uva-dare (digital academic repository) exposing a complex ...44. bolese.(1996) . redundan,t...

22
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) UvA-DARE (Digital Academic Repository) Exposing a complex metabolic system: glycolysis in Saccharomyces cerevisiae Teusink, B. Publication date 1999 Link to publication Citation for published version (APA): Teusink, B. (1999). Exposing a complex metabolic system: glycolysis in Saccharomyces cerevisiae. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. Download date:20 Jul 2021

Upload: others

Post on 24-Feb-2021

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Exposing a complex metabolic system: glycolysis in Saccharomyces cerevisiae

Teusink, B.

Publication date1999

Link to publication

Citation for published version (APA):Teusink, B. (1999). Exposing a complex metabolic system: glycolysis in Saccharomycescerevisiae.

General rightsIt is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an opencontent license (like Creative Commons).

Disclaimer/Complaints regulationsIf you believe that digital publication of certain material infringes any of your rights or (privacy) interests, pleaselet the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the materialinaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letterto: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. Youwill be contacted as soon as possible.

Download date:20 Jul 2021

Page 2: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

REFERENCES

1. (1997). The yeast genome directory. Nature 387, 5. 2. Acerenza, L. (1990). Temporal aspects of the control of metabolic processes, in: Cornish-Bowden,

A. and Cardenas, M.L. (Eds), Control of Metabolic Processes, Plenum Press, New York, 297-302. 3. Acerenza, L, Sauro, H.M. and Kacser, H. (1989). Control analysis of time-dependent metabolic

systems. J. Theor. Biol. 137, 423-444. 4. Alberty, R.A. (1994). Biochemical thermodynamics. Biochim. Biophys. Acta 1207, 1-11. 5. Alberty, R.A. and R.N., G. (1992). Standard thermodynamic formation properties for the

adenosine 5'-triphosphate series. Biochemistry'31, 10610-10615. 6. Albertyn, J., Van Tonder, A. and Prior, B.A. (1992). Purification and characterization of G3PDH of

Saccaromyces cerevisiae. FEBS Lett. 308, 130-132. 7. Aldridge, J.F. and Pye, E.K. (1976). Cell density dependence of oscillatory metabolism. Nature

259, 670-671. 8. Alonso, A. and Kotyk, A. (1978). Apparent half-lives of sugar transport proteins in Saccharomyces

cerevisiae. Folia Microbiologica 23, 118-125. 9. Andres, V., Schultz, V. and Tornheim, K. (1990). Oscillatory synthesis of glucose 1,6-

bisphosphate and frequency modulation of glycolytic oscillations in skeletal muscle extracts. J. Biol. Chem. 265, 21441-21447.

10. Aon, M.A., Cortassa, S., Westerhoff, H.V. and Van Dam, K. (1992). Synchrony and mutual stimulation of yeast cells during fast glycolytic oscillations. J. Gen. Microbiol. 138, 2219-2227.

11. Askwith, C.C., De Silva, D. and Kaplan, J. (1996). Molecular biology of iron acquisition in Saccharomyces cerevisiae. Mol. Microbiol. 20, 27-34.

12. Azam, F. and Kotyk, A. (1969). Glucose 6-phosphate as regulator of monosaccharide transport in baker's yeast. FEBS Lett. 2, 333-335.

13. Bakker, B.M. (1998). Control and regulation of glycolysis in Trypanosoma brucei, Thesis Vrije Universiteit, Amsterdam

14. Bakker, B.M., Michels, P.A.M., Opperdoes, F.R. and Westerhoff, H.V. (1997). Glycolysis in bloodstream form Trypanosoma brucei can be understood in terms of the kinetics of the glycolytic enzymes. J. Biol. Chem. "2.71, 3207-3215.

