urbanization, urban infrastructure and low carbon cities

28
Urbanization, urban infrastructure and low carbon cities Shobhakar Dhakal Shobhakar Dhakal Associate Professor, Energy Field of Study Asian Institute of Technology (AIT), Thailand h bh k @i h h bh k dh k l@ il shobhakar@ait.ac.th , shobhakar.dhakal@gmail.com

Upload: others

Post on 19-Apr-2022

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Urbanization, urban infrastructure and low carbon cities

Urbanization, urban infrastructure and low carbon cities

Shobhakar DhakalShobhakar Dhakal

Associate Professor, Energy Field of Study

Asian Institute of Technology (AIT), Thailand

h bh k @ i h h bh k dh k l@ [email protected][email protected]

Page 2: Urbanization, urban infrastructure and low carbon cities

C t tContents• Global CO2 and urbanization trends• Role of urbanization and urban areas in carbon emissionscarbon emissions

• CO2 emissions in cities, what they tell us?

• Key messages

Page 3: Urbanization, urban infrastructure and low carbon cities

Fossil Fuel & Cement CO2 Emissions

Marla

nd et

al. 2

009

Growth rate

Growth rate20105.9% yr

20109.1 GtC(or 33 4 GtCO2)

d, An

dres

-CDI

AC 20

11; Growth rate

2000-20103.1% per year

(or 33.4 GtCO2)

C; D

ata: B

oden

, Mar

land

Growth rate1990-1999

Growth rate2009

-1.3% per year

s et a

l. 201

1, Na

ture

CC1% per year

Uncertainty (6-10%)+-

Peter

s

Updated from Le Quéré et al. 2009, Nature Geoscience; CDIAC 20010

Glen et al. 2011Nature Climate ChangeNature Climate ChangeDec 5, 20111990-2009

Page 4: Urbanization, urban infrastructure and low carbon cities

Urban and Rural Population (Millions)9000

(GEA‐H, GEA‐M, GEA‐Land UN WUP, 2010)

2.8 bn urban popSpeed of a billion urban population addition

6000

2010: Urban 3.5 bn

2100: Urban population: (6 7 8 4) b

>10,000 yrs (1960)

25 yrs (1985)

1 bn

2 bn

@50% (6.7 – 8.4) bn

rural population: (1 0 2 8) b

2050: Urban population: 6.3 (5.9‐6.4) bn

18 yrs (2003)

15 yrs (2018)

3 bn

4 bn

3000Rural

(1.0 – 2.8) bn( )

2020: Rural peaksUrban 2020: Rural peaks at about 3.5 bnand declines thereafter

1.8 bn

0.7 bn 2.8 bn urban pop0

1950 1970 1990 2010 2030 2050 2070 2090 2110

World GEA‐H urb World GEA‐H rur World GEA‐M urb World GEA_M rurTotal population (urban %) UN

World GEA‐L urb World GEA_L rur World UN urb World UN rur

World HIST urb World HIST rur UN (2010); Global Energy Assessment

Total population (urban, %), UN1950: 2.5 (0.7, 28%)2010: 6.9 bn (3.5 bn, 50%)2030: 8.3 bn (4.9 bn, 58%)2050: 9.1 bn (6.3 bn, 69%)

Page 5: Urbanization, urban infrastructure and low carbon cities

R idl b i i ldRapidly urbanizing world

Country Stock 2050 Growth 2010‐2050yChina 1038 408 India 875 507Indonesia 190 84Nigeria 218 140USA 365 154P ki t 200 140

©http://www.unicef.org/sowc2012/urbanmap/

Pakistan 200 140

Page 6: Urbanization, urban infrastructure and low carbon cities

World urban population growth  dominated by small & medium‐size  cities!

