use of bacteria as model non spherical aerosol particles

9
J. Aeros ol Sci., Vo l 16. No. 3, pp 193 200. 1985 0021 8502i85 $3.00 +0 00 Pnnted in Great Britain q 1985 Pergamon Press Ltd USE OF BACTERIA AS MODEL NONSPHERICAL AEROSOL PARTICLES A. J. ADAMS, D. E. WENNERSTROM * and M. K. MAZUMDER University of Arkansas, Graduate Institute of Techno logy, P. O. Box 3017, Little Rock, AR 72203, U. S.A. and • Department o f Microbiology and Immunology, University of Arkansas lot Medical Sciences, Little Rock, AR 72205, U.S.A. (Fir.st receired 27 Auyust 1984: and in rerisedJorm I I December 19841 Abstract--Nonviable rod-shaped bacteria Bacillus .suhtilis an d E.wherichia coil and the spherical bacterium Staphylococcus epidermidis were aerosolized using the conventional technique o1" pneumatic atomization. Single-particle aerodynamic relaxation tim e (SPA RT) analysis was carried out in order to determine the orientation-averaged aerodynamic size distribution for the aerosol. Results indicate that the com pressed -air nebulizer used in this study is effecti ve n generating bacterial aerosols of both uniform nonspherical and monodisperse spherical particles. The aerodynamic diameters as measured by the SPAR T technique agree with published data for the cell dimensions and organisms based on their aerodynamic diameter. This study demonstrates that nonviable bacterial cell s can serve as a model system in studying aerosols of nonspherical particles and illustrates the potential of the SP ART technique i n the rapid detection and characteri zation of airborne biological particles. INTRODUCTION One aspect of aerosol science currently receiving considerable attention is the study of nonspherical particles. Num erous studies aimed at characterizing the physical properties and dynamic behavior of nonspherical airborne particulates have been reported (Coletti, 1984; Dahneke, 1982; Gallily et al., 1983; Heyder and Scheuch, 1983; Kasper and Shaw, 1983; Liu e t al., 1983; Mazumder et al., 1982). These efforts have been prompted by the finding that many natural and man-made aerosols contain nonspherical particles, some of which are regularly shaped (fibers, sea salt-crystals, and cylindrical microorganisms) while others are irregular in geometry (dusts, com bustion and industrial aerosols~. The deviation in the dynamic behavior of a nonspherical particle from an equivalent spherical one is modeled by ascribing to the particle a dynamic shape factor 7,, a dimensionless param eter which relates the true drag force to an equivalent volume diam eter (see Hinds, 1982, p. 47). It is possible to derive analytical expressions for Z in terms of the particle dimensions only for some simple regular geometric shapes, such as ellipsoids of revolution (Fuchs, 1964). For most of the particle shapes of interest it is necessary to make empirical measurem ents of ~ and this has been done for various regular and irregular nonspherical particles (Davies, 1979; Niida et al., 1983). One objective in probing the physical properties of nonspherical particles has been the development of instrumentation capable of detecting and characterizing aspherical particles (Detenbeck, 1980). One experimental difficulty which has impeded the systematic characterization of nonspherical particulate aerosols is the lack of suitable model systems. Hinds (1982) has emphasized the importance of monodisperse aerosols of known size, shape, and density in aerosol science and technology. The recent proliferation of data describing aerosols of spherical particles is in large part due to the development of monodisperse latex polymers (for discussion see Mercer, 19731. Although several recent studies have employed linear chains of spherical particles as a model system (D ahneke, 1982; Kasper and Shaw, 1983; Kasper, 1984), there is at present no readily available commercial source of uniform nonspherical particles for use as test aerosols. In this report we describe the generation and characterization of uniform aerosols containing cylindrical particles. We have found that nonviable rod-shaped bacteria in the size range approx. 1 ~4 ~m can serve as suitable regularly shaped non-spherical particles in model 193 AS 16/~-A

Upload: jeremy-stark

Post on 07-Apr-2018

223 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 1/8

J . Aeros ol Sc i . , V o l 1 6 . N o . 3 , p p 1 9 3 2 0 0 . 1 9 8 5 0 0 2 1 8 5 0 2 i 8 5 $ 3 . 0 0 + 0 0 0

P n n t e d i n G r e a t B r i t a i n q 1 9 85 P e r g a m o n P r e ss L t d

U S E O F BA C T E RI A A S M O D E L N O N S P H E R I C A L A E R O S O L

P A R T I C L E S

A. J . ADAMS, D. E. WENNERSTROM* a nd M . K . M A ZU M D ER

University of Arkansas, Graduate Institute o f Techno logy, P. O. Box 3017, Little Rock, AR 72203, U.S.A. and• Department o f Microbiology and Immun ology, University of A rkansas lot Medical Sciences,

Little R ock, AR 72205, U.S.A.

(F i r . s t r ece i r ed 27 A u y u s t 1984: a n d i n r e r i s e d J o r m I I D e c e m b e r 19841

Abstract--Nonviable rod-shaped bacteria Baci l lu s . s uh t i l i s an d E . w h e r i c h i a c o i l and the sphericalbacterium S t a p h y l o c o c c u s e p i d e r m i d i s w ere aerosolized us ing the conventional technique o1"pneumatic atomization. Single-particle aerodynamic relaxation tim e (SPA RT) analysis was carriedout in order to determine the orientation-averaged aerodynamic size distribution for the aerosol.Results indicate that the com pressed -air nebulizer used in this study is effective n gene rating bacterialaerosols of both un iform nonspherical and mono disperse spherical particles. The aerodynamicdiameters as measured by the SPAR T technique agree with published data for the cell dimensions andoptical microscopic analysis. Fu rthe r, the S PA RT me tho d distinguished the two rod-shapedorganisms based on their aerodynamic diameter. Th is study demon strates that nonviable bacterialcells can serve as a model system in studying aerosols of nonspherical particles and illustrates thepotential of the SP ART technique in the rapid detection and characterization of airborne biologicalparticles.