15. Bakker, B.M., Michels, P.A.M, and Westerhoff, H.V. (1996). Control of the glycolytic flux in Trypanosoma brucei. why control can shift suddenly, in: Westerhoff, H.V., Snoep, J.L., Sluse, F.E., Wijker, J.E. and Kholodenko, B.N. (Eds), BioThermoKinetics of the living cell, BioThermoKinetics Press, Amsterdam, 136-142.

16. Bakker, B.M., Westerhoff, H.V. and Michels, P.A.M. (1995). Regulation and control of compartmentalized glycolysis in bloodstream form Trypanosoma brucei. J. Bioenerg. Biomembr. 27, 513-525.

17. Banuelos, M. and Gancedo, C. (1978). In situ study of the glycolytic pathway in Saccharomyces cerevisiae. Arch. Microbiol. 117, 197-201.

18. Bartrons, R., Van Schaftingen, E. and Hers, H.G. (1982). The stimulation of yeast phosphofructokinase by fructose 2,6-bisphosphate. FEBS/ett. 143, 137-140.

19. Barwell, CJ. and Hess, B. (1972). Application of kinetics of yeast pyruvate kinase in vitro to calculation of glycolytic flux in the anaerobic yeast cell. Hoppe-Seyler's Z Physiol. Chem. 353, 1178-1184.

20. Battley, E. (1987). Energetics of microbial growth, Wiley, New York 21. Becker, J.U. and Betz, A. (1972). Membrane transport as controlling pacemaker of glycolysis in

Saccharomyces cerevisae. Biochim. Biophys. Acta 274, 584-597.

192

Page 3: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

22. Bell, W., Klaassen, P., Ohnacker, M., Boller, T., Herweijer, M., Schoppink, P., Van der Zee, P. and Wiemken, A. (1992). Characterization of the 56-kDa subunit of the yeast trehalose-6-phosphate synthase and cloning of its gene reveal its identity with the product of CIF1, a regulator of carbon catabolite inactivation. Eur. J. Biochem. 209, 951-959.

23. Benevolensky, S.V., Clifton, D. and Fraenkel, D.G. (1994). The effect of increased PGI on glucose metabolism in S c. J. Biol. Chem. 269, 4878-4882.

24. Benito, B. and Lagunas, R. (1992). The low-affinity component of Saccharomyces cerevisiae maltose transport is an artifact. J. Bacteriol. 174, 3065-3069.

25. Bergmeyer, H.U. (1974). Methods of enzymatic analysis, Verlag Chemie, Weinheim 26. Bernard, S.A. (1988). The intracellular equilibrium thermodynamic and steady-state

concentrations of metabolites. Cell. Biophys. 12, 119-132. 27. Betz, A. (1966). Metabolic flux in yeast cells with oscillatory controlled glycolysis. Physiologica

Plantarum 19, 1049-1054. 28. Betz, A. (1973). Kinetics of yeast PFK and the glycolytic oscillator, in: Chance, B., Pye, E.K.,

Ghosh, A.K. and Hess, B. (Eds), Biological and Biochemical Oscillators, Academic Press, New York, London, .

29. Betz, A. and Becker, J.U. (1975). Phase dependent phase shifts induced by pyruvate and acetaldehyde in oscillating NADH of yeast cells. J. Interdiscipl. Cycle Res. 6, 167-173.

30. Betz, A. and Chance, B. (1965). Influence of inhibitors and temperature on the oscillation of reduced pyridine nucleotides in yeast cells. Arch. Biochem. Biophys. 109, 579-584.

31. Betz, A. and Chance, B. (1965). Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys. 109, 585-594.

32. Betz, A. and Giersch, G. (1978). The oscillatory network of glycolysis: a model for multiple phase output delivery from a single master oscillator. Chronobiologica 5, 45-55.

33. Betz, A. and Moore, C. (1967). Fluctuating metabolite levels in yeast cells and extracts, and the control of PFK activity in vivo. Arch. Biochem. Biophys. 120, 268-273.

