*7 for this paper. Neutral atom

scattering factors and anomalous dispersion corrections were taken from International

Tables for Crystallography.11

All refinement calculations and graphics were performed on a Pentium-III / Debian-

Linux computer at the University of Groningen with the program packages SHELXL12

(least-square refinements), a locally modified version of the program PLUTO13

(preparation of illustrations) and PLATON10 package (checking the final results for

missed symmetry with the MISSYM option, solvent accessible voids with the SOLV

option, calculation of geometric data and the ORTEP10 illustrations).

*7 Supplementary Material Available: Tables of crystal data, anisotropic displacement parameters, atomic coordinates, bond lengths, bond angles, and torsion angles (as a CIF9 file) and an ORTEP10 plot; a listing of observed and calculated structure factors (also as a CIF file). Supplementary data for this paper are available from the IUCr electronic archives (Reference: CCDCxxxxxxx). Services for accessing these data are described at the back of the journal. (Acta Cryst. C)

Page 24: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

References. 1. Bruker (2000). SMART, SAINT, SADABS, XPREP and SHELXTL/NT. Area

Detector Control and Integration Software. Smart Apex Software Reference Manuals. Bruker Analytical X-ray Instruments. Inc., Madison, Wisconsin, USA.

2. Sheldrick, G.M. (2001). SADABS. Version 2. Multi-Scan Absorption Correction Program. University of Göttingen, Germany.

3. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96. 4. Snow, M.R. & Tiekink, E.R.T. (1988). Acta Cryst. B44, 676-677. 5. Spek, A.L. (1988). J. Appl. Cryst. 21, 578-579. 6. Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269. 7. Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984. 8. Beurskens, P.T., Beurskens, G., Gelder, R. de, García-Granda, S., Gould, R.O.,

Israël, R. & Smits, J.M.M. (1999). The DIRDIF-99 program system, Crystallography Laboratory, University of Nijmegen, The Netherlands.

9. Hall, S.R, Allen, F.H. & Brown, I.D. (1991). Acta Cryst. A47, 655-685. 10. Spek, A.L. (2002). PLATON. Program for the Automated Analysis of

Molecular Geometry (A Multipurpose Crystallographic Tool). Version of Feb. 2002. University of Utrecht, The Netherlands.

11. International Tables for Crystallography (1992). Vol. C. Edited by A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht. The Netherlands.

12. Sheldrick, G.M. (1997b). SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

13. Meetsma, A. (2002). PLUTO. Molecular Graphics Program. University of Groningen, The Netherlands.

14. Bondi, A. (1964). J. Phys. Chem. 68, 441-451. 15. Spek, A.L. (1990). Acta Cryst. A46, C-34. 16. Spek, A.L. (1994). Am. Crystallogr. Assoc. Abstr. 22, 66. 17. International Tables for Crystallography (1983). Vol. A. Space-group

symmetry, edited by T. Hahn. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht).

18. Fisher, R.X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776.

Page 25: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Table 1. a. Crystal data and details of the structure determination. Moiety_Formula 2(C18H43LaN4Si2).C7H8

Formula_Weight, g.mol-1 1113.44

Crystal system triclinic

Space group, no.17 P-1, 2

A, Å 10.8289(4)

B, Å 12.8117(5)

c, Å 20.3165(8)

α, deg 91.104(1)

β, deg 93.756(1)

γ, deg 97.498(1)

V, Å3 2787.44(19)

Θ range unit cell: min.-max., deg;

reflections

2.56 - 29.55 ; 8203

Formula_Z 2

SpaceGroup_Z 2

Z’ (= Formula_Z / SpaceGroup_Z) 1

ρcalc, g.cm-3 1.327

F(000), electrons 1156

µ(Mo Kα ), cm-1 16.32

Color, habit colorless, block

Approx. crystal dimension, mm 0.39 x 0.31 x 0.16

Page 26: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

b. Data collection. λ( Mo Kα ), Å 0.71073

Monochromator Graphite

Measurement device type CCD area-detector diffractometer

Detector Area resolution (pixels / mm) 4096 x 4096 / 62 x 62 (binned

512)

Temperature, K 100(1)

Measurement method ϕ- and ω-scans

θ range; min. max., deg 2.77, 28.28

Index ranges h: -13→14; k: -17→17; l: -27→26

Min.- Max. absorption transmission factor 0.5685 – 0.7802

X-ray exposure time, h 8.0

Total data 26514

Unique data 13308

Data with criterion: (Fo ≥ 4.0 σ (Fo)) 12090

Rint = ∑ [|Fo2 - Fo

2 (mean)|] / ∑ [Fo

2] 0.0165

Rsig = ∑ σ(Fo2) / ∑ [Fo

2] 0.0284

Page 27: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

c. Refinement. Number of reflections 13308

Number of refined parameters 868

Final agreement factors:

wR(F2) = [ ∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.0570

Weighting scheme: a, b 0.0284, 0.9545

w = 1/[σ2(Fo2) + (aP)2 + bP]

And P = [max(Fo2,0) + 2Fc

2] / 3

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo | 0.0230

For Fo > 4.0 σ (Fo)

GooF = S = [ ∑ [w(Fo2 - Fc

2)2] / (n-p)] 1/2 1.035

n = number of reflections

p = number of parameters refined

Residual electron density in final

Difference Fourier map, e/Å3 -0.45, 0.81(8)

Max. (shift/σ) final cycle <0.001

Average (shift/σ) final cycle 0.000

Page 28: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Table 2. Final fractional atomic coordinates and equivalent isotropic displacement parameters with s.u.'s in parentheses.

Atoms of the Asymmetric Unit. Non-Hydrogen parameters Residue: 1. Atom x y z Ueq (Å

2)* La1 0.08953(1) 0.13642(1) 0.46318(-) 0.01364(3) Si11 0.17265(5) 0.07334(4) 0.31736(2) 0.01718(14) Si12 0.26193(5) 0.34253(4) 0.61054(3) 0.02101(16) N11 0.25244(14) 0.11874(12) 0.38887(7) 0.0171(4) N12 0.03400(15) 0.13228(13) 0.32714(8) 0.0199(5) N13 -0.13970(14) 0.11002(12) 0.42741(8) 0.0182(4) N14 -0.01251(15) 0.31634(12) 0.40889(8) 0.0211(5) C11 0.4185(2) 0.15742(18) 0.47631(10) 0.0255(6) C12 0.4441(2) 0.23459(19) 0.36670(12) 0.0302(7) C13 0.4493(2) 0.0401(2) 0.38155(13) 0.0322(7) C14 0.38845(17) 0.13635(15) 0.40222(9) 0.0198(5) C15 0.2366(2) 0.11416(18) 0.23672(10) 0.0261(6) C16 0.1280(2) -0.07267(17) 0.30941(11) 0.0266(6) C17 -0.09243(19) 0.07803(17) 0.31008(10) 0.0243(6) C18 -0.1535(2) 0.03396(16) 0.37128(10) 0.0235(6) C19 -0.21218(19) 0.19898(16) 0.41803(11) 0.0239(6) C110 -0.13542(19) 0.30362(16) 0.43828(11) 0.0242(6) C111 -0.0273(2) 0.31588(16) 0.33593(10) 0.0245(6) C112 0.0543(2) 0.24393(16) 0.30543(10) 0.0234(6) C113 0.0612(2) 0.41682(16) 0.43263(11) 0.0250(6) C114 0.1263(2) 0.26078(16) 0.56888(10) 0.0211(5) C115 0.2253(3) 0.42920(19) 0.68090(12) 0.0333(7) C116 0.3470(2) 0.43550(18) 0.55258(12) 0.0313(7) C117 0.3715(2) 0.25383(17) 0.64829(10) 0.0276(6) C118 -0.14856(18) 0.05787(15) 0.49204(10) 0.0202(5) Residue: 2. La2 0.51758(1) -0.15157(1) 0.01991(-) 0.01514(3) Si21 0.77972(5) -0.16401(4) 0.10740(3) 0.02039(16) Si22 0.30540(5) -0.31996(4) -0.13703(3) 0.02114(16) N21 0.72766(15) -0.20532(12) 0.03001(8) 0.0206(5) N22 0.63259(15) -0.17661(12) 0.14367(8) 0.0186(4) N23 0.41863(15) -0.07307(12) 0.11517(7) 0.0177(4) N24 0.37998(16) -0.29640(12) 0.10246(8) 0.0201(5) C21 0.9000(2) -0.1650(2) -0.04478(13) 0.0345(7) C22 0.8591(3) -0.3442(2) 0.00165(13) 0.0377(8) C23 0.7052(2) -0.28612(19) -0.08022(11) 0.0314(7) C24 0.7980(2) -0.24790(16) -0.0218(1) 0.0251(6) C25 0.8881(2) -0.2402(2) 0.15724(12) 0.0321(7) C26 0.8520(2) -0.02288(17) 0.11689(12) 0.0293(7) C27 0.6000(2) -0.09913(15) 0.19246(9) 0.0212(5) C28 0.52258(19) -0.02110(15) 0.15909(10) 0.0208(5) C29 0.3172(2) -0.13215(15) 0.1502(1) 0.0216(5)

Page 29: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C210 0.27340(19) -0.23918(15) 0.11672(10) 0.0220(6) C211 0.4533(2) -0.31760(15) 0.16419(10) 0.0220(6) C212 0.5929(2) -0.28787(15) 0.15972(10) 0.0215(5) C213 0.3335(2) -0.39768(16) 0.06732(11) 0.0268(6) C214 0.3391(2) -0.22885(15) -0.06567(10) 0.0215(6) C215 0.3693(3) -0.25887(19) -0.21315(11) 0.0356(8) C216 0.1333(3) -0.3621(3) -0.15650(14) 0.0423(8) C217 0.3742(3) -0.44575(17) -0.12667(12) 0.0393(7) C218 0.37865(19) -0.00295(15) 0.06262(10) 0.0209(5) Residue: 3. C31 0.2970(4) 0.6779(3) 0.39928(18) 0.0597(11) C32 0.2575(2) 0.61078(19) 0.33787(12) 0.0344(7) C33 0.3239(2) 0.53034(19) 0.31957(12) 0.0343(7) C34 0.2869(2) 0.46724(18) 0.26394(13) 0.0334(7) C35 0.1818(2) 0.48391(17) 0.22541(12) 0.0327(7) C36 0.1147(2) 0.56396(18) 0.24245(13) 0.0335(7) C37 0.1522(2) 0.62679(18) 0.29800(13) 0.0338(7)