I N T R O D U C T I O N

O n e a s p e c t o f a e r o s o l s c i e n ce c u r r e n t l y r e c e i v i n g c o n s i d e r a b l e a t t e n t i o n i s t h e s t u d y o f

n o n s p h e r i c a l p a r t i cl e s . N u m e r o u s s t u d i e s a i m e d a t c h a r a c t e r i z i n g t h e p h y s i c a l p r o p e r t i e s a n d

d y n a m i c b e h a v i o r o f n o n s p h e r i c a l a i r b o r n e p a r t i c u l a t e s h a v e b e en r e p o r t e d ( C o l e tt i , 19 84 ;

D a h n e k e , 1 9 8 2 ; G a l l i l y e t a l . , 1 98 3; H e y d e r a n d S c h e u c h , 1 9 8 3; K a s p e r a n d S h a w , 1 98 3; L i u e t

a l . , 1 9 8 3 ; M a z u m d e r e t a l . , 1 98 2). T h e s e e f f o r t s h a v e b e e n p r o m p t e d b y t h e f in d i n g t h a t m a n y

n a t u r a l a n d m a n - m a d e a e r o s o l s c o n t a i n n o n s p h e r i c a l p a r t i cl e s , s o m e o f w h i ch a r e r e g u l a r l y

s h a p e d ( fi b er s, se a s a l t- c r y st a l s , a n d c y l i n d ri c a l m i c r o o r g a n i s m s ) w h i l e o t h e r s a r e i r r e g u l a r i n

g e o m e t r y ( d u st s , c o m b u s t i o n a n d i n d u s t r i a l a e ro s o ls ~ . T h e d e v i a t i o n i n t h e d y n a m i c b e h a v i o r

o f a n o n s p h e r i c a l p a r t ic l e f r o m a n e q u i v a l e n t s p h e r i c al o n e i s m o d e l e d b y a s c r i b i n g t o t h e

p a r t ic l e a d y n a m i c s h a p e f a c t o r 7 ,, a d i m e n s i o n l e s s p a r a m e t e r w h i c h r e l a te s t h e t r u e d r a g f o r c e

t o a n e q u i v a l e n t v o l u m e d i a m e t e r ( se e H i n d s , 1 98 2, p . 4 7). I t i s p o s s i b l e t o d e r i v e a n a l y t i c a l

e x p r e s s i o n s f o r Z i n t e r m s o f t h e p a r ti c l e d i m e n s i o n s o n l y f o r s o m e s i m p l e r e g u l a r g e o m e t r i c

s h a p e s , s u c h a s e ll i p so i d s o f r e v o l u t i o n ( F u c h s , 1 96 4). F o r m o s t o f th e p a r t i c l e s h a p e s o f

i n t e re s t i t is n e c e s s a r y to m a k e e m p i r i c a l m e a s u r e m e n t s o f ~ a n d t h is h a s b e e n d o n e f o r

v a r i o u s r e g u l a r a n d i r r e g u l a r n o n s p h e r i c a l p a r t i c l e s ( D a v i e s , 1 97 9; N i i d a e t a l . , 1983) . One

o b j e c t i v e in p r o b i n g t h e p h y s i c a l p r o p e r t i e s o f n o n s p h e r i c a l p a r t ic l e s h a s b e e n t h e

d e v e l o p m e n t o f i n s t r u m e n t a t i o n c a p a b l e o f d e t e c t i n g a n d c h a r a c t e ri z i n g a s p h e r i c a l p a r t i cl e s

( D e t e n b e c k , 1 9 8 0 ) .

O n e e x p e r i m e n t a l d i ff i cu l t y w h i c h h a s i m p e d e d t h e s y s t e m a t i c c h a r a c t e r i z a t i o n o f

n o n s p h e r i c a l p a r t i c u l a t e a e r o s o l s i s t h e l a c k o f s u it a b l e m o d e l s y s t e m s . H i n d s ( 19 8 2) h a s

e m p h a s i z e d t h e i m p o r t a n c e o f m o n o d i s p e r s e a e r o s o l s o f k n o w n s iz e, s h a p e, a n d d e n s it y i n

a e r o s o l s c i e nc e a n d t e c h n o l o g y . T h e r e c e n t p r o l i f e r a t i o n o f d a t a d e s c r i b i n g a e r o s o l s o f

s p h e r i c al p a r t ic l e s is i n la r g e p a r t d u e t o t h e d e v e l o p m e n t o f m o n o d i s p e r s e l a te x p o l y m e r s ( f o r

d i s c u s s i o n s e e M e r c e r , 1 9 7 31 . A l t h o u g h s e v e r a l r e c e n t s t u d i e s h a v e e m p l o y e d l i n e a r c h a i n s o f

s p h e r i c a l p a r t i c l e s a s a m o d e l s y s t e m ( D a h n e k e , 1 98 2; K a s p e r a n d S h a w , 1 9 8 3; K a s p e r , 1 9 84 ),

t h e r e i s a t p r e s e n t n o r e a d i ly a v a i l a b l e c o m m e r c i a l s o u r c e o f u n i f o r m n o n s p h e r i c a l p a r t ic l e sf o r u s e a s t e s t a e r o s o l s .

I n t h is r e p o r t w e d e s c r ib e t h e g e n e r a t i o n a n d c h a r a c t e r i z a t i o n o f u n i f o r m a e r o s o l s

c o n t a i n i n g c y l in d r i ca l p a r ti c le s . W e h a v e f o u n d t h a t n o n v i a b l e r o d - s h a p e d b a c t e r i a in t h e s iz e

r a n g e a p p r o x . 1 ~4 ~ m c a n s e r v e a s s u i t a b l e r e g u l a r l y s h a p e d n o n - s p h e r i c a l p a r t ic l e s i n m o d e l