Number ofl

9000

10000

lions 10,000,000 and more

5 000000 to 10 000 000

agglomerationsin 2010

21

7000

8000

9000

Mill 5,000000 to 10,000,000

1,000,000 to 5,000,000

100,000 to 1,000,000

2133388

5000

6000

7000Less than 100,000

Rural3192 (2005)

3000

4000

5000

????

1000

2000

3000

0

1000

1950 1960 1970 1980 1990 2000 2010 2020 2030 2040 2050

Source: Global Energy Assessment/KM18, prepared from UN 2009 update data 

Page 7: Urbanization, urban infrastructure and low carbon cities

U b i ti d l b l CO2Urbanization and global CO2

• Urbanization led to increase globalUrbanization led to increase global CO2 emissions in the past

• Urbanization could “lead to an increase in projected future  Stochastic Impacts by Regression on Population, p jemissions by more than 25 per cent in the future particularly in 

Affluence and Technology (STIRPAT) model and a sample of 88 countries for the period 1975–2005 

Poumanyvong and Kaneko, 2010, Ecological Economics.

developing country regions, mainly through effects on labor supply” (O’Neill et al 2010 PNAS)(O’Neill et al. 2010 PNAS)

Page 8: Urbanization, urban infrastructure and low carbon cities

Urbanization elasticity of transport y pand road energy use

Poumanyvang, Kaneko, and  Dhakal, 2012, Energy Policy

Page 9: Urbanization, urban infrastructure and low carbon cities

Impact of urbanization on national presidential energy use and emissions 

Under publication, do not quote…Phetkeo Poumanyvang, Shinji Kaneko, Shobhakar Dhakal

Page 10: Urbanization, urban infrastructure and low carbon cities

Urban contribution to global primary d d denergy  demand and CO2 emissions

73%

7903 Mtoe

12,374 Mtoe

81% 

% are cities’ share in global

67%

% cumulative increase in 2006‐2030 

fcome from non‐OECD countries

30.8 GtOut of 12.6 GtCO2 global CO2 addition in 

US cities :4.5 GtCO2, 23%EU cities :2.7 GtCO2, 14%China cities: 4.8 GtCO2, 24%

Source: WEO, 2008

76%19.8 Gt

gnext 25 years, cities contribute 11 Gt or 87%

89% of cumulative 

71%33%50%increase in 2006‐2030 

in urban CO2 comes from non‐OECD countries

Page 11: Urbanization, urban infrastructure and low carbon cities

Urban contributions to l/ lregional/national CO2 emissions, 2006

Urban’s national primary energy contribution• USA : 80% (2006), 87% (2030)( ), ( )

• EU: 69% (2006) 75% (2030)

• China: 75%

• Australasian cities’: 78% to 80% 

Urban’s national CO2 contribution• China 85%

• USA 80% 

• Europe 69%

Urban per capita CO2 < regional/national averages in developed world but far greater in China and developing countries as a whole

(WEO, 2008; Dhakal 2009; Parshall et al 2009)

countries as a whole

Page 12: Urbanization, urban infrastructure and low carbon cities

Challenge/opportunities for g / ppmanaging urbanization• Ensuring ‘quality’ of urbanization in new developments‐avoiding a lock‐in to the wrong path (urban form , urban infra,avoiding a lock in to the wrong path (urban form , urban infra, urban design)• Global urban land could expand by 1.5 mn sq km by 2030 from 2000 (France + 

Germany + Spain) /Germany + Spain) Seto  et al (2011). PLoS ONE 6(8): e23777. doi:10.1371/journal.pone.0023777

• 2.8 billion additional urban population by 2050 

• Reorienting investments in green urban infrastructureReorienting investments in green urban infrastructure systems  and other measures to enhance the efficiency in existing citiesexisting cities • Infra replacement cycles, enhancing urban energy system, Urban design and 

transportation infrastructure, buildings and energy efficiency, co‐benefits

Page 13: Urbanization, urban infrastructure and low carbon cities

GHG emissions in cities and urban agglomerations• Role of large‐size cities are important (despite urban agglomeration less than 500,000 population size account for 48% of total urban population for the year 2005)