Hydrogen parameters

Residue: 1. Atom x y z Ueq (Å

2)* H11 0.377(2) 0.214(2) 0.4916(12) 0.034(7) H11' 0.503(2) 0.1738(19) 0.4866(12) 0.032(6) H11" 0.396(2) 0.098(2) 0.5026(13) 0.042(7) H12 0.431(2) 0.223(2) 0.3198(13) 0.038(7) H12' 0.530(3) 0.251(2) 0.3783(13) 0.045(8) H12" 0.405(2) 0.2993(19) 0.3812(11) 0.027(6) H13 0.412(2) -0.026(2) 0.4032(13) 0.040(7) H13' 0.535(3) 0.047(2) 0.3932(12) 0.037(7) H13" 0.433(2) 0.024(2) 0.3320(14) 0.042(7) H15 0.258(2) 0.1903(18) 0.2325(11) 0.024(6) H15' 0.178(2) 0.093(2) 0.2024(13) 0.038(7) H15" 0.308(3) 0.081(2) 0.2285(13) 0.043(8) H16 0.201(3) -0.105(2) 0.3103(12) 0.036(7) H16' 0.083(3) -0.094(2) 0.2694(15) 0.051(8) H16" 0.088(2) -0.104(2) 0.3463(13) 0.040(7) H17 -0.092(2) 0.0139(19) 0.2794(12) 0.032(6) H17' -0.143(2) 0.1274(18) 0.2885(11) 0.024(6) H18 -0.242(2) 0.0060(17) 0.3611(11) 0.023(6) H18' -0.111(2) -0.0273(17) 0.3846(11) 0.020(5) H19 -0.283(2) 0.1900(17) 0.4427(11) 0.022(6) H19' -0.241(2) 0.1987(19) 0.3709(13) 0.036(7) H110 -0.183(2) 0.3642(17) 0.4263(11) 0.023(6) H110' -0.122(2) 0.3068(16) 0.4884(11) 0.020(5) H111 -0.003(2) 0.3861(17) 0.3203(10) 0.019(5) H111' -0.115(2) 0.2960(18) 0.3198(12) 0.030(6) H112 0.041(2) 0.2484(17) 0.2576(11) 0.022(6)

Page 30: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

H112' 0.144(2) 0.2745(16) 0.3179(10) 0.016(5) H113 0.145(2) 0.4211(18) 0.4165(12) 0.029(6) H113' 0.075(2) 0.4168(18) 0.4778(12) 0.027(6) H113" 0.026(2) 0.4713(19) 0.4173(12) 0.029(6) H114 0.059(3) 0.302(2) 0.5626(13) 0.042(7) H114' 0.097(2) 0.210(2) 0.5983(13) 0.042(7) H115 0.171(3) 0.479(3) 0.6652(15) 0.064(10) H115' 0.300(3) 0.469(2) 0.6999(14) 0.047(8) H115" 0.186(2) 0.384(2) 0.7145(13) 0.040(7) H116 0.383(3) 0.401(2) 0.5201(15) 0.057(9) H116' 0.410(3) 0.483(2) 0.5758(15) 0.055(8) H116" 0.292(3) 0.484(2) 0.5335(14) 0.051(8) H117 0.32718(-) 0.20671(-) 0.67895(-) 0.04142(-) H117' 0.44251(-) 0.29672(-) 0.67220(-) 0.04142(-) H117" 0.40162(-) 0.21193(-) 0.61334(-) 0.04142(-) H118 -0.133(2) 0.1192(19) 0.5238(12) 0.034(6) H118' -0.234(2) 0.0279(18) 0.4947(11) 0.029(6) Residue: 2. H21 0.868(3) -0.101(2) -0.0595(13) 0.045(8) H21' 0.945(2) -0.190(2) -0.0800(13) 0.040(7) H21" 0.966(2) -0.1429(18) -0.0061(12) 0.026(6) H22 0.930(2) -0.321(2) 0.0376(13) 0.038(7) H22' 0.896(2) -0.377(2) -0.0349(13) 0.041(7) H22" 0.803(3) -0.396(2) 0.0185(14) 0.047(8) H23 0.635(3) -0.344(2) -0.0686(13) 0.045(8) H23' 0.744(3) -0.316(2) -0.1179(14) 0.046(8) H23" 0.668(2) -0.232(2) -0.0980(12) 0.036(7) H25 0.865(2) -0.314(2) 0.1542(12) 0.037(7) H25' 0.889(2) -0.2175(18) 0.2043(12) 0.029(6) H25" 0.973(3) -0.225(2) 0.1437(14) 0.047(8) H26 0.934(3) -0.014(2) 0.0979(13) 0.044(8) H26' 0.867(3) -0.001(2) 0.1614(15) 0.052(8) H26" 0.801(3) 0.027(2) 0.0998(14) 0.048(8) H27 0.674(2) -0.0595(17) 0.2162(11) 0.021(5) H27' 0.5527(19) -0.1348(15) 0.2279(10) 0.012(5) H28 0.496(2) 0.0262(19) 0.1936(12) 0.034(7) H28' 0.576(2) 0.0228(19) 0.1328(12) 0.028(6) H29 0.249(2) -0.0922(17) 0.1488(10) 0.019(5) H29' 0.347(2) -0.1401(17) 0.1947(11) 0.023(6) H210 0.216(2) -0.2786(19) 0.1454(12) 0.031(6) H210' 0.230(2) -0.2323(17) 0.0737(11) 0.021(5) H211 0.438(2) -0.3907(19) 0.1706(11) 0.026(6) H211' 0.423(2) -0.2819(17) 0.2001(11) 0.018(5) H212 0.6333(19) -0.3073(16) 0.2002(10) 0.015(5) H212' 0.619(2) -0.3321(17) 0.1262(11) 0.020(5) H213 0.291(2) -0.443(2) 0.0946(12) 0.032(7) H213' 0.407(2) -0.4309(19) 0.0542(12) 0.034(7) H213" 0.289(2) -0.3836(16) 0.0272(11) 0.018(5) H214 0.272(3) -0.249(2) -0.0357(14) 0.050(8)

Page 31: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

H214' 0.328(2) -0.158(2) -0.0815(13) 0.045(8) H215 0.334(3) -0.193(2) -0.2261(15) 0.058(9) H215' 0.350(3) -0.309(2) -0.2503(14) 0.052(8) H215" 0.459(3) -0.237(2) -0.2056(13) 0.047(8) H216 0.098(3) -0.400(2) -0.1178(16) 0.064(9) H216' 0.117(3) -0.407(2) -0.1998(15) 0.054(8) H216" 0.086(3) -0.302(3) -0.1656(17) 0.080(11) H217 0.46533(-) -0.43118(-) -0.12618(-) 0.05892(-) H217' 0.34272(-) -0.49475(-) -0.16342(-) 0.05892(-) H217" 0.35040(-) -0.47719(-) -0.08498(-) 0.05892(-) H218 0.306(2) -0.038(2) 0.0393(12) 0.036(7) H218' 0.349(2) 0.0583(18) 0.0847(11) 0.026(6) Residue: 3. H31 0.315(4) 0.643(4) 0.435(2) 0.108(17) H31' 0.238(4) 0.710(3) 0.411(2) 0.094(15) H31" 0.346(4) 0.746(4) 0.388(2) 0.107(15) H33 0.391(2) 0.518(2) 0.3437(13) 0.038(7) H34 0.333(2) 0.412(2) 0.2523(12) 0.037(7) H35 0.154(2) 0.443(2) 0.1851(13) 0.043(7) H36 0.043(2) 0.577(2) 0.2180(13) 0.038(7) H37 0.105(3) 0.680(2) 0.3119(14) 0.048(8) *) Ueq = 1/3 ∑ i ∑ jUijai

*aj*ai.aj

18

Anisotropic (displacement) parameters (Å2) Residue: 1. U11 U22 U33 U23 U13

U12

La1 0.01184(5) 0.01681(5) 0.01244(5) 0.00096(4) 0.00150(4) 0.00212(4) Si11 0.0174(3) 0.0209(2) 0.0139(2) -0.00004(18) 0.00230(19) 0.00448(19) Si12 0.0249(3) 0.0198(2) 0.0177(3) -0.00030(19) -0.0015(2) 0.0022(2) N11 0.0122(7) 0.0222(7) 0.0171(7) 0.0011(6) 0.0024(6) 0.0028(6) N12 0.0165(8) 0.0258(8) 0.0178(8) 0.0017(6) 0.0009(6) 0.0044(6) N13 0.0140(8) 0.0194(7) 0.0215(8) 0.0036(6) 0.0009(6) 0.0035(6) N14 0.0196(8) 0.0202(8) 0.0239(8) 0.0056(6) 0.0033(7) 0.0027(6) C11 0.017(1) 0.0349(11) 0.0229(10) 0.0016(9) 0.0000(8) -0.0021(8) C12 0.0183(11) 0.0398(12) 0.0312(12) 0.0117(10) 0.0016(9) -0.0024(9) C13 0.0191(11) 0.0391(13) 0.0399(13) -0.0058(10) -0.0015(9) 0.0127(9)

Page 32: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C14 0.0146(9) 0.0255(9) 0.0197(9) 0.0022(7) 0.0025(7) 0.0033(7) C15 0.0284(12) 0.0320(11) 0.019(1) 0.0001(8) 0.0054(8) 0.0063(9) C16 0.0300(12) 0.024(1) 0.0257(11) -0.0013(8) 0.0023(9) 0.0033(9) C17 0.021(1) 0.0292(10) 0.0221(10) -0.0018(8) -0.0037(8) 0.0037(8) C18 0.0196(10) 0.0241(10) 0.0251(10) 0.0001(8) -0.0038(8) -0.0009(8) C19 0.016(1) 0.0283(10) 0.0295(11) 0.0071(8) 0.0051(8) 0.0082(8) C110 0.0213(10) 0.0242(10) 0.0293(11) 0.0039(8) 0.0060(8) 0.0088(8) C111 0.0270(11) 0.025(1) 0.0223(10) 0.0070(8) 0.0026(8) 0.0054(8) C112 0.0233(11) 0.0281(10) 0.0200(9) 0.0082(8) 0.0033(8) 0.0054(8) C113 0.0244(11) 0.0209(10) 0.0293(11) 0.0041(8) 0.0041(9) 0.0004(8) C114 0.0243(10) 0.0205(9) 0.0182(9) 0.0003(7) 0.0016(8) 0.0014(8) C115 0.0424(14) 0.0276(11) 0.0295(12) -0.0077(9) -0.0043(10) 0.0077(10) C116 0.0327(13) 0.0270(11) 0.0321(12) 0.0059(9) -0.0024(10) -0.0020(9) C117 0.0314(12) 0.0305(10) 0.0211(10) 0.0013(8) -0.0024(8) 0.0067(9) C118 0.016(1) 0.0226(9) 0.0225(9) 0.0044(7) 0.0044(7) 0.0021(7) Residue: 2. La2 0.01928(6) 0.01287(5) 0.01328(5) 0.00075(4) 0.00135(4) 0.00198(4) Si21 0.0200(3) 0.0199(2) 0.0210(3) 0.0023(2) -0.0005(2) 0.0023(2) Si22 0.0245(3) 0.0188(2) 0.0189(3) -0.00095(19) -0.0020(2) 0.0002(2) N21 0.0216(8) 0.0202(8) 0.0209(8) 0.0010(6) 0.0029(6) 0.0049(6) N22 0.0223(8) 0.0161(7) 0.0174(7) 0.0010(6) 0.0012(6) 0.0022(6) N23 0.0204(8) 0.0155(7) 0.0175(7) 0.0025(6) 0.0047(6) 0.0012(6) N24 0.0243(9) 0.0156(7) 0.0199(8) 0.0014(6) 0.0012(6) 0.0007(6) C21 0.0320(13) 0.0358(12) 0.0376(13) 0.0026(10) 0.0149(10) 0.0057(10) C22 0.0453(15) 0.0353(12) 0.0382(14) 0.0030(11) 0.0122(12) 0.0216(11)