193

A S 1 6 / ~ - A

Page 2: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 2/8

a e r o s o l s y s t e m s . A l t h o u g h t h e r e g u l a r i t y a n d u n i f o r m i t y o f b a c te r i a l p a r ti c le s a s , ~= ii a~

t h e i r a b i l it y t o r e m a i n i n t a c t a n d i n s o m e c as e s v ia b l e w h e n a e r o s o l i z e d h a v e i o ~ : i~ cc ~

r e c o g n i z e d , c y l in d r i c a l ly s h a p e d b a c t e r i a a p p a r e n t l y h a ~ e n o t b e e n x ~ d e l v e x p l o i t e d il~

a e r o s o l s t u d ie s . W e n o t e t h a t w i t h i n t h e f i el d o f a p p l i e d a n d e n v i r o n m e n t a l b i o l o g y ~ i ~c re ~

c u r re n t i n t e re s t i n b i o l og i c a l a e roso l s , spe c i f i c a l l y t he ge ne ra t i on , c ha ra c t e r i z a t i ons , a nd

b e h a v i o r o f a i r b o r n e b a c t e r i a l a n d v i r al p a r t i c le s t S o r d e l l i et al.. 1984: M oh r , 't al .. 19~4i . H ere

w e d e m o n s t r a t e t h a t b a c t e r ia o f b o t h s p h e r ic a l a n d r o d - s h a p e d m o r p h o l o g i e s ~ at~ b e

a e r o s o l i z e d b y t h e c o n v e n t i o n a l t e c h n i q u e o f p n e u m a t i c a t o m i z a t i o n , a s e~ i d e n c e d b y ~ i ng le -

p a r t ic l e a e r o d y n a m i c r e l a x a ti o n t i m e ( S P A R T ) a n al y si s. *

E X P E R I M E N T A L P R O C E D U R E

B i o l o g i c a l a e r o s o l s t u d i e s w e r e c a r r i e d o u t w i t h t h r e e b a c t e ri a . Baci l lus subt i l i s i l o n g r o d t .

E sc he r i c h ia c o l i ( s h o r t r o d ) , a n d S taphy loc oc c us e p ide rm id i s { s p he r e) w e r e o b t a i n e d f r o m t h e

s t o ck c u l t u r e co l le c ti o n o f t h e D e p a r t m e n t o f M i c r o b i o lo g y a n d I m m u n o l o g y , U n i v e rs i ty o f

A r k a n s a s f o r M e d i c a l Sc ie n ce s. E a c h o r g a n i s m w a s m a i n t a i n e d a t 4 C o n s l a nt s o f T o d d

H e w i t t b r o t h ( D i f c o ) s o li d i f ie d w i t h 1 .5 o ,, a g a r . F o r e x p e r i m e n t s , c el ls w e r e t r a n s f e r r e d b y

s t er il e l o o p t o 2 0 0 c m 3 o f T o d d H e w i t t b r o t h a n d i n c u b a t e d a t 3 7 c C i n a n o s c i ll a ti n g w a t e rb a t h w i t h s h a k i n g a t t l 0 c y c l e s / m i n . A f t e r i n c u b a t i o n f o r 1 8 h r , c e ll s w e r e h a r v e s t e d b y

c e n t r i f u g a t i o n a t 1 9 ,0 0 0 0 f o r 1 0 r a i n a t 5 ~C , w a s h e d o n c e i n w a t e r a n d i n a c t i v a t e d b y t h e

a d d i t i o n o f f o r m a l d e h y d e a t a f in a l c o n c e n t r a t i o n o f 0.7 ? o a n d i n c u b a t i o n f o r 1 h r a t r o o m

t e m p e r a t u r e . T h e c e l l s w e r e t h e n w a s h e d o n e t i m e b y c e n t r i f u g a t i o n a s a b o v e a n d

r e s u s p e n d e d i n w a t e r t h a t h a d b e e n f i lt e re d b y p a s s ag e t h r o u g h a c e ll u lo s e a c e t a te m e m b r a n e

w i t h a n a v e r a g e p o r e d i a m e t e r o f 0 . 4 5 /a m ( M i l li p o re ) . G r a m - s t a i n e d s m e a r s w e r e e x a m i n e d a t

1 00 0 X u s i n g a n A m e r i c a n O p t i c a l M i c r o s c o p e e q u i p p e d w i t h an o i l i m m e r s i o n o b j e c ti v e .

C o m p r e s s e d - a i r n e b u l i z a t i o n w a s u s e d t o g e n e r a t e a e r o s o l s o f b a c t e r i a l p a r t ic l e s . T h e

g e n e r a t o r , a U - M i d ® s in g l e- u s e j e t n e b u l iz e r ( B a r d - P a r k e r , R u t h e r f o r d , N e w J e r se y , U .S .A .

o r B e c t o n D i c k i n s o n , L i n c o l n P a r k . N e w J e r s e y , U . S . A . ) h a s a l i q u i d u s a b l e c a p a c i t y o f

5 0 0 m l a n d p r o d u c e s a e r o s o l p a r t i c l e s e ff i c ie n t ly i n t h e 0 . 3 ~ , / a m d i a m e t e r r a n g e . T h i s t y p e o fg e n e r a t o r i s e q u i p p e d w i t h a d i al f o r s e l e c ti n g a r e q u i r e d o x y g e n d i l u t i o n . T h i s w a s s et t o

100° /o in o u r s t ud i e s . F i l t e re d d ry a i r a t a t yp i c a l p re s su re o f 1 .03 x 105 P a (15 ps i g ) wa s

a p p l i e d t o t h e n e b u l i z e r , r e s u l ti n g i n a n a i r f l o w o f a p p r o x i m a t e l y 7 l / m i n. P r e v i o u s s t u d i e s

u s i n g p o l y l a t e x s p h e r e s ( P L S ) i n t h e n e b u l i z e r h a v e s h o w n t h a t i n t h e 1 # m d i a m e t e r p a r t i c l e

s iz e r a n g e a n i n it i al l iq u i d s u s p e n s i o n o f 10 9 p a r t i c l e s /c m 3 r e s u l t s in a n a e r o s o l c o n c e n t r a t i o n

o f 1 0 4 / cm 3. C o m p a r a b l e c o n c e n t r a t i o n s w e r e n o t e d w i t h b a c t e r ia l s a m p le s .