34. Bier, M., Teusink, B., Kholodenko, B.N. and Westerhoff, H.V. (1996). Control analysis of glycolytic oscillations. Biophys. Chem. 62,15-24.

35. Bigl, M., Eschrich, K. and Hofmann, E. (1991). Kinetics of phosphofructokinase from a yeast mutant. Biomed. Biochim. Acta 50, 239-250.

36. Bisson, L.F., Coons, D.M., Kruckenerg, A.L and Lewis, D.A. (1993). Yeast sugar transporters. Cht. Rev. Biochem. Mol. Biol. 28, 259-308.

37. Bisson, L.F. and Fraenkel, D.G. (1983). Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc. Natl. Acad. Sei. USA 80, 1730-1734.

38. Blazquez, M.A., Lagunas, R., Gancedo, C. and Gancedo, J.M. (1993). Trehalose-6-phosphate, a new regulator of yeast glycolysis that inhibits hexokinase. FEBS Lett. 329, 51-54.

39. Blomberg, A. and Adler, L. (1989). Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171, 1087-92.

40. Boiteux, A., Goldbeter, A. and Hess, B. (1975). Control of oscillating glycolysis in yeast by stochastic, periodic and steady source of substrate: a model and experimental study. Proc. Natl. Acad. Sei. USA 72, 3829-3833.

41. Boiteux, A. and Hess, B. (1970). Allosteric properties of yeast pyruvate decarboxylate. FEBS Lett. 9, 293-296.

42. Boiteux, A. and Hess, B. (1973). Control mechanism of glycolytic oscillations, in: Chance, B., Pye, E.K., Ghosh, A.K. and Hess, B. (Eds), Biological and Biochemical Oscillators, Academic Press, New York.

43. Boiteux, A., Hess, B. and Sel'kov, E.E. (1980). Creative functions of instability and oscillations in metabolic systems. Curr. Topics in Cell. Regulation 17,171-203.

REFERENCES 1 9 3

Page 4: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

44. Boles, E. (1996). Redundant regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic flux and to prevent energy-wasting cycling at the phosphofructokinase/fructosebisphosphatase enzyme pair, in: Westerhoff, H.V., Snoep, I L , Sluse, F.E., Wijker, J.E. and Kholodenko, B.N. (Eds), BioThermoKinetics of the living cell, BioThermoKinetics Press, Amsterdam, 143-149.

45. Boles, E., Goehlmann, W.H. and Zimmermann, F.K. (1996). Cloning of a second gene encoding 6-phosphofructo-2-kinase in yeast, and its characterization of mutant strains without fructose-2,6-bisphosphate. Mol. Microbiol. 20, 65-76.

46. Boles, E. and Hollenberg, C.P. (1997). The molecular genetics of hexose transport in yeasts. FEMSMicrobiolRev21, 85-111.

47. Boles, E., Muller, S. and Zimmermann, F.K. (1996). A multi-layered sensory system controls yeast glycolytic gene expression. Mol. Microbiol. 19, 641-2.

48. Boles, E. and Zimmermann, F.K. (1993). Induction of PDC in glycolysis mutants of S c correlates with the concentrations of three-carbon glycolytic metabolites. Arch. Microbiol. 160, 324-328.

49. Boles, E., Zimmermann, F.K. and Thevelein, J.M. (1997). Metabolic signals, in: Zimmermann, F.K., Entian, K-D. (Eds), Yeast sugar metabolism, Technomic Publishing Company, Basel, 379-408.

50. Brand, G.C. (1996). Top-down metabolic control analysis. J. Theor. Biol. 182, 351-360. 51. Breitenbach-Schmitt, I., Schmitt, H.D., Heinisch, J. and Zimmermann, F.K. (1984). bypl. Mol.

Gen. Genet. 195, 536-540. 52. Brondijk, T.H., van der Rest, M.E., Pluim, D., de Vries, Y., Stingl, K., Poolman, B. and Konings,

W.N. (1998). Catabolite inactivation of wild-type and mutant maltose transport proteins in Saccharomyces cerevisiae. J Biol Chem 273, 15352-7.