Page 33: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C23 0.0417(14) 0.0279(11) 0.0259(11) -0.0056(9) 0.0049(10) 0.0093(10) C24 0.0281(11) 0.0239(9) 0.0253(10) 0.0014(8) 0.0074(8) 0.0082(8) C25 0.0277(12) 0.0357(12) 0.0331(12) 0.0058(10) -0.0041(9) 0.0076(10) C26 0.0304(12) 0.0252(10) 0.0304(12) -0.0013(9) 0.0015(9) -0.0029(9) C27 0.0282(11) 0.0201(9) 0.0145(8) -0.0001(7) 0.0007(8) 0.0009(8) C28 0.0273(11) 0.0175(8) 0.0177(9) -0.0013(7) 0.0050(8) 0.0018(8) C29 0.0251(10) 0.0212(9) 0.0197(9) 0.0029(7) 0.0075(8) 0.0038(8) C210 0.0209(10) 0.0212(9) 0.0237(10) 0.0043(8) 0.0057(8) -0.0001(7) C211 0.0290(11) 0.0185(9) 0.0185(9) 0.0034(7) 0.0029(8) 0.0022(8) C212 0.0297(11) 0.0169(8) 0.0183(9) 0.0034(7) 0.0011(8) 0.0049(8) C213 0.0342(12) 0.0163(9) 0.0285(11) -0.0009(8) 0.0003(9) -0.0012(8) C214 0.0261(11) 0.0184(9) 0.0190(9) 0.0003(7) -0.0021(8) 0.0013(7) C215 0.0491(16) 0.0320(12) 0.0235(11) -0.0015(9) 0.0056(10) -0.0042(11) C216 0.0313(14) 0.0540(16) 0.0368(14) -0.0087(12) -0.0047(11) -0.0075(12) C217 0.0587(16) 0.0234(10) 0.0357(12) -0.0044(9) -0.0083(11) 0.0118(10) C218 0.0254(10) 0.0173(8) 0.0207(9) 0.0022(7) 0.0033(8) 0.0042(7) Residue: 3. C31 0.056(2) 0.077(2) 0.0415(17) -0.0192(17) 0.0163(15) -0.0114(18) C32 0.0330(13) 0.0375(12) 0.0315(12) 0.0016(10) 0.012(1) -0.0045(10) C33 0.0261(12) 0.0393(12) 0.0373(13) 0.0125(10) 0.0036(10) 0.0008(10) C34 0.0316(12) 0.0261(10) 0.0440(13) 0.0046(10) 0.0142(10) 0.0026(9) C35 0.0342(13) 0.0282(11) 0.0335(12) 0.0025(9) 0.0075(10) -0.0069(9) C36 0.0282(12) 0.0303(11) 0.0412(13) 0.012(1) 0.0017(10) -0.0005(9) C37 0.0328(13) 0.0245(10) 0.0457(14) 0.0048(10) 0.0144(11) 0.0029(9) Thermal vibration amplitudes (Å2)

Page 34: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

F(h) = Fo(h) exp (-2π2

i=1

3

Σj=1

3

ΣhihIai*aj

*Uij)

or F(h) = Fo(h) exp (-8π2Uiso(sin(θ)/λ)2) Table 3. Data on the geometry. Standard deviations in the last decimal place are given in parentheses. Residue: 1. Interatomic Distances (Å) La1 -Si11 3.2691(5) N11 -C14 1.467(2) La1 -N11 2.4254(15) N12 -C17 1.469(3) La1 -N12 2.7878(16) N12 -C112 1.498(3) La1 -N13 2.5178(15) N13 -C18 1.473(3) La1 -N14 2.8903(16) N13 -C19 1.474(3) La1 -C114 2.627(2) N13 -C118 1.488(3) La1 -C118 2.747(2) N14 -C110 1.485(3) La1 -C118_a 2.8033(19) N14 -C111 1.480(3) Si11 -N11 1.6933(15) N14 -C113 1.478(3) Si11 -N12 1.7869(17) C11 -C14 1.530(3) Si11 -C15 1.877(2) C12 -C14 1.537(3) Si11 -C16 1.871(2) C13 -C14 1.536(3) Si12 -C114 1.836(2) C17 -C18 1.530(3) Si12 -C115 1.887(3) C110 -C19 1.517(3) Si12 -C116 1.888(2) C111 -C112 1.509(3) Si12 -C117 1.885(2) Bond Angles (deg.) Si11 -La1 -N11 30.22(4) C115 -Si12 -C116 105.00(11) Si11 -La1 -N12 33.12(4) C115 -Si12 -C117 105.37(11) Si11 -La1 -N13 93.48(4) C116 -Si12 -C117 109.87(10) Si11 -La1 -N14 90.07(3) La1 -N11 -Si11 103.64(7) Si11 -La1 -C114 149.01(5) La1 -N11 -C14 129.25(11) Si11 -La1 -C118 116.31(4) Si11 -N11 -C14 127.02(12) Si11 -La1 -C118_a 88.79(4) La1 -N12 -Si11 88.40(6) N11 -La1 -N12 60.16(5) La1 -N12 -C17 110.81(11) N11 -La1 -N13 123.55(5) La1 -N12 -C112 107.03(11) N11 -La1 -N14 100.60(5) Si11 -N12 -C17 123.59(13) N11 -La1 -C114 122.35(6) Si11 -N12 -C112 109.10(13) N11 -La1 -C118 144.13(5) C17 -N12 -C112 114.08(16) N11 -La1 -C118_a 83.25(5) La1 -N13 -C18 105.54(11) N12 -La1 -N13 64.89(5) La1 -N13 -C19 122.28(12) N12 -La1 -N14 63.13(5) La1 -N13 -C118 82.29(10) N12 -La1 -C114 143.52(6) C18 -N13 -C19 114.27(16) N12 -La1 -C118 94.57(5) C18 -N13 -C118 112.59(15) N12 -La1 -C118_a 112.08(5) C19 -N13 -C118 115.83(15) N13 -La1 -N14 63.42(5) La1 -N14 -C110 99.80(11) N13 -La1 -C114 108.97(6) La1 -N14 -C111 114.77(11) N13 -La1 -C118 32.45(6) La1 -N14 -C113 111.96(12)

Page 35: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

N13 -La1 -C118_a 106.75(5) C110 -N14 -C111 111.42(16) N14 -La1 -C114 81.69(6) C110 -N14 -C113 109.87(15) N14 -La1 -C118 87.68(5) C111 -N14 -C113 108.76(15) N14 -La1 -C118_a 170.02(5) N11 -C14 -C11 108.92(15) C114 -La1 -C118 93.27(6) N11 -C14 -C12 110.01(15) C114 -La1 -C118_a 104.15(6) N11 -C14 -C13 111.70(16) C118 -La1 -C118_a 83.95(6) C11 -C14 -C12 107.36(17) La1 -Si11 -N11 46.14(5) C11 -C14 -C13 108.34(17) La1 -Si11 -N12 58.48(5) C12 -C14 -C13 110.39(17) La1 -Si11 -C15 149.75(7) N12 -C17 -C18 111.28(16) La1 -Si11 -C16 104.49(7) N13 -C18 -C17 113.28(16) N11 -Si11 -N12 98.21(8) N13 -C19 -C110 112.02(17) N11 -Si11 -C15 119.36(9) N14 -C110 -C19 111.88(17) N11 -Si11 -C16 115.89(9) N14 -C111 -C112 111.45(17) N12 -Si11 -C15 108.86(9) N12 -C112 -C111 114.74(17) N12 -Si11 -C16 108.08(9) La1 -C114 -Si12 135.05(11) C15 -Si11 -C16 105.66(10) La1 -C118 -N13 65.26(9) C114 -Si12 -C115 115.08(12) La1 -C118 -La1_a 96.05(6) C114 -Si12 -C116 112.31(10) N13 -C118 -La1_a 133.04(12) C114 -Si12 -C117 108.89(10) Residue: 2. Interatomic Distances (Å) La2 -Si21 3.2728(6) N21 -C24 1.476(3) La2 -N21 2.4586(16) N22 -C27 1.480(2) La2 -N22 2.7751(16) N22 -C212 1.483(2) La2 -N23 2.5265(15) N23 -C28 1.469(3) La2 -N24 2.8639(16) N23 -C29 1.481(3) La2 -C214 2.595(2) N23 -C218 1.487(2) La2 -C218 2.738(2) N24 -C210 1.487(3) La2 -C218_b 2.791(2) N24 -C211 1.489(3) Si21 -N21 1.6864(17) N24 -C213 1.481(3) Si21 -N22 1.7885(17) C21 -C24 1.532(3) Si21 -C25 1.881(2) C22 -C24 1.543(3) Si21 -C26 1.875(2) C23 -C24 1.533(3) Si22 -C214 1.831(2) C27 -C28 1.527(3) Si22 -C215 1.878(3) C210 -C29 1.523(3) Si22 -C216 1.885(3) C211 -C212 1.519(3) Si22 -C217 1.871(3) Bond Angles (deg.) Si21 -La2 -N21 30.18(4) C215 -Si22 -C216 107.12(13) Si21 -La2 -N22 33.12(4) C215 -Si22 -C217 106.31(12) Si21 -La2 -N23 92.91(4) C216 -Si22 -C217 104.88(15) Si21 -La2 -N24 92.24(4) La2 -N21 -Si21 102.69(8) Si21 -La2 -C214 152.25(5) La2 -N21 -C24 128.49(12) Si21 -La2 -C218 115.21(4) Si21 -N21 -C24 128.21(14) Si21 -La2 -C218_b 94.45(4) La2 -N22 -Si21 88.91(6)