T h e p r i n c i p a l m e t h o d f o r a n a l y z i n g t h e b a c t e r ia l a e r o s o ls w a s s in g le p a r t ic l e a e r o d y n a m i c

r e l a x a t i o n t i m e ( S P A R T ) a n a l y s i s ( M a z u m d e r et al., 1 97 9) . T h i s t e c h n i q u e e m p l o y s a d u a l -

b e a m l a se r D o p p l e r v e l o c i m e t e r t o m o n i t o r s in g le p a r t ic l e d y n a m i c s i n a n o s c i l l at o r y a co u s t i c

f ie ld o f 2 4 k H z . T h e a e r o d y n a m i c d i a m e t e r o f i n d i v i d u al p a r t ic l es i s d e t e r m i n e d b y m e a s u r i n g

t h e p h a s e l a g o f t h e p a r t i c le m o t i o n r e l a ti v e t o t h e d r i v i n g a c o u s t i c e x c i t a t io n . T h e t i m em e a s u r e m e n t u s e d i n t h e p h a s e d e t e r m i n a t i o n i s m a d e i n s u c h a w a y t h a t 0 - r t/ 2 p h a s e l a g is

m e a s u r e d t o 1 p a r t i n 1 2 8 . A m i c r o c o m p u t e r is u s ed t o r e c o r d t h e c o u n t s i n e a c h o f th e 1 28

c h a n n e l s , t h e t o t a l n u m b e r o f c o u n t s N , a n d t h e t o t a l s a m p l i n g t i m e in s e c o n d s . T h e s iz e

d i s t r i b u t io n is d i s p l ay e d i m m e d i a t e ly b y a n o n - b o a r d p r i n te r . A p l o t t i n g r o u t i n e g e n e r al ly

p r e s e n t s t h e d a t a a s d N / d ( l o g d a ) a s i s , o r i n a n o r m a l i z e d f o r m .

T h e p h a s e l a g , a d i r e c t m e a s u r e o f t h e p a r t i c l e a e r o d y n a m i c r e l a x a t i o n t i m e r p , v a r i e s

s i g n i fi c a n t ly w i t h a e r o d y n a m i c d i a m e t e r o n l y i n th e f r e q u e n c y r a n g e c e n t e r e d a t c o zp = 1,

w h e r e o9 i s t h e a n g u l a r f r e q u e n c y o f th e a c o u s t i c e x c i t a t i o n w a v e . F o r a n a c o u s t i c f r e q u e n c y o f

2 4 k H z t h e S P A R T i n s t r u m e n t c a n e f f e c ti v e l y s iz e p a r t i cl e s w i t h h i g h r e s o l u t i o n i n t h e

0 . 3 - 6 / a m a e r o d y n a m i c d i a m e t e r r a n g e . R e c e n t ly t h e o p e r a t i n g r a n g e o f t h e s y st e m w a s

* The results reported here were presented n part at the 1984Annu al BiophysicalSocietyMeeting,San Antonio,Texas, U.S.A., 19-23 Febru ary 1984.

Page 3: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 3/8

Bacteria as aerosols 195

e x t e n d e d t o i n c lu d e p a r t ic l e s i n t he 3 - 2 0 p m r a n g e b y o p e r a t i n g a t a n a c o u s t i c f r e q u e n c y o f

1 k H z ( A d a m s et al., 1984).

P r i o r t o e a c h s t u d y t h e S P A R T a n a l y z e r w a s c a l i b r a t e d u s i n g u n i f o r m l a t e x p a r t i c l e s .

S e p a r a t e s u s p e n s i o n s o f 0. 6 a n d 1 .0 9 p m d i a m e t e r P L S w e r e su b j e c te d t o a e r o s o l i z a t i o n b y

p n e u m a t i c a t o m i z a t i o n , y i e l d i n g m o n o d i s p e r s e a e r o s o l s w i t h c o n c e n t r a t i o n s o f 1 0 4 - 1 0 5

p a r t i c l e s / c m 3. T h e s e a e r o s o l s c o n t a i n i n g P L S p a r t i c l e s o f k n o w n s iz e s w e r e u s e d t o v e r i f y t h e

S P A R T c a li b ra t io n .

W a s h e d b a c t e r i a w e r e s u s p e n d e d i n d i s t il l e d w a t e r t o y i e ld c o n c e n t r a t i o n s o f a p -

p r o x i m a t e l y 1 0 9 / c m 3. T h e r e s u l t i n g c e l l s u s p e n s i o n ( 5 0 - 1 0 0 m l ) w a s t h e n a d d e d t o t h e

r e s e r v o i r o f t h e n e b u l iz e r a n d c o m p r e s s e d a i r a p p l ie d . T w o s a m p l i n g s c h e m e s w e r e e m p l o y e d :

b o t h r e s u l t e d i n si m i l a r r e c o r d e d s i ze d i s t r i b u t i o n s . I n o n e c a se a e r o s o l p a r t i c l es w e r e

g e n e r a t e d d i r e c t l y i n t o a 4 -1 . f l as k a n d t h e s a m p l e w a s d r a w n d i r e c t l y f r o m t h e f la s k w i t h o u t

d r y i n g a n d c h a n n e l e d t h r o u g h t h e S P A R T r e l a x a t i o n c h a m b e r w i t h in m i n u t e s o f g e n e r a t io n .

I n t h e s e c o n d c a s e a e r o s o l p a r t i c l e s w e r e f i r s t c h a n n e l e d t h r o u g h a c o n v e n t i o n a l s i l i c a g e l

d r y i n g c o l u m n ( o u t e r d i a m e t e r 5 .0 c m , i n n e r s c r e e n d i a m e t e r 2 c m , l e n g th 6 0 c m t a n d t h e n

p a s s e d t h r o u g h a 1 -m p o l y v i n y l c h i o r i d e t u b e ( 5 c m i n d i a m e t e r ) t o t h e S P A R T a n a l y z er . T h e

s a m p l e f l o w r a te t h r o u g h t h e i n s t r u m e n t is t y p ic a l ly 5 0 c m 3 / m i n a n d a t y p i ca l c o u n t r a t e f o r

t h e S P A R T s y s t e m i s 1 0 0 0 - 2 0 0 0 p e r m i n .

