using monte carlo and directional sampling combined with an adaptive response surface for system...

18
Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert [email protected], [email protected] Department of Civil Engineering KULeuven, Belgium Praha Euro-Sibram, June 24 tot 26, 2002,

Upload: dayna-johnston

Post on 17-Dec-2015

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface

for system reliability evaluation

L. Schueremans, D. Van [email protected],

[email protected]

Department of Civil Engineering

KULeuven, Belgium

Praha

Euro-Sibram, June 24 tot 26, 2002, Czech Republic

Page 2: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

IntroductionFramework:

– Ph. D. “Probabilistic evaluation of structural unreinforced masonry”,

– Ongoing Research: “Use of Splines and Neural Networks in structural reliability - new issues in the applicability of probabilistic techniques for

construction technology”.

Target: – obtain an accurate value for the global pf, accounting for the exact PDF of

the random variables;

– minimize the number of LSFE, which is of increased importance for complex structures;

– remain workable for a large number of random variables (n). In practice, the number of LSFE should remain proportional with the number of random variables (n).

Page 3: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

IntroductionLevel II and Level III methods:

Leve l D efin i tion

III L e v e l I I I m e t h o d s s u c h a s M o n t e C a r l o ( M C ) s a m p l i n g a n d N u m e r i c a lI n t e g r a ti o n ( N I) a r e co n s i d e r e d m o s t a c c u r a t e . T h e y c o m p u t e t h e e x a c tp r o b a b i l i t y o f f a i l u r e o f t h e w h o l e s t r u c t u r a l s y s t e m , o r o f s t r u c t u r a le l e m e n ts , u s i n g t h e e x a c t p r o b a b i li t y d e n s i t y f u n c ti o n o f a ll r a n d o m v a r i a b l e s .

II Leve l II me thods such a s F O R M and S O R M compu te the p robab il i ty o f fa i l ure bym eans o f a n idea l iza t ion o f the l im it s ta te func tion w here the p robab il i ty de ns i tyfunc tions o f a l l ra ndo m var iab les a re app roxi m ated by equiva lent no rmald is tr ibution func tions .

I Leve l I m e thods ve r ify w he the r o r no t the re l iab il i ty o f the s truc ture is suffic ien tins tead o f co m puting the p robab il i ty o f fa i l ure e xp lic i tly. In p rac tice this is o ftenca rr ied out by means o f pa r tia l sa fe ty fac to rs .

T a b l e 1 : Leve ls fo r the ca lc ula tion o f s truc tura l sa fe ty va lues (E C 1 , 1994 ; JC S S , 1982 )

p P g f df

g

X x xX

X

00

. . .

Page 4: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Introduction - reliability methodsR e l i a b i l i t y m e t h o d s - L e v e l ( I , I I , I I I ) - D i r e c t / I n d i re c t ( D , I D )

In tegra tionm e thods

A na lytica l o r N um erica l Integra tion (A I/N I, III, D)

D irec tiona l Integra tion (D I, III, D )

S a m plingm e thods

( Im por tance S a m pling) M onte C ar lo ( IS M C , III, D )

( Im por tance ) D irec tiona l S ampli ng ( ID S , III, D )

F O R M /S O R Mm e thods

F irs t O rde r S econd M om en t re l iab i l i ty m e thod (F O S M , II, D )

F irs t O rde r and S econd O rder R e liab i l i ty M ethod ( F O R M /S O R M , II, D )i n co m bi na tion w i th a sys tem ana lys is ( F O R M /S O R M -S A , III, D )

C o m binedm e thods us i ngA dap tiveR esponseS urfacetechn iques

D irec tiona l A dap tive R esponse surface S ampling ( D A R S , III, D-ID )

M onte C ar lo A dap tive R esponse surface S ampli ng (M C A R S , III, D -ID )

F O R M w ith an A dap tive Response S urface (F O R M A R S , II, D-ID ) i ncombina tion w ith a sys te m ana lys is (F O R M A R S -S A , III, D -ID)

T a b l e 2 : O verv iew o f re l iab i l i ty me thods fo r a leve l III re l iab i l i ty ana lys is

#LSFE~9n

#LSFE~3/pf VI

#LSFE~cte.n

Page 5: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Methods for System Reliability using an Adaptive Response Surface

Real structure: high degree of mechanical complexity, numerical algorithms, non-linear FEM

Response Surface: low order polynomial, Splines, Neural Network,...

Reliability analysis

Optimal scheme: DARS or MCARS+VI

DARS: Matlab 6.1 [Schueremans, 2001], Diana 7.1 [Waarts,2000]

MCARS+VI: Matlab 6.1 [Schueremans, 2001]

Page 6: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

u1

u2

g1(u1,u2)<0

g2(u1,u2)<0

g3(u1,u2)<0

g4(u1,u2)<0

unsafe

unsafe

unsafe

unsafe

safeg3>0 g1>0

g4>0g2>0

Component reliability:

pf,g1= 0.0161, g1=2.14pf,g2= 0.0161, g2=2.14pf,g3= 0.0062, g3=2.50pf,g4= 0.0062, g4=2.50

System reliability:

pf= 0.0446=1.70

DARS-Directional Adaptive Response surface Sampling

u1u2 g1(u1,u2)<0

g2(u1,u2)<0

g3(u1,u2)<0

g4(u1,u2)<0

unsafe

unsafeunsafe

unsafe

u2

u1

fU1,U2(u1,u2)

fU1,U2(u1,u2)

g1(u1,u2)<0

unsafesafe

g u u

g u u u uu u

g u u u uu u

g u u u u

g u u u u

1 2

1 1 2 1 22 1 2

2 1 2 1 22 1 2

3 1 2 1 2

4 1 2 2 1

2 0 0 12

2 0 0 12

2 5 22 5 2

, m in

, . .