Page 36: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

N21 -La2 -N22 59.91(5) La2 -N22 -C27 111.32(11) N21 -La2 -N23 122.97(5) La2 -N22 -C212 105.08(11) N21 -La2 -N24 102.73(5) Si21 -N22 -C27 122.97(13) N21 -La2 -C214 125.29(6) Si21 -N22 -C212 110.43(13) N21 -La2 -C218 142.79(6) C27 -N22 -C212 114.02(15) N21 -La2 -C218_b 85.26(6) La2 -N23 -C28 105.85(11) N22 -La2 -N23 64.82(5) La2 -N23 -C29 122.96(11) N22 -La2 -N24 64.64(5) La2 -N23 -C218 81.59(10) N22 -La2 -C214 144.80(5) C28 -N23 -C29 113.96(15) N22 -La2 -C218 94.42(5) C28 -N23 -C218 112.44(15) N22 -La2 -C218_b 120.07(5) C29 -N23 -C218 115.93(16) N23 -La2 -N24 63.26(5) La2 -N24 -C210 101.52(10) N23 -La2 -C214 107.59(6) La2 -N24 -C211 112.81(12) N23 -La2 -C218 32.51(5) La2 -N24 -C213 111.99(12) N23 -La2 -C218_b 111.91(5) C210 -N24 -C211 111.34(15) N24 -La2 -C214 81.07(6) C210 -N24 -C213 109.96(16) N24 -La2 -C218 87.15(5) C211 -N24 -C213 109.06(15) N24 -La2 -C218_b 171.98(5) N21 -C24 -C21 111.89(17) C214 -La2 -C218 91.46(6) N21 -C24 -C22 111.84(18) C214 -La2 -C218_b 94.93(6) N21 -C24 -C23 107.91(17) C218 -La2 -C218_b 86.00(6) C21 -C24 -C22 108.5(2) La2 -Si21 -N21 47.13(6) C21 -C24 -C23 109.68(18) La2 -Si21 -N22 57.97(5) C22 -C24 -C23 106.87(18) La2 -Si21 -C25 151.03(8) N22 -C27 -C28 110.82(15) La2 -Si21 -C26 103.52(7) N23 -C28 -C27 112.73(15) N21 -Si21 -N22 98.22(8) N23 -C29 -C210 111.14(16) N21 -Si21 -C25 120.06(10) N24 -C210 -C29 111.81(17) N21 -Si21 -C26 115.67(10) N24 -C211 -C212 112.57(16) N22 -Si21 -C25 108.70(9) N22 -C212 -C211 115.21(16) N22 -Si21 -C26 108.19(9) La2 -C214 -Si22 142.10(11) C25 -Si21 -C26 105.23(11) La2 -C218 -N23 65.90(9) C214 -Si22 -C215 111.04(10) La2 -C218 -La2_b 94.00(6) C214 -Si22 -C216 113.27(12) N23 -C218 -La2_b 139.65(13) C214 -Si22 -C217 113.68(10) Residue: 3. Interatomic Distances (Å) C31 -C32 1.507(4) C34 -C35 1.381(3) C32 -C33 1.390(3) C35 -C36 1.383(3) C32 -C37 1.395(3) C36 -C37 1.381(4) C33 -C34 1.383(3) Bond Angles (deg.) C31 -C32 -C33 121.1(2) C33 -C34 -C35 119.7(2) C31 -C32 -C37 121.0(2) C34 -C35 -C36 119.8(2) C33 -C32 -C37 117.9(2) C35 -C36 -C37 120.2(2) C32 -C33 -C34 121.4(2) C32 -C37 -C36 120.9(2) Torsion Angles (deg.)

Page 37: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C31 -C32 -C33 -C34 178.8(3) C37 -C32 -C33 -C34 -0.5(4) C31 -C32 -C37 -C36 -178.7(3) C33 -C32 -C37 -C36 0.6(4) C32 -C33 -C34 -C35 0.0(4) C33 -C34 -C35 -C36 0.4(4) C34 -C35 -C36 -C37 -0.3(4) C35 -C36 -C37 -C32 -0.2(4) The sign of the torsion angle is positive if when looking from atom-2 to atom-3 a clockwise motion of atom-1 would superimpose it on atom-4.

Page 38: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Part III: Structure determination of [Me2-TACN-(CH2)2NBut]La(CCPh)2 (3)

Experimental

X-ray diffraction: Crystal and Molecular Structure.

Suitable colorless colored block-shaped crystals were obtained by recrystallisation

from toluene. The crystals were picked from the mother liquor, to avoid deterioration

due to loss of solvent from the crystal lattice, directly glued on a glass fiber and

transferred into the cold nitrogen stream of the low temperature unit mounted on the

diffractometer.

A crystal with the dimensions of 0.39 x 0.29 x 0.23 mm was mounted on top of a

glass fiber, by using inert-atmosphere handling techniques, and aligned on a Bruker1

SMART APEX CCD diffractometer (Platform with full three-circle goniometer). The

diffractometer was equipped with a 4K CCD detector set 60.0 mm from the crystal.

The crystal was cooled to 100(1) K using the Bruker KRYOFLEX low-temperature

device. Intensity measurements were performed using graphite monochromated Mo-

Kα radiation from a sealed ceramic diffraction tube (SIEMENS). Generator settings

were 50 KV/ 40 mA. SMART was used for preliminary determination of the unit cell

constants and data collection control. The intensities of reflections of a hemisphere

were collected by a combination of 3 sets of exposures (frames). Each set had a

different φ angle for the crystal and each exposure covered a range of 0.3° in ω. A

total of 1800 frames were collected with an exposure time of 10.0 seconds per frame.

The overall data collection time was 8.0 h. Data integration and global cell refinement

was performed with the program SAINT. The final unit cell was obtained from the xyz

centroids of 9288 reflections after integration. Intensity data were corrected for

Lorentz and polarization effects, scale variation, for decay and absorption: a multi-

scan absorption correction was applied, based on the intensities of symmetry-related

reflections measured at different angular settings (SADABS)2, and reduced to Fo2. The

program suite SHELXTL was used for space group determination (XPREP).1

The unit cell3 was identified as triclinic, space group P-1: the E-statistics were

indicative of a centrosymmetric space group.0 Reduced cell calculations did not

indicate any higher metric lattice symmetry0 and examination of the final atomic

coordinates of the structure did not yield extra crystallographic or metric symmetry

elements.6,7

Page 39: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

The structure was solved by Patterson methods and extension of the model was

accomplished by direct methods applied to difference structure factors using the

program DIRDIF.8 The positional and anisotropic displacement parameters for the

non-hydrogen atoms were refined. A subsequent difference Fourier synthesis resulted

in the location of most hydrogen atoms; the remaining hydrogen atoms were

generated by geometrical considerations. The hydrogen atom coordinates and

isotropic displacement parameters were refined.

Refinement was frustrated by a disorder problem: from the solution it was clear that a

toluene solvent molecule was highly disordered over an inversion. Attempts to find a

satisfactory disorder model failed. The BYPASS procedure0 was used to take into

account the electron density in the potential solvent area, which resulted in an electron

count of 32, within a volume of 498.4 Å3 in the unit cell.

Final refinement on F2 carried out by full-matrix least-squares techniques converged

at wR(F2) = 0.0842 for 16750 reflections and R(F) = 0.0305 for 14479 reflections

with Fo ≥ 4.0 σ(Fo) and 1054 parameters. The final difference Fourier map was

essentially featureless with a few peaks of max. 2.2( 1) e/Å3 within 1.0 Å from La, but

were neglected/rejected, being artefacts. No other significant peaks (max. = 0.9(1)

e/Å3) having chemical meaning above the general background were observed in the

final difference Fourier syntheses.

The positional and anisotropic displacement parameters for the non-hydrogen atoms

and isotropic displacement parameters for hydrogen atoms were refined on F2 with

full-matrix least-squares procedures minimizing the function Q = h[w(│(Fo2) -

k(Fc2)│)2], where w = 1/[σ2(Fo

2) + (aP)2 + bP], P = [max(Fo2,0) + 2Fc

2] / 3, F0 and Fc

are the observed and calculated structure factor amplitudes, respectively; ultimately

the suggested a (=0.0514) and b (= 0.0) were used in the final refinement.

Crystal data and numerical details on data collection and refinement are given in

Table 1. Final fractional atomic coordinates, equivalent displacement parameters and

anisotropic displacement parameters for the non-hydrogen atoms are given in Table 2.

Molecular geometry data are collected in Table 3. Tables of atom positions,

displacement parameters, comprehensive distances and angles and tables of (Fo2),

(Fc2) and σ(Fo

2) are given as supplementary material8 for this paper. Neutral atom

scattering factors and anomalous dispersion corrections were taken from International

Tables for Crystallography.11

Page 40: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

All refinement calculations and graphics were performed on a Pentium-III / Debian-

Linux computer at the University of Groningen with the program packages SHELXL12

(least-square refinements), a locally modified version of the program PLUTO13

(preparation of illustrations) and PLATON10 package (checking the final results for

missed symmetry with the MISSYM option, solvent accessible voids with the SOLV

option, calculation of geometric data and the ORTEP10 illustrations).

References. 1. Bruker (2000). SMART, SAINT, SADABS, XPREP and SHELXTL/NT. Area

Detector Control and Integration Software. Smart Apex Software Reference Manuals. Bruker Analytical X-ray Instruments. Inc., Madison, Wisconsin, USA.

2. Sheldrick, G.M. (2001). SADABS. Version 2. Multi-Scan Absorption Correction Program. University of Göttingen, Germany.

3. Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96. 4. Snow, M.R. & Tiekink, E.R.T. (1988). Acta Cryst. B44, 676-677 5. Spek, A.L. (1988). J. Appl. Cryst. 21, 578-579. . 6. Le Page, Y. (1987). J. Appl. Cryst. 20, 264-269. 7. Le Page, Y. (1988). J. Appl. Cryst. 21, 983-984. 8. Beurskens, P.T., Beurskens, G., Gelder, R. de, García-Granda, S., Gould,

Crystallography Laboratory, University of Nijmegen, The Netherlands. 9. Sluis, P. van der & Spek, A.L. (1990). Acta Cryst. A46, 194-201. 10. Hall, S.R, Allen, F.H. & Brown, I.D. (1991). Acta Cryst. A47, 655-685. 11. Spek, A.L. (2003). PLATON. Program for the Automated Analysis of

Molecular Geometry (A Multipurpose Crystallographic Tool). Version of June 2003. University of Utrecht, The Netherlands. 12.International Tables for Crystallography (1992). Vol. C. Edited by A.J.C. Wilson, Kluwer Academic Publishers, Dordrecht. The Netherlands.

13. Sheldrick, G.M. (1997). SHELXL-97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

14. Meetsma, A. (2003). PLUTO. Molecular Graphics Program. Version of May 2003. University of Groningen, The Netherlands.

15. Bondi, A. (1964). J. Phys. Chem. 68, 441-451. 16. Spek, A.L. (1990). Acta Cryst. A46, C-34. 17. Spek, A.L. (1994). Am. Crystallogr. Assoc. Abstr. 22, 66. 18. International Tables for Crystallography (1983). Vol. A. Space-group

symmetry, edited by T. Hahn. Dordrecht: Reidel. (Present distributor Kluwer Academic Publishers, Dordrecht).

19. Fisher, R.X. & Tillmanns, E. (1988). Acta Cryst. C44, 775-776.

Page 41: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Table 1. a. Crystal data and details of the structure determination. Moiety_Formula (C30H41LaN4)2.1.5(C7H8)

Formula_Weight, g.mol-1 1331.39

Crystal system triclinic

Space group, no.17 P-1, 2

a, Å 14.3298(7)

b, Å 16.0756(8)

c, Å 16.8773(8)

α, deg 99.229(1)

β, deg 111.439(1)

γ, deg 94.851(1)

V, Å3 3528.4(3)

Θ range unit cell: min.-max., deg;

reflections

2.17 - 29.42 ; 9288

Formula_Z 2

SpaceGroup_Z 2

Z’ (= Formula_Z / SpaceGroup_Z) 1

ρcalc, g.cm-3 1.253

F(000), electrons 1374

µ(Mo Kα ), cm-1 12.37

Color, habit colorless, block

Approx. crystal dimension, mm 0.39 x 0.29 x 0.23

Page 42: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

b. Data collection. λ( Mo Kα ), Å 0.71073

Monochromator Graphite

Measurement device type CCD area-detector diffractometer

Detector Area resolution (pixels / mm) 4096 x 4096 / 62 x 62 (binned

512)

Temperature, K 100(1)

Measurement method ϕ- and ω-scans

θ range; min. max., deg 2.17, 28.28

Index ranges h: -18→19; k: -21→21; l: -22→21

Min.- Max. absorption transmission factor 0.6228 – 0.7643

X-ray exposure time, h 8.0

Total data 32332

Unique data 16750

Data with criterion: (Fo ≥ 4.0 σ (Fo)) 14479

Rint = ∑ [|Fo2 - Fo

2 (mean)|] / ∑ [Fo

2] 0.0222

Rsig = ∑ σ(Fo2) / ∑ [Fo

2] 0.0344

Page 43: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

c. Refinement. Number of reflections 16750

Number of refined parameters 1054

Final agreement factors:

wR(F2) = [ ∑ [w(Fo2 - Fc

2)2] / ∑ [w(Fo2)2]]1/2 0.0842

Weighting scheme: a, b 0.0514, 0.0

w = 1/[σ2(Fo2) + (aP)2 + bP]

And P = [max(Fo2,0) + 2Fc

2] / 3

R(F) = ∑ (||Fo| - |Fc||) / ∑ |Fo | 0.0305

For Fo > 4.0 σ (Fo)

GooF = S = [ ∑ [w(Fo2 - Fc

2)2] / (n-p)] 1/2 1.093

n = number of reflections

p = number of parameters refined

Residual electron density in final

Difference Fourier map, e/Å3 -0.6, 2.2(1)

Max. (shift/σ) final cycle 0.071

Average (shift/σ) final cycle 0.002

Page 44: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Table 2. Final fractional atomic coordinates and equivalent isotropic displacement parameters with s.u.'s in parentheses.

Atoms of the Asymmetric Unit. Non-Hydrogen parameters

Residue: 1.

Atom x y z Ueq (Å2)*

La1 0.12852(1) 0.18953(1) 0.28392(1) 0.01788(4) La2 0.41997(1) 0.25297(1) 0.26202(1) 0.01688(4) N1 -0.06923(14) 0.18390(12) 0.26004(13) 0.0268(6) N2 -0.01103(14) 0.04387(12) 0.16694(12) 0.0270(6) N3 0.00072(14) 0.21429(12) 0.12476(12) 0.0253(5) N4 0.09386(13) 0.12857(11) 0.39072(12) 0.0232(5) N5 0.57080(14) 0.33702(11) 0.23048(11) 0.0211(5) N6 0.57275(14) 0.37089(11) 0.40499(12) 0.0226(5) N7 0.41474(14) 0.42452(11) 0.26053(12) 0.0228(5) N8 0.55188(13) 0.17052(11) 0.27324(12) 0.0211(5) C1 -0.13969(18) 0.10157(17) 0.21949(18) 0.0321(7) C2 -0.08589(18) 0.02589(16) 0.20685(17) 0.0313(7) C3 0.0439(2) -0.02981(15) 0.16507(18) 0.0317(7) C4 -0.06403(19) 0.05725(16) 0.07680(15) 0.0315(7) C5 -0.01184(19) 0.13472(15) 0.05981(16) 0.0286(7) C6 0.0590(2) 0.28334(16) 0.10516(16) 0.0305(7) C7 -0.09928(18) 0.23770(17) 0.12233(16) 0.0301(7) C8 -0.10650(19) 0.25183(17) 0.21185(16) 0.0297(7) C9 -0.04927(18) 0.21011(16) 0.35447(16) 0.0295(7) C10 0.00279(18) 0.14646(16) 0.40657(16) 0.0288(7) C11 0.15143(17) 0.07075(14) 0.44310(14) 0.0252(6) C12 0.1836(2) 0.10438(16) 0.54225(16) 0.0291(7) C13 0.0921(2) -0.02046(16) 0.42049(18) 0.0316(8) C14 0.24762(19) 0.06511(16) 0.42386(17) 0.0279(7) C15 0.11582(17) 0.35578(14) 0.31441(15) 0.0261(6) C16 0.11117(17) 0.43138(14) 0.33580(15) 0.0263(7) C17 0.10433(17) 0.51943(14) 0.36584(16) 0.0282(7) C18 0.1490(2) 0.58752(17) 0.34242(19) 0.0355(8) C19 0.1428(2) 0.67150(18) 0.3741(2) 0.0458(9) C20 0.0924(2) 0.68930(18) 0.4294(2) 0.0496(10) C21 0.0475(2) 0.62375(19) 0.4530(2) 0.0506(10) C22 0.0531(2) 0.53898(17) 0.42212(19) 0.0397(9) C23 0.24308(16) 0.12445(14) 0.20049(14) 0.0242(6) C24 0.27349(16) 0.07424(14) 0.15671(14) 0.0243(6) C25 0.30769(16) 0.01158(14) 0.10550(14) 0.0252(6) C26 0.30692(19) -0.07163(16) 0.12014(17) 0.0327(7) C27 0.3414(2) -0.13265(17) 0.07220(19) 0.0387(8) C28 0.3758(2) -0.11073(18) 0.01054(18) 0.0395(8) C29 0.37547(19) -0.02845(18) -0.00534(17) 0.0358(8) C30 0.34159(18) 0.03320(16) 0.04167(16) 0.0286(7) C31 0.66521(17) 0.38083(15) 0.30490(15) 0.0246(6) C32 0.66953(17) 0.36193(15) 0.39217(15) 0.0239(6)

Page 45: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C33 0.58185(19) 0.34413(16) 0.48721(15) 0.0269(7) C34 0.55365(18) 0.46110(14) 0.41003(15) 0.0258(6) C35 0.44517(18) 0.46789(14) 0.35285(15) 0.0250(6) C36 0.30589(19) 0.43075(16) 0.21378(16) 0.0294(7) C37 0.47894(19) 0.46282(14) 0.21878(16) 0.0263(7) C38 0.52475(18) 0.39682(14) 0.17388(15) 0.0248(6) C39 0.58923(18) 0.26027(14) 0.17907(15) 0.0232(6) C40 0.62248(17) 0.19168(14) 0.23246(15) 0.0227(6) C41 0.57625(16) 0.10066(13) 0.32082(15) 0.0241(6) C42 0.5778(2) 0.01664(15) 0.26164(18) 0.0316(7) C43 0.49356(19) 0.08459(16) 0.35661(17) 0.0300(7) C44 0.68065(19) 0.12268(16) 0.39933(17) 0.0300(7) C45 0.32676(18) 0.25335(14) 0.09417(15) 0.0275(7) C46 0.28267(18) 0.24331(15) 0.01516(15) 0.0279(7) C47 0.23142(19) 0.22867(15) -0.07828(15) 0.0303(7) C48 0.2727(2) 0.18630(16) -0.13405(16) 0.0347(8) C49 0.2244(3) 0.17410(18) -0.22393(18) 0.0440(9) C50 0.1340(3) 0.2041(2) -0.26070(18) 0.0499(10) C51 0.0910(3) 0.2444(2) -0.2074(2) 0.0524(10) C52 0.1387(2) 0.2569(2) -0.11719(18) 0.0467(10) C53 0.33180(16) 0.27500(13) 0.37930(14) 0.0226(6) C54 0.32100(16) 0.29370(13) 0.44807(14) 0.0223(6) C55 0.31357(17) 0.31516(14) 0.53235(14) 0.0244(6) C56 0.2359(2) 0.35822(16) 0.54309(17) 0.0299(7) C57 0.2305(2) 0.37643(17) 0.62517(17) 0.0378(8) C58 0.3009(2) 0.35252(18) 0.69611(17) 0.0423(9) C59 0.3776(2) 0.31073(18) 0.68602(17) 0.0399(8) C60 0.3844(2) 0.29166(16) 0.60481(15) 0.0319(7) Residue: 2. C61 0.3939(5) 0.8496(3) 0.3784(3) 0.0842(16) C62 0.3142(3) 0.7965(2) 0.2930(2) 0.0556(11) C63 0.2203(3) 0.8200(3) 0.2563(3) 0.0696(17) C64 0.1476(3) 0.7713(3) 0.1764(3) 0.0795(18) C65 0.1706(3) 0.7002(3) 0.1351(3) 0.0767(16) C66 0.2646(3) 0.6754(3) 0.1715(3) 0.0703(16) C67 0.3368(3) 0.7239(2) 0.2509(2) 0.0561(12)

Page 46: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Hydrogen parameters

Residue: 1.