I n o r d e r t o o b t a i n i n i ti a l d a t a c o n c e r n i n g t h e p h y s i c a l s t a t e o f t h e a e r o s o l i z e d b a c t e r i a l

p a r t i cl e s , a s t u d y o f c e ll v ia b i l it y a n d p a r t i c l e c o u n t r a t e a s a f u n c t i o n o f t i m e f o l l o w i n g

a e r o s o l i z a t i o n i n a f l a s k w a s c a r r i e d o u t i n s e p a r a t e r u n s u s i n g B. subt i l i s a n d E . c o i l In t h i s

s t u d y t h e t r e a tm e n t w i t h f o r m a l d e h y d e w a s o m i t t e d i n th e p r e p a r a t i o n p r o c e d u r e . A t c e rt a i n

s e t t i m e i n t e r v a l s t h e b a c t e r i a l a e r o s o l w a s s a m p l e d b y d r a w i n g 1 0 m l i n t o a p l a s t i c s y r i n g e

c o n t a in i n g a p p r o x i m a t e l y 1 m l o f w a r m g r o w t h m e d i u m . T h e s y ri n g e w a s ca p p e d a n d s h a k en

t o e n t r a p t h e a e r o s o l i z e d b a c t e r i a a n d t h e s a m p l e w a s i m m e d i a t e l y p l a t e d b y a d d i n g t h e

m e d i u m t o m o l t e n a g a r. A t t h e s am e t i m e , th e a e r o s o l w a s s a m p l e d b y t h e S P A R T a n a l y z e r

a n d t h e n u m b e r o f p ar t ic l e s p e r u n i t t i m e w a s d e t e r m i n e d .

S e v e ra l a d d i t i o n a l e x p e r i m e n t s w e r e p e r f o r m e d i n o r d e r t o h e l p f a ci l it a te d a t a i n t e r p r e t -

a t i o n . T h e e f fe c t o f f o r m a l d e h y d e - t r e a t m e n t o n t h e ce ll si ze d i s tr i b u t i o n o f E. co i l w as

e x p l o r e d b y t h e m e a s u r e m e n t o f ' li v e ' c e ll s w h i c h h a d o n l y b e e n w a s h e d i n d i s t il l e d w a t e r . I n

a n o t h e r e x p e r i m e n t a s u s p e n s i o n o f E. co l i w a s s o n i c a t e d a t 2 0 0 W f o r 5 m i n a n d t h e n

a e r o s o l i z e d a n d s a m p l e d . T o v e r i f y t h a t t h e S P A R T i n s t r u m e n t c o u l d d i s t in g u i s h t h e s h o r t

r o d E. co l i f r o m t h e lo n g r o d B. subt i l i s , 1 c m 3 a l i q u o t s o f E . coli , s t a n d a r d i z e d t o a t u r b i d i t y o f

4 0 0 K l e t t u n it s ( K l e t t - S u m m e r s o n p h o t o m e t e r w i t h b l u e f il te r) w e r e a d d e d s e q u e n t ia l l y to

7 5 c m 3 o f B. subt i l i s d i l u t e d 1 : 4 f r o m a n o r i g i n a l s u s p e n s i o n o f 4 0 0 K l e t t u n i t s . T h e s i z e

d i s t r i b u t i o n o f t h e p a r ti c le s w a s d e t e r m i n e d f o l l o w i n g a e r o s o l i z a ti o n a f t e r e a ch a d d i t i o n . I n a

s e p a r a t e e x p e r i m e n t , t h e a e r o s o l o f B. subt i l i s p a r t i c l e s w a s c o l l e c te d o n a 0 .2 p m N u c l e p o r e

p o l y c a r b o n a t e f i lt er , t h e p a r t i c u la t e s r e s u s p e n d e d i n w a t e r b y v i g o r o u s s h a k i n g , a n d t h e

s e d i m e n t a f t e r c e n t r i f u g a t i o n p l a c e d o n a o p t i c a l m i c r o s c o p e s l id e f o r o b s e r v a t i o n . A n

a d d i t i o n a l c o n t r o l e x p e r i m e n t i n w h i c h b a c t e r i a l s u s p e n s i o n s w e r e f i l te r e d t h r o u g h 0 . 2 # mN u c l e p o r e b y v a c u u m f i l t r a ti o n a n d t h e f i lt r a t e u s e d t o g e n e r a t e a e r o s o l w a s a l so c a r r i e d o u t .

R E S U L T S A N D D I S C U S S I O N

T h e m o r p h o l o g i e s o f B. subt i l i s , E . co l i , a n d S. ep idermidis a r e w e ll k n o w n . B e r g e y ' s M a n u a l

o f De te rmin a t i ve Ba c te r io lo g y ( B u c h a n a n a n d G i b b o n s , 1 9 7 4 ) l i s t s B. subt i l i s a s a r o d ,

0 . 7 - 0 . 8 / ~ m x 2 - 3 pro, E. coli a s a rod 0 .4 -0 .7 ~ tm × 1 -3 / ~ m , a nd S. ep idermidis a s a s p h e r e w i t h

d i a m e t e r 0 . 5 - 1 .5 p m . O p t i c a l m i c r o s c o p i c a n a l y s is o f d r i e d s t a in e d s m e a r s o f o u r p r e p a r -

a t i o n s c o n f i r m e d t h e s e s h a p e s a n d d i m e n s i o n s . T o c a l c u l a t e p r e d i c t e d m e a n a e r o d y n a m i c

d i a m e t e r s t h e f o l l o w i n g d i m e n s i o n s a r e a s s u m e d : 0 . 7 5 x 3 .0 # m f o r B. subt i l i s , 0.5 x 1.5 pmf o r E. coli, a n d 1 .0 0 g m f o r S. ep idermidis . N o t e t h a t t h e s e f i g u r es a r e c o n s i s t e n t w i t h B e rg ey ~s

d a t a . T h e a e r o d y n a m i c d i a m e t e r d a o f a n o n s p h e r i c a l p a r t i cl e c an b e r e l a t e d t o a n e q u i v a l e n t

v o l u m e d i a m e t e r d e b y :

cl~ = ppd~ , poZ, t l )

Page 4: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 4/8

wh e re pp i s t he pa r t i c l e ma ss de n s i t y , P o i s un i t de ns i t y , a nd Z t s t he dyn a m i c sha p e I a c l o r lz~

o r d e r t o a p p l y e q u a t i o n ( l i f o r c a lc u l a ti n g p r e d i c t e d a e r o d y n a m i c d i am e t e r s , ~ al ue s t o t m a s s

d e n s i t y a n d s h a p e f a c t o r m u s t b e p r e s u m e d . S p e c i fi c d e n s i t y v a lu e s f r o m 1 0 7 t o i.25 g c m ?

h a v e b e e n r e p o r t e d f o r b ac t e r ia ( L a m a n n a e t al.. 1 9 7 3 L N o a t t e m p t t o i n d e p e n d e n t l ~

de t e rm i ne t he ma ss de n s i t y o f t he a e roso l i z e d b a c t e r i a l c el ls wa s ma de . B e c a use t~t t he

u n c e r t a i n t y i n p p w e c a lc u l a t e d p r e d i c t e d d i a m e t e r s f o r s p e c if i c d e n s i t 5 v a l u e s o i ! a nd .