, . .

, ., .

Page 7: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

DARS -Directional Adaptive Response surface Sampling

Step 1: - Evaluate the LSF forthe origin in the u-space;- Search the roots ofthe limit state functionfor the principaldirections in the u-space (n=2):- [1,0];[0,1];[-1,0];[0,-1]With the root-findingalgorithm, this requiresapproximately 3 to 4LSFE

u1

u2

[0,0] =

min

[0,0]

[-0,0]

[0,-0]

N=5=2n+1, #LSFE=21

min = 3.5, =2.85

Page 8: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

DARS -Directional Adaptive Response surface Sampling

Step 2: Fit a response surfacethrough these data inthe x-space and theresulting outcome Y,using a least squaresalgorithm.

u1

u2

gRS,1= 1.65-0.13u1

2

-0.13u22

gRS,1 = 0

min = 3.5

add = 3.0

Page 9: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

DARS -Directional Adaptive Response surface Sampling

Step 3: iter. procedure required accuracyPerform DS on theResponse Surface:

If i,RS < min+

add

Calculatepi(LSF)=2(i,LSF,n)Update the responsesurface with new data

ElseCalculatepi(RS)= 2(i,RS,n)

u1

u2

gRS,2= 0.92+0.046u1

-0.023u2-0.074u1u2

-0.097u12-0.084u2

2

gRS,2 = 0

min = 2.05

add = 3.0

Page 10: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

DARS -Directional Adaptive Response surface Sampling

u1

u2

gRS,3 = 0

pf N = 14

add=3

min=2

p

L S F E

N

f

0 0 2 8

1 9 1

5 1

1 4

2 0 5

.

.

#

.m in

Page 11: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Step 3:

Monte Carlo Variance Increase on the Response Surface (vi).

Sampling function: h=n-0.4

IF |gRS(v i)|<|g,add|

calculate gLSF(vi)

update RS

update g,add

Else

.

u

gLSFRS

RS

add

g,add

g,add

i

gRS,i

gLSF,i

g,i

MCARS+VI Monte Carlo Adaptive Response surface Sampling+Variance Increase

p I g

f

hi LSF i vv

vu

v

0

p I g

f

hi RS i vv

vu

v

0

Page 12: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

DARS and MCARS+VI

The number of direct LSFE remains proportional to the number of random variables (n),

There is no preference for a certain failure mode. All contributing failure modes are accounted for, resulting in a safety value that includes the system behavior, thus on level III.

Page 13: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Safety of masonry Arch

R ando mvariab les

P robab il i tydens i tyfunc tion

Mean va lue µ

S tandarddev ia tion σ

C oeffic ient o fva r ia tion V [% ]

x 1 = r 0 [m ] N or m al 2 .5 0 .02 0 .8

x 2 = t [m ] N or m al 0 .16 0 .02 12

x 3= dr [m ] N or m al 0 0 .02 /

x 4 = F [N] Lognormal 750 150 20

T a b le : R andom var iab les and the ir pa ra m ete rs

Page 14: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Safety of masonry Arch

To evaluate the stability of the arch, the thrust line method is used (Heyman, 1982), which is a Limit Analysis. Following assumptions are made:– blocs are infinitely resistant,

– joints resist infinitely to compression

– joints do not resist to traction

– joints resist infinitely to shear

An external program Calipous is used for the Limit State Function Evaluations [Smars, 2000]

Page 15: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Safety of masonry ArchFailure modes - limit states - limit analysis based on thrust lines

g g

S

m in

X

X

1

1

S X 1 S X 1

g X 1 g X 1

Page 16: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Safety of masonry Archprocedure pf #LSFE (time) Accuracyreliability analysis – initial random values: d~N(0.16,(0.02)²)DARSMCARS+VI

1.261.25

0.110.11

43 (17 min)23 (12 min)

()=0.15()=0.15

reliability analysis – increased accuracy on thickness: d~N(0.16,(0.005)²)DARSMCARS+VI

3.553.46

1.9 10-4

2.7 10-434 (13 min)56 (21 min)

V()=0.05V()=0.05

reliability analysis – increased mean value for thickness: d~N(0.21,(0.02)²)DARSMCARS+VI

3.693.67

10-4

1.2 10-445 (17 min)23 (12 min)

V()=0.05V()=0.05

Table 2: Outcome of reliability analysis for masonry arch – initial parameters and update

Page 17: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Safety of masonry Arch

Figure: DARS-outcome - reliability vernus number of samples N

Increased thickness: t: =0.21 m; =0.02 mN=192: =3.72, pf=1.0 10-4

Increased accuracy: t: =0.16 m; =0.005 mN=273: =3.44, pf=2.9 10-4

Initial survey: t: =0.16 m; =0.02 mN=371: =1.26, pf=1.0 10-1

Number of Samples N

95% Confidence interval

T=3.7

Page 18: Using Monte Carlo and Directional Sampling combined with an Adaptive Response Surface for system reliability evaluation L. Schueremans, D. Van Gemert luc.schueremans@bwk.kuleuven.ac.be,

Conclusions• Focus was on the use of combined reliability methods to

obtain an accurate estimate of the global failre probability of a complete structure, within an minimum number of LSFE.

• A level III method is presented and illustrated: (DARS/MCARS+VI

• Ongoing research: Splines and Neural Network instead of low order polynomial for Adaptive Response Surface (ARS).

• Acknowlegment: IWT-VL (Institute for the encouragement of Innovation by Science and Technology in Flanders).