Atom x y z Ueq (Å2)*

H2' -0.13763(-) -0.02645(-) 0.16906(-) 0.0250(19) H3 0.08219(-) -0.03381(-) 0.22566(-) 0.032(2) H3' 0.08899(-) -0.02154(-) 0.13364(-) 0.030(2) H3" -0.00958(-) -0.08391(-) 0.13331(-) 0.031(2) H4 -0.13697(-) 0.06545(-) 0.06833(-) 0.033(2) H4' -0.06907(-) 0.00425(-) 0.03908(-) 0.0294(19) H5 0.05310(-) 0.12339(-) 0.05801(-) 0.0179(19) H5' -0.05043(-) 0.14219(-) 0.00523(-) 0.034(2) H6 0.02493(-) 0.29445(-) 0.04415(-) 0.056(2) H6' 0.12368(-) 0.26583(-) 0.10778(-) 0.034(2) H6" 0.06940(-) 0.33654(-) 0.14670(-) 0.033(2) H7 -0.15766(-) 0.18778(-) 0.08493(-) 0.0245(19) H7' -0.11274(-) 0.28806(-) 0.10161(-) 0.028(2) H8 -0.06495(-) 0.30376(-) 0.24833(-) 0.024(2) H8' -0.17393(-) 0.25998(-) 0.20384(-) 0.033(2) H9 -0.11022(-) 0.21797(-) 0.36506(-) 0.040(2) H9' -0.00382(-) 0.26826(-) 0.37546(-) 0.0204(18) H10 0.01749(-) 0.16949(-) 0.46319(-) 0.035(2) H10' -0.04539(-) 0.09071(-) 0.39374(-) 0.0240(19) H12 0.21810(-) 0.16549(-) 0.55903(-) 0.040(2) H12' 0.23381(-) 0.07713(-) 0.57072(-) 0.033(2) H12" 0.12129(-) 0.09961(-) 0.55605(-) 0.031(2) H13 0.02809(-) -0.01881(-) 0.42484(-) 0.044(2) H13' 0.12744(-) -0.05128(-) 0.44953(-) 0.037(2) H13" 0.08154(-) -0.04968(-) 0.35662(-) 0.035(2) H14 0.23148(-) 0.03383(-) 0.35769(-) 0.031(2) H14' 0.28853(-) 0.02977(-) 0.45655(-) 0.029(2) H14" 0.29015(-) 0.11582(-) 0.44226(-) 0.039(2) H18 0.17664(-) 0.57590(-) 0.30464(-) 0.032(2) H19 0.17530(-) 0.71275(-) 0.35593(-) 0.048(2) H20 0.08920(-) 0.74099(-) 0.44785(-) 0.074(3) H21 0.01322(-) 0.63385(-) 0.49255(-) 0.061(3) H22 0.02085(-) 0.48958(-) 0.44530(-) 0.055(2) H26 0.28288(-) -0.09004(-) 0.16554(-) 0.0257(19) H27 0.33918(-) -0.18624(-) 0.08624(-) 0.037(2) H28 0.40041(-) -0.15012(-) -0.01953(-) 0.047(2) H29 0.40577(-) -0.01693(-) -0.04449(-) 0.041(2) H30 0.34149(-) 0.09117(-) 0.03515(-) 0.028(2) H31 0.67284(-) 0.44224(-) 0.30671(-) 0.0200(18) H31' 0.72499(-) 0.35853(-) 0.29804(-) 0.027(2) H32 0.68312(-) 0.30404(-) 0.39251(-) 0.0211(18) H32' 0.72984(-) 0.39850(-) 0.44126(-) 0.034(2) H33 0.64152(-) 0.37675(-) 0.53663(-) 0.029(2) H33' 0.59467(-) 0.28492(-) 0.48708(-) 0.0280(19) H33" 0.52211(-) 0.35201(-) 0.49581(-) 0.028(2) H34 0.60051(-) 0.49049(-) 0.38962(-) 0.0198(19)

Page 47: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

H34' 0.56676(-) 0.48934(-) 0.47161(-) 0.0281(19) H35 0.39688(-) 0.44067(-) 0.37745(-) 0.0191(18) H35' 0.43649(-) 0.52568(-) 0.35812(-) 0.028(2) H36 0.26637(-) 0.40142(-) 0.24097(-) 0.026(2) H36' 0.29008(-) 0.39830(-) 0.15229(-) 0.051(2) H36" 0.29424(-) 0.49203(-) 0.21220(-) 0.046(2) H37 0.53582(-) 0.51103(-) 0.26594(-) 0.040(2) H37' 0.43785(-) 0.49058(-) 0.18076(-) 0.042(2) H38 0.47209(-) 0.36304(-) 0.11977(-) 0.0147(18) H38' 0.57596(-) 0.42773(-) 0.15560(-) 0.028(2) H39 0.63945(-) 0.27729(-) 0.15495(-) 0.0156(18) H39' 0.52770(-) 0.23849(-) 0.12779(-) 0.0175(18) H40 0.62889(-) 0.14050(-) 0.18959(-) 0.0234(18) H40' 0.69271(-) 0.21239(-) 0.27247(-) 0.0169(19) H42 0.51727(-) 0.00238(-) 0.20691(-) 0.031(2) H42' 0.58478(-) -0.02686(-) 0.29107(-) 0.048(2) H42" 0.64096(-) 0.01958(-) 0.24426(-) 0.045(2) H43 0.49104(-) 0.14351(-) 0.40008(-) 0.051(2) H43' 0.50590(-) 0.04342(-) 0.38982(-) 0.031(2) H43" 0.42534(-) 0.06080(-) 0.30482(-) 0.027(2) H44 0.73619(-) 0.13510(-) 0.38016(-) 0.041(2) H44' 0.68802(-) 0.07447(-) 0.42939(-) 0.0286(19) H44" 0.67980(-) 0.17517(-) 0.44243(-) 0.0272(19) H48 0.33876(-) 0.16353(-) -0.10941(-) 0.036(2) H49 0.26024(-) 0.13816(-) -0.25632(-) 0.060(3) H50 0.09824(-) 0.19342(-) -0.32327(-) 0.052(3) H51 0.03222(-) 0.26432(-) -0.22853(-) 0.057(3) H52 0.11130(-) 0.29567(-) -0.07638(-) 0.061(2) H56 0.19045(-) 0.37494(-) 0.49893(-) 0.023(2) H57 0.17581(-) 0.40137(-) 0.63061(-) 0.036(2) H58 0.29210(-) 0.36545(-) 0.74810(-) 0.048(2) H59 0.42733(-) 0.28965(-) 0.73121(-) 0.045(2) H60 0.43714(-) 0.25559(-) 0.60133(-) 0.030(2) Residue: 2. H61 0.36164(-) 0.90763(-) 0.39064(-) 0.136(4) H61' 0.45078(-) 0.88787(-) 0.35919(-) 0.221(6) H61" 0.42234(-) 0.80691(-) 0.42218(-) 0.099(4) H63 0.21124(-) 0.88016(-) 0.30093(-) 0.074(3) H64 0.06294(-) 0.80255(-) 0.16076(-) 0.119(4) H65 0.11137(-) 0.65741(-) 0.08009(-) 0.110(4) H66 0.26338(-) 0.62547(-) 0.14306(-) 0.116(4) H67 0.40548(-) 0.70310(-) 0.27642(-) 0.065(3) *) Ueq = 1/3 ∑ i ∑ jUijai

*aj*ai.aj

18

Page 48: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Anisotropic (displacement) parameters (Å2) Residue: 1.

U11 U22 U33 U23 U13

U12

La2 0.01284(6) 0.02183(6) 0.01553(7) 0.00088(4) 0.00662(5) 0.00068(4) N1 0.0154(9) 0.0374(10) 0.0259(10) 0.0026(8) 0.0085(8) 0.0008(8) N2 0.0206(10) 0.0329(10) 0.0226(9) -0.0018(7) 0.0074(8) -0.0036(8) N3 0.0166(9) 0.0338(10) 0.0228(9) 0.0009(7) 0.0070(8) 0.0011(7) N4 0.0170(9) 0.0299(9) 0.0220(9) 0.0031(7) 0.0086(8) -0.0004(7) N5 0.0203(9) 0.0239(8) 0.0203(9) 0.0017(7) 0.0108(8) 0.0022(7) N6 0.0185(9) 0.0289(9) 0.0198(9) 0.0009(7) 0.0092(8) 0.0003(7) N7 0.0224(9) 0.0252(9) 0.0238(9) 0.0042(7) 0.0126(8) 0.0040(7) N8 0.0151(8) 0.0259(8) 0.0233(9) 0.0046(7) 0.0088(8) 0.0026(7) C1 0.0141(11) 0.0465(14) 0.0301(13) 0.0003(10) 0.0079(11) -0.007(1) C2 0.0197(11) 0.0380(13) 0.0300(13) 0.0002(10) 0.0084(10) -0.0099(10) C3 0.0328(14) 0.0275(11) 0.0311(13) -0.0017(9) 0.0127(12) -0.0017(10) C4 0.0253(13) 0.0381(13) 0.0215(12) -0.0042(9) 0.0044(10) -0.0047(10) C5 0.0249(12) 0.0366(12) 0.0192(11) -0.0008(9) 0.0062(10) 0.0012(10) C6 0.0285(13) 0.0371(13) 0.0242(12) 0.0059(10) 0.0093(11) 0.0009(10) C7 0.0200(11) 0.0425(13) 0.0270(12) 0.0066(10) 0.0076(10) 0.0081(10) C8 0.0167(11) 0.0440(14) 0.0292(12) 0.0058(10) 0.010(1) 0.0077(10) C9 0.0183(11) 0.0432(13) 0.0293(12) 0.0013(10) 0.0147(10) 0.0038(10) C10 0.0205(11) 0.0424(13) 0.0251(12) 0.003(1) 0.0135(10) -0.0007(10) C11 0.0224(11) 0.0278(10) 0.0252(11) 0.0041(8) 0.0111(10) -0.0027(8) C12 0.0286(13) 0.0330(12) 0.0225(12) 0.0041(9) 0.0083(10) -0.0024(10) C13 0.0328(14) 0.0298(12) 0.0298(13) 0.0055(10) 0.0116(12) -0.0047(10) C14 0.0241(12) 0.0302(11) 0.0313(13) 0.0095(10) 0.0115(10) 0.0043(10)