1 .1 6 g / c m 3 {m e a n o f r a n g e c i t e d a b o v e ) . A s s u m i n g c y l i n d r i c al s h a p e f o r t h e r o d - s h a p e d

b a c t e r i a , p u b l i s h e d d a t a f o r t h e s h a p e f a c t o r s c h a r a c t e r i s t i c o f d is t i n ct L D v a l u es c a n b e

u s e d . I n o u r s a m p l i n g p r o c e d u r e t h e R e y n o l d s n u m b e r i s l es s t h a n 0 .1 a n d t h u s n o o r i e n t a t i o n

i s p r e s u m e d . A n o r i e n t a t i o n a v e r a g e d e t e r m i n e d b y

X., = 2Xh,3 + X~/3, (2 )

w h e r e Xh i s t he sha pe fa c t o r fo r c y l i nd r i c a l a x i s ho r i z on t a l i n a ve r t i c a l f l ow f i e l d a nd X, t he

v a l u e f o r l o n g i t u d i n a l o r i e n t a t i o n , i s u s e d t o c a l c u l a t e p r e d i c t e d v a l u e s f o r d ~. V a lu e s t b r Zh

a n d X~, we re t a ke n fo l l ow i ng F uc h s 11964 , p . 41) .

F i g u r e 1 p r e s e n t s a ty p i c a l n o r m a l i z e d s i z e d i s t r i b u t i o n f o r E. coil a s r e c o r d e d b y t h e

S P A R T a n a ly z e r . A s n o t e d i n T a b l e 1, w h i c h c o m p i l e s th e r e s u lt s o f c o m p a r i n g t h e m e a s u r e d

S P A R T v a lu e s w i th t h o s e c a l c u la t e d b y ( l t a n d (2 ), a n a v e r a g e a e r o d y n a m i c d i a m e t e r o f0 . 8 9 / J m w a s m e a s u r e d . T h e S P A R T v a l u e c o m p a r e s f a v o r a b l y w i t h t h e c a l cu l a t ed v a l u e o f

0 . 8 3 / ~ m ( a s s u m i n g a d e n s i t y o f 1 .1 6) . I n c l u d e d i n F i g . 1 is t h e d i s t r i b u t i o n f r o m t h e s o n i c a t e d

s u s p e n s i o n , i n d i c a t i n g t h a t ( 1) i n t h e i n i ti a l c a s e t h e p e a k i n t h e d i s t r i b u t i o n is d u e t o w h o l e

c e ll s a n d ( 2) u n d e r t h e s p e c i f ic s o n i c a t i o n c o n d i t i o n s s o m e i n t a c t c el ls r em a i n . W e n o t e h e r e

t h a t t h e r e w a s n o s i g n i f ic a n t d i f f e r e n c e in t h e s i ze d i s t r i b u t i o n b e t w e e n q iv e" c e ll s a n d t h o s e

p r e t r e a t e d w i t h f o r m a l d e h y d e ,

I n F i g . 2 a r e p r e s e n t a t i v e n o r m a l i z e d d i s t r i b u t i o n f o r B. subtilis i s g i ve n . An a ve r a ge va l ue

f o r fi v e p r e p a r a t i o n s o f 1 .2 9 ~ m w a s o b t a i n e d w i t h t h e S P A R T a n a l y z e r , w h i l e c a l c u l a t e d

. . . d

O' 1

Z

i . - . ,

1. O0

O. 900

O . 8 0 0 .

O.70 0

0.600

O.SO 0

O. 400

O. 300

0.:~00,

0 . 1 0 0 .

O.0 . 1 0

/

. /0.20 0.50 1.0 2.0 S.O

RERODYr4~IlC DIRI1ETER (IIICROMETERS]

F i g . 1. N o r m a l i z e d a e r o d y n a m i c s i z e d i s t r i b u t i o n [ ( 1 / N ) d N / d l l o g d =) v s d = ] f o r a e r o s o l i z e d E . ¢ o lt a,~

m e a s u r e d b y t h e S P A R T a n a l y z e r b e l o r e ( - . - o - - } a n d a f t e r [ - - O - - ) s o n i c a t i o n o f th e s u s p e n si o n .

T h e c o u n t m e d i a n a e r o d y n a m i c d i a m e t e r , f o r a p p r o x i m a t e l y 1 00 0 p a r t ic l e s s a m p l e d p e r m i n u t e , w a s

0 .8 91 ~ m b e f o r e s o n i c a t i o n a n d 0 . 6 1 4 # m a f t e r s o n i c a t i o n . T h e g e o m e t r i c s t a n d a r d d e v i a t i o n s w e r e1~15 and 1 .29 , r e spec t iv e ly .

1 0 .

Page 5: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 5/8

B a c t e r i a a s a e r o s o l s

T a b l e 1. P r e d i c t ed a n d m e a s u r e d v a l u e s o f o r i e n t a t io n - a v e r a g e d a e r o d y n a m i c d i a m e t e r

19 7

M e a s u r e d

o r i e n t a t i o n

N u m b e r o f G e o m e t r i c a l A s s u m e d P r e d ic t e d a v e r a g e d D i f f er e n c e

S a m p l e p r e p a r a t i o n s s i ze (/ am ) d e n s i t y ( g / a m 3 ) d,, (urn) d o in (/lm ) ( ' :,,~

B. s ub t i l i s 5 0 .75 x 3 .0 1 .0 1 .19 1 .29 +- 0 .06 7 .71.16 1.29 0.0

E. co l i 5 0 .5 x 1 .5 1 .0 0 .76 0 .89+_ 0 .05 14 .6

1.16 0 .83 6 .7

S . e p i d e r m i d i s 2 1.0 1.00 1.00 0.9 2 +_ 0.0 8 8.(1

1.16 1.08 15.0

values of 1.19/~m and 1.29 were predicted based on the assumptions previously cited. We note

the presence o f a secondary peak at approximately 0.85 #m. The microscopic analysis of

aerosol particles collected by filtrat ion revealed that particles of this smaller size were present

to a minor extent in the aerosol. Rather than cell fragments these particles appeared to be

coalesced cytoplasmic material. We did find that when either Todd- Hewitt broth or istonicsaline was present in the cell suspension a significant amount of particles in the 0.65-0.85/~m

diameter size range was recorded by the SPART instrument. The photomicroscopy of

collected aerosol particles also revealed the minor presence of cell coats apparently emptied

of intracellular material. These 'shells' may also contribute to the secondary peak at 0.85/~m.