• 50 largest cities is eqv to 3rd largest emitter after China and USA  

• China: 35 largest and key cities representing 18% population account  40% of energy‐related CO2 (Dhakal, 2009)

• United States: 20% of trans & res CO2 from 10 largest metro• United States: 20% of trans & res CO2 from 10 largest metro areas (Brown et al 2008)

• Thailand: Bangkok City with 9% of country’s population (5.7 mn) g y % y p p ( )emit 26% of CO2 from energy use in 2005 (Aumnad and Dhakal, forthcoming)

• But the role and function of city matters• Tokyo with 10% of Japan’s population emit 4% of nation’s all GHG 

i iemissions

Dhakal (2010). Current Opinion in Environmental Sustainability, DOI:10.1016/j.cosust.2010.05.007

Page 14: Urbanization, urban infrastructure and low carbon cities

GHG emissions in cities and urban agglomerations‐what we know?

• Large variations in the scale of the total and the per g pcapita emissions across cities• United States: for only transport and residential sectors, per 

it hi h t i L i t (3 5 t ) d l t i H l l (1 4capita highest in Lexington (3.5 tons) and lowest in Honolulu (1.4 tons) in 2005 within 100 metropolitan areas  (Brown et al, 2009)

• Cities seem to evade the usual developing and developedCities seem to evade the usual developing and developed country substantiation • Per capita CO2 emissions of Beijing, Shanghai, Tianjin and p j g g jBangkok are higher than Tokyo, New York City, and Greater London 

• How to compare cities then?• How to compare cities then? • How to get perspective on urban development patterns and CO2 emissions relations from meta analyses?and CO2 emissions relations from  meta‐analyses? 

Dhakal (2010). Current Opinion in Environmental Sustainability, DOI:10.1016/j.cosust.2010.05.007

Page 15: Urbanization, urban infrastructure and low carbon cities

Varying energy‐economy pathways within y g gy yp yChina’s cities

Taiyuan

Hohhot

240 000

280,000

Per

son

High energy intensive: with 

Urumqi Shanghai

Yinchuan

200,000

240,000

on in

MJ

Per energy intensive industries 

and climatically cooler 

XiamenGuiyang

Ni b

g

Guangzhou

B iji120,000

160,000

Con

sum

ptio

Low energy intensive: Cities in

Nanjing

Fuzhou

Xining

Ningbo

Xian

Beijing

China80,000

,

pita

Ene

rgy

C Cities in eastern/southern part of the country with strong presence of service industries, close 

Chongquin

0

40,000

Per C

ap to coast and warmer climate 

0 3,000 6,000 9,000 12,000

Per Capita Gross Regional Product in US$

Dhakal (2009), Energy Policy, doi:10.1016/j.enpol.2009.05.020

Page 16: Urbanization, urban infrastructure and low carbon cities

Urban admin boundary vsagglomeration understanding

BMA

Industry: tripled Residential: doubledCommercial: slightly moreTransport: slightly moreTransport: slightly more

Energy demand in BMA and BMR, 2005‐ admin boundary based ti k l i t

Bangkok Metropolitan Region (BMR) encompasses of Bangkok and five 

common perception can skew real picture

g p g ( ) p gneighboring provinces, including Nonthaburi, Samut Prakan, PathumThani, Samut Sakhon and Nakhon Pathom.