Page 49: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C15 0.0218(11) 0.0335(11) 0.0234(11) 0.0037(9) 0.0100(9) 0.0050(9) C16 0.0222(11) 0.0346(12) 0.0253(11) 0.0069(9) 0.0125(10) 0.0051(9) C17 0.0194(11) 0.0307(11) 0.0341(13) 0.0057(9) 0.0097(10) 0.0064(9) C18 0.0299(13) 0.0386(13) 0.0413(15) 0.0125(11) 0.0153(12) 0.0079(10) C19 0.0360(15) 0.0324(13) 0.061(2) 0.0183(13) 0.0066(14) 0.0023(11) C20 0.0349(16) 0.0306(14) 0.069(2) -0.0041(14) 0.0078(15) 0.0127(12) C21 0.0367(16) 0.0426(15) 0.069(2) -0.0128(14) 0.0269(16) 0.0039(12) C22 0.0349(14) 0.0344(13) 0.0521(17) -0.0037(12) 0.0256(13) 0.0008(11) C23 0.0158(10) 0.0309(11) 0.0236(11) 0.0002(8) 0.0084(9) -0.0021(8) C24 0.0155(10) 0.0286(10) 0.0246(11) -0.0013(8) 0.0072(9) -0.0030(8) C25 0.0148(10) 0.0319(11) 0.0215(11) -0.0058(9) 0.0040(9) -0.0007(8) C26 0.0265(12) 0.0350(12) 0.0309(13) -0.0013(10) 0.0090(11) 0.0002(10) C27 0.0289(14) 0.0303(12) 0.0443(16) -0.0061(11) 0.0057(12) 0.0039(10) C28 0.0264(13) 0.0461(15) 0.0364(14) -0.0147(12) 0.0105(12) 0.0067(11) C29 0.0229(12) 0.0494(15) 0.0300(13) -0.0093(11) 0.0125(11) 0.0007(10) C30 0.0203(11) 0.0369(12) 0.0254(12) -0.0032(9) 0.0099(10) 0.0002(9) C31 0.0187(11) 0.0301(11) 0.0253(11) 0.0023(9) 0.0112(9) -0.0013(9) C32 0.0159(10) 0.0306(11) 0.0227(11) 0.0004(9) 0.0078(9) -0.0017(9) C33 0.0196(11) 0.0377(13) 0.0213(11) 0.0022(9) 0.008(1) 0.0003(10) C34 0.0240(12) 0.0267(10) 0.0250(11) -0.0034(9) 0.0125(10) -0.0025(9) C35 0.0256(12) 0.0247(10) 0.0246(11) -0.0010(8) 0.0125(10) 0.0020(9) C36 0.0262(12) 0.0357(12) 0.0266(12) 0.0022(10) 0.0115(10) 0.0088(10) C37 0.0311(13) 0.0264(10) 0.0266(12) 0.0083(9) 0.0155(10) 0.0060(9) C38 0.0275(12) 0.0271(10) 0.0244(11) 0.0064(9) 0.0153(10) 0.0013(9) C39 0.0223(11) 0.0295(10) 0.0217(11) 0.0027(8) 0.0144(10) 0.0021(9)

Page 50: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C40 0.0186(11) 0.028(1) 0.0230(11) 0.0020(8) 0.0107(9) 0.0052(8) C41 0.0168(10) 0.0261(10) 0.0280(12) 0.0056(8) 0.0071(9) 0.0024(8) C42 0.0273(13) 0.0269(11) 0.0386(14) 0.0051(10) 0.0113(12) 0.0034(10) C43 0.0250(12) 0.0348(12) 0.0333(13) 0.0133(10) 0.0126(11) 0.0034(10) C44 0.0226(12) 0.0353(12) 0.0288(12) 0.0093(10) 0.0055(10) 0.0018(10) C45 0.0246(12) 0.0325(11) 0.0248(12) 0.0033(9) 0.0105(10) 0.0014(9) C46 0.0238(12) 0.0335(11) 0.0229(11) 0.0007(9) 0.0083(10) -0.0006(9) C47 0.0309(13) 0.0353(12) 0.0216(11) 0.0034(9) 0.0101(10) -0.0063(10) C48 0.0438(16) 0.0312(12) 0.0283(13) 0.0023(10) 0.0175(12) -0.0073(11) C49 0.060(2) 0.0430(14) 0.0263(13) 0.0017(11) 0.0203(14) -0.0124(13) C50 0.055(2) 0.0637(19) 0.0185(13) 0.0045(12) 0.0085(13) -0.0224(16) C51 0.0354(17) 0.082(2) 0.0284(15) 0.0119(14) 0.0012(13) -0.0012(16) C52 0.0359(16) 0.072(2) 0.0271(14) 0.0060(13) 0.0081(12) 0.0076(14) C53 0.0144(10) 0.0281(10) 0.0243(11) 0.0016(8) 0.0088(9) -0.0009(8) C54 0.0166(10) 0.0247(10) 0.0216(10) -0.0005(8) 0.0068(9) -0.0050(8) C55 0.0231(11) 0.0273(10) 0.0196(10) -0.0009(8) 0.0096(9) -0.0086(8) C56 0.0297(13) 0.0328(12) 0.0277(12) 0.0002(9) 0.0159(11) -0.0028(10) C57 0.0400(15) 0.0429(14) 0.0314(14) -0.0057(11) 0.0233(13) -0.0072(12) C58 0.0501(18) 0.0501(15) 0.0226(13) -0.0067(11) 0.0211(13) -0.0193(13) C59 0.0416(16) 0.0495(15) 0.0207(12) 0.0045(11) 0.0084(12) -0.0122(12) C60 0.0272(13) 0.0406(13) 0.0228(12) 0.0019(10) 0.0078(10) -0.0047(10) Residue: 2. C61 0.131(4) 0.062(2) 0.051(2) 0.0120(19) 0.023(3) 0.024(3) C62 0.072(2) 0.0541(18) 0.058(2) 0.0290(16) 0.0352(19) 0.0219(16) C63 0.075(3) 0.078(3) 0.089(3) 0.054(2) 0.050(3) 0.032(2)

Page 51: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C64 0.056(2) 0.075(3) 0.118(4) 0.054(3) 0.032(3) 0.007(2) C65 0.068(3) 0.056(2) 0.087(3) 0.037(2) 0.001(2) -0.0006(19) C66 0.078(3) 0.059(2) 0.066(3) 0.0206(19) 0.016(2) 0.008(2) C67 0.052(2) 0.063(2) 0.055(2) 0.0197(16) 0.0181(17) 0.0151(16) Thermal vibration amplitudes (Å2)

F(h) = Fo(h) exp (-2π2

i=1

3

Σj=1

3

ΣhihIai*aj

*Uij)

or F(h) = Fo(h) exp (-8π2Uiso(sin(θ)/λ)2) Table 3. Data on the geometry. Standard deviations in the last decimal place are given in parentheses. Residue: 1.

La1 -N1 2.704(2) C11 -C13 1.546(4) La1 -N2 2.867(2) C11 -C14 1.534(4) La1 -N3 2.7564(19) C15 -C16 1.226(3) La1 -N4 2.3653(19) C16 -C17 1.449(3) La1 -C15 2.674(2) C17 -C18 1.403(4) La1 -C23 2.698(2) C17 -C22 1.412(4) La1 -C53 2.855(2) C18 -C19 1.393(4) La2 -N5 2.713(2) C19 -C20 1.384(4) La2 -N6 2.8597(19) C20 -C21 1.375(4) La2 -N7 2.7690(18) C21 -C22 1.399(4) La2 -N8 2.368(2) C23 -C24 1.221(3) La2 -C23 2.876(2) C24 -C25 1.455(3) La2 -C45 2.655(2) C25 -C26 1.399(3) La2 -C53 2.705(2) C25 -C30 1.411(3) N1 -C1 1.489(3) C26 -C27 1.407(4) N1 -C8 1.485(3) C27 -C28 1.383(4) N1 -C9 1.493(3) C28 -C29 1.391(4) N2 -C2 1.492(3) C29 -C30 1.399(4) N2 -C3 1.479(3) C31 -C32 1.532(3) N2 -C4 1.492(3) C34 -C35 1.525(4) N3 -C5 1.496(3) C37 -C38 1.534(4) N3 -C6 1.484(3) C39 -C40 1.532(3) N3 -C7 1.500(3) C41 -C42 1.553(3) N4 -C10 1.467(3) C41 -C43 1.535(4) N4 -C11 1.479(3) C41 -C44 1.559(4) N5 -C31 1.489(3) C45 -C46 1.225(3) N5 -C38 1.488(3) C46 -C47 1.445(3) N5 -C39 1.491(3) C47 -C48 1.403(4)

Page 52: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

N6 -C32 1.495(3) C47 -C52 1.401(4) N6 -C33 1.482(3) C48 -C49 1.390(4) N6 -C34 1.493(3) C49 -C50 1.382(6) N7 -C35 1.486(3) C50 -C51 1.376(5) N7 -C36 1.489(3) C51 -C52 1.394(4) N7 -C37 1.496(3) C53 -C54 1.220(3) N8 -C40 1.462(3) C54 -C55 1.454(3) N8 -C41 1.476(3) C55 -C56 1.410(4) C1 -C2 1.522(4) C55 -C60 1.405(3) C4 -C5 1.519(4) C56 -C57 1.401(4) C7 -C8 1.534(4) C57 -C58 1.389(4) C9 -C10 1.521(4) C58 -C59 1.383(4) C11 -C12 1.552(3) C59 -C60 1.396(4)

Hydrogen parameters:

C1 -H1 0.9571(-) C31 -H31 0.9783(-) C1 -H1' 0.8970(-) C31 -H31' 0.9934(-) C2 -H2 0.9801(-) C32 -H32 0.9672(-) C2 -H2' 1.0204(-) C32 -H32' 1.0066(-) C3 -H3 0.9838(-) C33 -H33 0.982(-) C3 -H3' 0.9875(-) C33 -H33' 0.9844(-) C3 -H3" 1.0337(-) C33 -H33" 0.9345(-) C4 -H4 1.0249(-) C34 -H34 0.98(-) C4 -H4' 0.9583(-) C34 -H34' 1.0065(-) C5 -H5 0.9735(-) C35 -H35 1.0295(-) C5 -H5' 0.9182(-) C35 -H35' 0.9421(-) C6 -H6 1.0182(-) C36 -H36 0.9838(-) C6 -H6' 0.979(-) C36 -H36' 1.0173(-) C6 -H6" 0.9772(-) C36 -H36" 1.0159(-) C7 -H7 1.0393(-) C37 -H37 1.0581(-) C7 -H7' 0.9396(-) C37 -H37' 0.9043(-) C8 -H8 0.9558(-) C38 -H38 0.9829(-) C8 -H8' 0.9491(-) C38 -H38' 1.0167(-) C9 -H9 0.9676(-) C39 -H39 0.9874(-) C9 -H9' 1.0226(-) C39 -H39' 0.9705(-) C10 -H10 0.9060(-) C40 -H40 1.0389(-) C10 -H10' 1.025(-) C40 -H40' 0.9768(-) C12 -H12 1.0079(-) C42 -H42 0.9853(-) C12 -H12' 0.8992(-) C42 -H42' 0.9125(-) C12 -H12" 1.0018(-) C42 -H42" 1.0482(-) C13 -H13 0.9488(-) C43 -H43 1.1131(-) C13 -H13' 0.8252(-) C43 -H43' 0.9218(-) C13 -H13" 1.0544(-) C43 -H43" 1.0348(-) C14 -H14 1.0793(-) C44 -H44 0.9798(-) C14 -H14' 0.9441(-) C44 -H44' 0.9849(-) C14 -H14" 0.9104(-) C44 -H44" 1.026(-) C18 -H18 0.8702(-) C48 -H48 1.0113(-)

Page 53: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

C19 -H19 0.9317(-) C49 -H49 1.0249(-) C20 -H20 0.8505(-) C50 -H50 0.9688(-) C21 -H21 0.9652(-) C51 -H51 0.8955(-) C22 -H22 1.0803(-) C52 -H52 1.0575(-) C26 -H26 1.0207(-) C56 -H56 0.8893(-) C27 -H27 0.9304(-) C57 -H57 0.9366(-) C28 -H28 0.9211(-) C58 -H58 0.9251(-) C29 -H29 0.9459(-) C59 -H59 0.9648(-) C30 -H30 0.9558(-) C60 -H60 1.0032(-)

Bond Angles (deg.)

N1 -La1 -N2 62.51(6) La1 -N2 -C3 108.93(15) N1 -La1 -N3 64.13(6) La1 -N2 -C4 114.03(14) N1 -La1 -N4 69.04(6) C2 -N2 -C3 108.25(19) N1 -La1 -C15 78.90(7) C2 -N2 -C4 110.4(2) N1 -La1 -C23 139.32(6) C3 -N2 -C4 109.98(19) N1 -La1 -C53 146.92(6) La1 -N3 -C5 106.65(14) N2 -La1 -N3 63.14(6) La1 -N3 -C6 104.77(14) N2 -La1 -N4 83.30(6) La1 -N3 -C7 114.60(14) N2 -La1 -C15 132.81(7) C5 -N3 -C6 107.30(19) N2 -La1 -C23 79.64(6) C5 -N3 -C7 112.2(2) N2 -La1 -C53 150.07(6) C6 -N3 -C7 110.8(2) N3 -La1 -N4 130.98(6) La1 -N4 -C10 117.83(14) N3 -La1 -C15 76.51(6) La1 -N4 -C11 127.90(15) N3 -La1 -C23 86.53(6) C10 -N4 -C11 114.23(19) N3 -La1 -C53 125.51(6) La2 -N5 -C31 119.40(13) N4 -La1 -C15 108.27(7) La2 -N5 -C38 107.24(15) N4 -La1 -C23 123.17(7) La2 -N5 -C39 95.40(13) N4 -La1 -C53 101.65(6) C31 -N5 -C38 111.08(18) C15 -La1 -C23 122.90(7) C31 -N5 -C39 111.72(19) C15 -La1 -C53 74.12(7) C38 -N5 -C39 110.97(17) C23 -La1 -C53 72.95(7) La2 -N6 -C32 105.15(13) N5 -La2 -N6 62.59(5) La2 -N6 -C33 109.24(14) N5 -La2 -N7 63.70(6) La2 -N6 -C34 113.70(14) N5 -La2 -N8 69.17(6) C32 -N6 -C33 107.91(19) N5 -La2 -C23 148.80(6) C32 -N6 -C34 110.81(19) N5 -La2 -C45 79.01(7) C33 -N6 -C34 109.80(18) N5 -La2 -C53 137.78(6) La2 -N7 -C35 105.71(13) N6 -La2 -N7 63.52(5) La2 -N7 -C36 105.34(14) N6 -La2 -N8 84.39(6) La2 -N7 -C37 114.82(14) N6 -La2 -C23 148.33(6) C35 -N7 -C36 107.74(19) N6 -La2 -C45 133.55(6) C35 -N7 -C37 111.95(18) N6 -La2 -C53 77.99(6) C36 -N7 -C37 110.79(18) N7 -La2 -N8 131.18(6) La2 -N8 -C40 118.25(14) N7 -La2 -C23 124.44(6) La2 -N8 -C41 127.86(15) N7 -La2 -C45 76.93(6) C40 -N8 -C41 113.83(19) N7 -La2 -C53 86.27(6) N1 -C1 -C2 113.3(2) N8 -La2 -C23 102.45(7) N2 -C2 -C1 112.3(2) N8 -La2 -C45 106.37(7) N2 -C4 -C5 112.1(2)

Page 54: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

N8 -La2 -C53 123.66(7) N3 -C5 -C4 112.6(2) C23 -La2 -C45 74.71(7) N3 -C7 -C8 113.1(2) C23 -La2 -C53 72.50(7) N1 -C8 -C7 112.6(2) C45 -La2 -C53 124.42(8) N1 -C9 -C10 112.2(2) La1 -N1 -C1 119.43(15) N4 -C10 -C9 111.4(2) La1 -N1 -C8 106.46(15) N4 -C11 -C12 112.41(19) La1 -N1 -C9 95.05(14) N4 -C11 -C13 113.2(2) C1 -N1 -C8 111.3(2) N4 -C11 -C14 107.08(19) C1 -N1 -C9 111.8(2) C12 -C11 -C13 107.4(2) C8 -N1 -C9 111.82(19) C12 -C11 -C14 108.4(2) La1 -N2 -C2 105.05(13) C13 -C11 -C14 108.2(2) La1 -C15 -C16 174.29(19) N8 -C40 -C39 111.4(2) C15 -C16 -C17 176.3(3) N8 -C41 -C42 112.57(19) C16 -C17 -C18 122.3(2) N8 -C41 -C43 107.18(19) C16 -C17 -C22 119.8(2) N8 -C41 -C44 113.17(19) C18 -C17 -C22 117.9(2) C42 -C41 -C43 108.7(2) C17 -C18 -C19 120.7(3) C42 -C41 -C44 107.3(2) C18 -C19 -C20 120.5(3) C43 -C41 -C44 107.8(2) C19 -C20 -C21 119.9(3) La2 -C45 -C46 172.49(19) C20 -C21 -C22 120.4(3) C45 -C46 -C47 178.1(3) C17 -C22 -C21 120.5(3) C46 -C47 -C48 121.5(2) La1 -C23 -La2 103.39(7) C46 -C47 -C52 121.4(2) La1 -C23 -C24 160.85(19) C48 -C47 -C52 117.1(2) La2 -C23 -C24 95.47(17) C47 -C48 -C49 121.4(3) C23 -C24 -C25 177.7(2) C48 -C49 -C50 120.4(3) C24 -C25 -C26 119.1(2) C49 -C50 -C51 119.3(3) C24 -C25 -C30 121.3(2) C50 -C51 -C52 120.8(3) C26 -C25 -C30 119.6(2) C47 -C52 -C51 121.0(3) C25 -C26 -C27 119.8(2) La1 -C53 -La2 103.78(7) C26 -C27 -C28 120.3(3) La1 -C53 -C54 94.88(17) C27 -C28 -C29 120.3(3) La2 -C53 -C54 161.09(19) C28 -C29 -C30 120.3(3) C53 -C54 -C55 177.0(3) C25 -C30 -C29 119.7(2) C54 -C55 -C56 121.5(2) N5 -C31 -C32 112.9(2) C54 -C55 -C60 119.5(2) N6 -C32 -C31 112.4(2) C56 -C55 -C60 119.0(2) N6 -C34 -C35 112.45(19) C55 -C56 -C57 119.7(2) N7 -C35 -C34 113.4(2) C56 -C57 -C58 120.7(3) N7 -C37 -C38 113.40(19) C57 -C58 -C59 119.9(3) N5 -C38 -C37 111.62(19) C58 -C59 -C60 120.5(3) N5 -C39 -C40 112.31(18) C55 -C60 -C59 120.3(3)

Residue: 2.

Interatomic Distances (Å)

C61 -C62 1.532(6) C64 -C65 1.370(7) C62 -C63 1.374(6) C65 -C66 1.384(7) C62 -C67 1.392(5) C66 -C67 1.410(6) C63 -C64 1.419(7)

Page 55: University of Groningen Neutral and cationic alkyl and ... · By: Cornelis G. J. Tazelaar, Sergio Bambirra, Daan van Leusen, , Auke Meetsma, Bart Hessen* and Jan H. Teuben Part I:

Hydrogen parameters:

C61 -H61 1.0989(-) C64 -H64 1.3059(-) C61 -H61' 1.1490(-) C65 -H65 1.0844(-) C61 -H61" 1.083(-) C66 -H66 0.8619(-) C63 -H63 1.1741(-) C67 -H67 1.0285(-)

Bond Angles (deg.)

C61 -C62 -C63 120.9(4) C63 -C64 -C65 120.1(4) C61 -C62 -C67 120.0(4) C64 -C65 -C66 120.1(4) C63 -C62 -C67 119.0(3) C65 -C66 -C67 119.8(4) C62 -C63 -C64 120.5(4) C62 -C67 -C66 120.5(4)

Hydrogen parameters:

C62 -C61 -H61 104.54(-) C63 -C64 -H64 107.84(-) C62 -C61 -H61' 105.77(-) C65 -C64 -H64 131.73(-) C62 -C61 -H61" 108.11(-) C64 -C65 -H65 119.84(-) H61 -C61 -H61' 89.92(-) C66 -C65 -H65 119.26(-) H61 -C61 -H61" 127.76(-) C65 -C66 -H66 108.63(-) H61' -C61 -H61" 117.98(-) C67 -C66 -H66 130.73(-) C62 -C63 -H63 111.03(-) C62 -C67 -H67 121.89(-) C64 -C63 -H63 128.39(-) C66 -C67 -H67 117.61(-)