A typical SPART distribution for S. ep idermidis is given in Fig. 3.

The results of generating an aerosol from a mixture ofE . col i and B. subt i l i s are presented in

Fig. 4. The SPART technique is capable of distinguishing the two particles based on

aerodynamic behavior. The two curves represent successive additions of E. co l i suspension to

a suspension ofB. subtil is . We note here that in our control experiment, in which filtrate after

passage through a 0.2 #m filter was used to generate aerosol, the particle count rate dropped

from 1000 per min to 35 per min, with the bulk of these counts occurring at 0.5 #m.

.. J

L n

5

2

Ol f

1.00

O. 900

O. 800

O. 700

0.600

O. 500

O. 400

O. 300

O. 200

0.100

O.

0. I0

t

• , , , , , •

0.20 0.50 1.0 2.0 S.O 10.R£RODYHRMIC DIflrlETER (MICROMETERS]

F i g . 2 . R e p r e s e n t a t i v e n o r m a l i z e d a e r o d y n a m i c s iz e d i s t r i b u t i o n f o r B. s uh t i l i s a s m e a s u r e d b y t h e

S P A R T t e c h n iq u e , c o r r e s p o n d i n g t o a c o u n t m e d i a n a e r o d y n a m i c d i a m e t e r o f 1 . 2 9 ~ m a n d a

g e o m e t r i c s t a n d a r d d e v i a t i o n o f 1 . 2 9 .

Page 6: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 6/8

Z

,...,

1 . 0 0

O . 9 0 0

O. 8 0 0

O . ? 0 0 •

O. 6 0 0

0 . 5 0 0

0 . 4 0 0 .

0 . 3 0 0 .

O. 2 0 0

0 . I 0 0

O.

0 . 1 0 0 . ' 2 0 0 . ' S 0 1 . 0 2 ~ 0 S . 0 1 0 ,

R ER OD YI~ R r l I c D IP ,M ETER C r l I cR o r IETER S)

F i g . 3 . N o r m a l i z e d a e r o d y n a m i c s i z e d i s t r i b u t i o n f o r S. epidermidis a s m e a s u r e d b y t h e S P A R T

analyzer . The peak in the s ize d is t r ibu t ion occurs a t 0 .88 .um.

_J

e,,t

Z

2,

1 . 0 0 ,

O . 900

O . 8 0 0 \

O. 7 0 0

0 . 6 0 0

o . S O 0

O. 4 0 0

O. 2 0 o

o . 2 0 0

0 . I 0 0

o .

0 . 1 0 0 . 2 0 0 . 5 0 1 . 0 2 . 0 S .OR ER OD YN R r l IC OIR r lETER ( t l IC R O r ET ER $ )

F i g . 4 . N o r m a l i z e d s iz e d i s t r i b u t i o n s f o r a e r o s o ls f r o m a m i x t u r e o f E. co / i a n d B. sub t i l i s . T h e

m i x t u r e s w e r e p r e p a r e d b y a d d i n g a t o t a l o f I c m 3 ( o ) o r 2 c m 3 g l ) o f E . c o l i s u s p e n s i o n t o 7 5 c m 3

o f B. subti l is .

1 0 .

Page 7: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 7/8

Bacteria as aerosols

Table 2. T ime variation o f count rate and cell viability

199

Time following aerosol Relative count RelativeSamp le generation (mint rate viability

B. suh tilis < 1 1.130 1.005 0.47 0.17

12 0.32 0.0320 0.22 0.004

E. coil < 1 1.00 1.00

5 1.00 0.1810 0.83 0.1715 0.58 0.0525 0.38 0.02

T h e o u t c o m e o f t h e s t u d y o f t h e v a r i a t io n o f c o u n t r a te a n d c ell v ia b il it y is p r e s e n t e d i n

T a b l e 2 . G e n e r a l l y b a c t e r i a l a e r o s o l s w e r e g e n e r a t e d f o r a p p r o x i m a t e l y 1 m i n i n a 4 l it e r

f l as k a n d t h e s a m p l i n g t i m e s r e p o r t e d i n T a b l e 2 r e fe r to t h e d e la y s f o l l o w i n g th i s p r o c e d u r e .

R e l a t i v e c o u n t r a t e a n d r e l a ti v e v i a b i li t y r e fe r t o t h e i n it ia l v a lu e . F o r a e r o s o l g e n e r a t i o n u s i n gt he U - M i d ® n e b u li z er t h e S P A R T c o u n t r a t e fo r B . s u b t i l i s d e c r e a s e s m o d e r a t e l y f a s t ( t o

4 7 °//o i n 5 m i n ) a n d t h e r e l a t i v e v i a b i l i t y d r o p s t o 1 7 ~ o. A s c a n b e s e e n , m u c h o f t h e d r o p i n

v i ab l e c o u n t s i s d u e t o t h e r e d u c e d p a r t ic l e c o u n t . T h e c o u n t r a t e f o r E . c o i l d o e s n o t a p p e a r t o

d e c r e a s e i n th e f i r s t 5 r a i n w h i l e t h e v i a b l e c o u n t f a ll s to 1 8 ~ o. T h u s , t h e d a t a r e f l ec t a t r u e l o s s

i n v ia b i li ty . T h e g e n e r a l r e s u l t o f t h e g r e a t e r l o s s in p a r t i c le c o u n t f o r t h e l a r g e r p a r t i c l e s ( B.

s u b t i l i s ) , a l t h o u g h p r o b a b l y i n f lu e n c e d b y th e m e t h o d o f a e r o s o l i z a t i o n a n d p a r ti c le s h a p e , is

c o n s i s t e n t w i t h o u r e m p i r i c a l o b s e r v a t i o n s w i t h p o l y s t y r e n e l at e x a e r o s o l p r e p a r a t i o n s

( u n p u b l i s h e d ) .