Aumnad and Dhakal, manuscript under preparation

Page 17: Urbanization, urban infrastructure and low carbon cities

Tokyo 23 wards Tokyo Government“Tokyo or Tokyo City”

Greater Tokyo Area(Tokyo, Saitama, Chiba, Kanagawa)

National Capital Region(8 prefectures)

Kanto Major Metropolitan Area(all municipalities with at least 1.5% of their populationaged 15 and above commuting to Yokohama, Kawasaki, Sagamihara, Chiba, and Saitama orthe 23 special wards)

Pop 8 49 mn 12 55 mn* 34 48 mn 34 6 mn (2000) 42 9 mn (2009)東京圏 首都圏

Pop 8.49 mnArea 617 km2Density 13,770 p/km2 Av income hh (th) 4,600 YenGRP (Bn US$, real)

12.55 mn1,779 km2*7,063 p/km24,225 Yen815

34.48 mn13,547 km22,545 p/km23,957 Yen1,448

34.6 mn (2000) 42.9 mn (2009)36,889 km2 (2009)1,164 p/km2 (2009)

1,713

関東大都市圏

GRP (Bn US$, real)Day/night pop  1.33CO2 emissions MT CO2‐ePer capita CO2, Tons

815 1.263 (GHGs)5

1,4481207 (GHGs)6

1,7131268 (GHGs)6.2

TochigiGunma

All data refers of 2005 unless otherwise indicated*excluding islands

Ibaraki

Saitama

ChibaTokyoYamanashi

Kanagawa

Picture  and NCR data  are from http://en.wikipedia.org/wiki/Greater_Tokyo_Area

Page 18: Urbanization, urban infrastructure and low carbon cities

Stylized hierarchy in urban energy‐GHG drivers and policy leverages

…but it requires

1. Spatial division of function(trade, industry structure)

…but it requires overcoming policy fragmentation and d d2. Income (consumption)

3. Urban form(d it ↔ bli t t↔

dispersed, uncoordinated decision taking‐ needs to fix(density↔public transport↔car

ownership↔functional mix)4. Efficiency of energy end‐useDecreasing order

taking needs to fix governance aspects

y gy(buildings, processes,vehicles, appliances)

5 Fuel substitution (imports)

Decreasing orderof importance Increasing level of

urban policy leverage5. Fuel substitution (imports)6. Energy systems integration

(co‐generation, heat‐cascading)g g7. Urban renewables

Largest improvements come from systemic

Global Energy Assessment, KM 18

come from systemic change

Page 19: Urbanization, urban infrastructure and low carbon cities

Fossil fuel CO2 emissions (GtC)2 ( )

Peters et al 2011 Nature CCPeters et al. 2011, Nature CC

Page 20: Urbanization, urban infrastructure and low carbon cities

Cit l tCity as a complex open system• The catchment of urban activities goes beyondr activities goes beyond the administration or  agglomeration oo

d and water

CarbonCarbon

Emissions Emissions

ggboundary

mobilityenergy

F

Th i di / b di d• The indirect/embodied carbon emissions flows 

h l t t l b

Material and

Service flo

w

overwhelm total carbon emissons (direct + indirect carbon)M S indirect carbon)

Page 21: Urbanization, urban infrastructure and low carbon cities

Tokyo for illustrationTokyo direct +  indirect CO2 emissionsUsing Economic I‐O analyses

Total,  mn tCO2 Per capitamn tCO2

+ CO2 emissions embedded in‐ CO2 emissions embedded inembedded in consumed goods and services

embedded in exported goods and services

5 times 3 timesJust over the national figure of 9g

Tokyo Gov’sestimate is 

+ CO2 emitted in electricity 

2 times close to this 

Direct CO2 emission

prod outside

emission

Kaneko & Dhakal (2012), donot quote, under publication

Page 22: Urbanization, urban infrastructure and low carbon cities

Carbon footprint of UK local authority areas

P iPer‐capita carbon footprint for 434 UK local a thorit areas

London’s 2008 Official figure: 5.8 tCO2e

authority areas (I‐O methods)closely related to the distributionthe distribution of wealthacross private householdshouseholds

Jan Minx et al. 2009, Economic Systems Research, 2009, Vol. 21(3)SEI, 2007

Page 23: Urbanization, urban infrastructure and low carbon cities

Why consider out‐of‐boundary i ?items?• Logic: Electricity produced “outside” is already being counted; boundary is blurred

• More holistic: Per capita city‐scale emissions from in boundary activities typically less than national per capita in developed countries

• City comparison makes a better sense: Can we otherwise compare• City comparison makes a better sense: Can we otherwise compare Shanghai with London?  Not to penalize industrial cities in low carbon debate !!!!

• Avoid Perverse Incentives: Avoid crediting emission shifts to the “outside”: e.g., hydrogen fueled transport

• Create win‐win policies: Incentivize cross‐boundary cross‐sector policies:Create win win policies: Incentivize cross boundary, cross sector policies:e.g., sustainable food diets, green concrete, ICT strategies (e.g., teleconferencing)C i i l i h bli C i l i l d j h• Communicate consistently with public: Consistently include major human activities at all scales from personal‐scale to city‐scale to national‐scale

Ad t d f K d R i C d Dh k l 2009 (URS 2009 S i M ill Th W ld B k)

23

Adapted from Kennedy, Ramaswami, Carney and Dhakal, 2009 (URS 2009 Symposium, Marseille, The World Bank)

Page 24: Urbanization, urban infrastructure and low carbon cities

KKey messages• Unprecedented urbanisation: Past and future: immense implications to the low‐carbon futureimplications to the low carbon future

• Three key avenues: (a) Rapidly urbanizing developing world with new infrastructure (b) Retrofitting or re‐engineering existing cities (c) behavioral changes   

• A new framework/criteria to define and compare low carbon cities, i i ibili i d i d dtransitions, responsibilities,  and actions  needed

• Challenges are many

S t d t di ( ti / d li l i f• Systems understanding (accounting/modeling, clear view of responsibility, visioning low carbon pathways)

• Addressing systemic and structural issuesAddressing systemic and structural issues

• Enhancing governance for low carbon urban development

• Research policy dialogues/interfacingResearch policy dialogues/interfacing

Page 25: Urbanization, urban infrastructure and low carbon cities

F t h dFuture research needs• Various configurations of low carbon city, especially maximizing “spatial aspects” and structural reorganization of cities

• Understanding of carbon emissions and mitigation potentials at urban agglomeration level for optimized urban carbon strategies ‘in addition to h d i i i i ’ h h d h ?the administrative unit’‐ where, who and how?

• Understanding of urban system as an open system with extensive cross boundary interactions for food water energy mobility material andboundary interactions for food, water, energy, mobility, material and services. 

• City wide understanding of the 

London Mayors Report

y gembedded emissions and carbon responsibility. New methodologies and overcoming data barriersand overcoming data barriers

• New matrix/criteria/method to evaluate/compare cities’ emissions performance‐ new framework for low carbon cities

Page 26: Urbanization, urban infrastructure and low carbon cities

F t h dFuture research needs• More city case‐studies, especially in the developing world

• Scaling up to derive patterns: Understanding of urban development pathways and their GHG consequences for various urban typologies

• key avenues: (a) Rapidly emerging developing world with new infrastructure (b) Retrofitting or re‐engineering existing cities

Page 27: Urbanization, urban infrastructure and low carbon cities

Th k !!Thank you !!

Page 28: Urbanization, urban infrastructure and low carbon cities

Comparative advantages of developing p g p gcountry cities• Lifestyle is yet modest‐ re‐orienting some of the trends may not impossible if difficult‐ people are getting more aware of West’s problems

• Cities are being built and resource base is increasing‐ window of opportunities is narrowing yet exists

• Co‐benefits and low hanging fruits‐ plenty available yet 

• Late‐comers’ advantage ‐ technology and knowledge

• Greater flexibility‐space in shaping economic growth‐sustainability  relations‐ e.g West has no opportunity to increase y g pp y

emissions developing countries’ have such opportunities

• Serious policy initiatives can make huge impacts‐ enablingSerious policy initiatives can make huge impacts enabling environment and sound governance are key urgent needs