C O N C L U S I O N S

W e h a v e d e m o n s t r a t e d t h a t E . c o l i , B . s u b t i l i s , a n d S . e p i d e r m i d i s c a n b e a e r o s o l i z e d b y

p n e u m a t i c a t o m i z a t i o n , t h a t t h e a i r b o r n e r o d - s h a p e d b a c t er i al p a r t ic l es c a n s e r v e a s te s t

a e r o s o l s o f n o n s p h e r i c a l p a r ti c le s , t h a t t h e S P A R T a n a l y z e r c a n a e r o d y n a m i c a l l y s i ze t h e

c e l ls o n a s i n g l e p a r t i c l e b a s i s t o w i t h i n 1 0 ~ o o f t h e e x p e c t e d v a l u e , a n d t h a t B . s u b t i l i s a n d E .

c o l i c a n b e c l e a r l y d i s t i n g u i s h e d b a s e d o n a e r o d y n a m i c s i z e . I n a d d i t i o n , v i a b i l i t y o f E . c o l i

a n d B , s u b t i l i s d e c r e a s e s ig n i fi c a n tl y af t e r 5 m i n . T h e s e r e s u l ts s h o w t h a t t h e S P A R T s y s t e m

r a p i d l y d e t e ct s a n d c h a r a c t e r i z e s a i r b o r n e m i c r o b e s . T h e r e f o r e , i t h a s p o t e n t i a l i n th e s t u d y o f

a e r o s o l i z a t i o n t e c h n i q u e s, c e ll v ia b i li ty , a n d t h e m o r p h o l o g i c a l r e s p o n s e o f b i o a e r o s o l

p a r ti c le s t o v a r y i n g e n v i r o n m e n t a l c o n d i t i o n s .

Ac k n o wle d g e me n t - - We gladly acknowledge helpful discussions w ith J. D. W ilson, technical help from R. Evans and

P. Archer, and secretarial assistance from D . Belk. The authors also wish to thank the reviewers of the m anuscript forconstructive suggestions.

R E F E R E N C E S

Adam s, A. J. , Tennal, K. B., Wilson, J. D . and Mazum der, M. K. (1984) Abstract, 15th Annual Meeting o f the FineParticle Society, 30 July -I August 1984. Orlando, FL, U .S,A.

Coletti, A. (1984) Aerosol Sci. Tech. 3, 39.Dahneke, B. (1982) Aerosol Sci. Tech. 1, 179.Davies, C. N . (1979) J. Aerosol Sci. 10. 477.Detenb eck, R. W. (1980)Technical Report o n Feasibility Study for an Asbestos Aerosol Monitor, R eport N o. EPA -

6002-80-200, U .S. Environmental Protection A gency.Fuch s, N . A . (19641 The Mechanics of Aerosols . Pergamon Press, New York.Gallily. I., Krushkal, E. M. and Garze, E. (1983) Aerosol Sci. Tech. 2, 209.

Heyder. J. and Scheuch, G. (1983) Aerosol Sci. Tech. 2, 41 .Hinds, W. C. (1982) Aerosol Technology. Wiley, New York.Kasper, G. and Shaw. D. T. (19831 Aerosol Sci. Tech. 2, 369.Kasper, G (1984~ Abstract, 15th Annual Meeting o f the Fine Particle Society, 30 July-1 August 1984. Orlando.Lamanna. C., Mailleta. M. F. and Zimmerman. L. N. (1973) Basic Bacteriology, p. 74. Williams and Wilkins,

Baltimore.

Page 8: Use of Bacteria as Model Non Spherical Aerosol Particles

8/4/2019 Use of Bacteria as Model Non Spherical Aerosol Particles

http://slidepdf.com/reader/full/use-of-bacteria-as-model-non-spherical-aerosol-particles 8/8

L i u , B . Y . H . , P u l D . Y . H . , W a n g , X . Q . a n d L e f t s . ( ' ~ W . I 1 9 8 3 1 A e r o s o / S e t . T ec h . 2 , 4 m ~

M a z u m d e r . M . K . . W a r e , R . E .. W i l s o n . J . D . , R e n n i n g e r , R . G . , H i l le r , F ( 2 , M c L e o d . P ( R a i b l c ~ ~ ,~ . a ~ d

T e s t e r m a n , M , K . t 1 9 7 9 ) J . 4 e r o s o i S o 1 . 10, 561

M a z u m d e r , M . K . , C h a n g , R . J . a n d B o n d , R . L . ( 19 ~2 ) A e r o s o l S ~ i , T e c h . 1 , 4 2 7 .

M e r c e r , T . T . ( 1 9 7 3 ) A e r o s o l T e c h n o l o g y i n H a z a r d E v a l u a t i o n , p . 3 2 9. A c a d e m i c P r e s s , N e v, Y o r k .

M o h r , A . J ., A d a m s , D J ., S p e n d l o v e , R . S . a n d S p e n d l o v e . J . C . ( 1 9 84 1 A b s t r a c t , 1 9 84 A n n u a l M e e t i n g o t A m e r i c a n

S o c i e t y o f M i c r o b i o l o g y . p . 2 3 5. S t. L o u i s . M i s s o u r i . U S . A .

N i i d a , T . , Y a n g , M . . K a s p e r , G . a n d S h a w . D , T . i i 9 8 3 1 A e r o s o l S t i . ? 'e~h. 2 , 210.

S o r d e l l i , D . O . , C e r q u e t t i . M . C a n d B e l l a n t i , J . A { 1 98 4 ) A b s t r a c t . 1 9 8 4 A n n u a l M e e t i n g o l A m e r i c a n S o c i e t y o l

M i c r o b i o l o g y . p . 30 . S t, L o u i s , M i s s o u r i , U S A