53. Brown, C.J., Todd, K.M. and Rosenzweig, R.F. (1998). Multiple duplications of yeast hexose transporter genes in response to selection in a glucose-limited chemostat. Mol. Biol. Evol. 15, 931-942.

54. Burns, J.A., Cornish-Bowden, A., Groen, A.K., Heinrich, R., Kacser, H., Porteous, J.W., Rapoport, S.M., Rapoport, T.A., Stucki, J.W., Tager, J.M., Wanders, R.J.A. and Westerhoff, H.V. (1985). Contol analysis of metabolic systems. Trends Biochem. Sei. 10,16.

55. Burton, K. (1974). The enthalpy change for the reduction of nicotinamide-adenine dinucleotide. Biochem. J. 143, 365-368.

56. Busturia, A. and Lagunas, R. (1986). Catabolite inactivation of the glucose transport system in Saccharomyces cerevisiae. J. Gen. Microbiol. 132, 379-385.

57. Buttgereit, F. and Brand, M.D. (1995). A hierarchy in ATP-consuming processes in mammalian cells. Biochem. J. 312, 163-167.

58. Byers, L.D. (1982). Glyceraldehyde 3 phosphate dehydrogenase from yeast. Meth. Enzymol. 89, 326-335.

59. Byers, L.D., She, H.S. and Alayoff, A. (1979). Interaction of phosphate analogues with glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 18, 2471-80.

60. Calgott, P.H. and Postgate, J.R. (1972). On substrate-accelerated death in Klebsiella aerogenes. J. Gen. Microbiol. 70, 115-122.

61. Calgott, P.H. and Calvert, TJ . (1981). Characterization of 3'-5'-cyclic AMP phosphodiesterase in Klebsiella aerogenes ana its role in substrate-accelerated death. J. Gen. Microbiol. 122, 313-321.

62. Calgott, P.H. and Postgate, J.R. (1972). On substrate accelerated death in Klebsiella aerogenes. J. Gen. Microbiol. 70, 115-122.

63. Callens, M., Kuntz, D.A. and Opperdoes, F.R. (1991). Kinetic properties of fructose bisphosphate aldolase from Trypanosoma bruceicompared to aldolase from rabbit muscle and Staphylococcus aureus. Mol. Biochem. Parasitai. 47,1-10.

64. Calvet, E. and Prat, H. (1963). Recent progress in microcalorimetry, Pergamon Press, Oxford

194

Page 5: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

65. Celenza, I L , Marshall-Carlson, L. and Carlson, M. (1988). The yeast SNF3-gene encodes a glucose transporter homologous to the mammalian protein. Proc. Natl. Acad. Sei. USA 85, 2130-2134.

66. Chambers, A., Packham, E.A. and Graham, I.R. (1995). Control of glycolytic gene expression in the budding yeast {Saccharomyces cerevisiae). Curr. Genet 29, 1-9.

67. Chance, B., Estabrook, R.W. and Ghosh, A. (1964). Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc. Natl. Ac. Sei. USA 51 , 1244-1251.

68. Chance, B., Pye, K. and Higgins, J. (1967). Waveform generation by enzymatic oscillators. IEEE Spectrum ???, 79-86.

69. Chen, A. and Wadsoe, I. (1982). A test and calibration process for microcalorimeters used as thermal power meters. J. Biochem. Biophys. Meth. 6, 297-306.

70. Chou, H.-F., Berman, N. and Ipp, E. (1992). Oscillations of lactate released from islets of Langerhans: evidence for oscillatory glycolysis in beta-cells. Am. J. Physiol. 262, E800-E805.

71. Clifton, D., Walsh, R.B. and Fraenkel, D.G. (1993). Functional studies of yeast glucokinase. J. Bacteriol. 175, 3289-3294.

72. Collatz, K.-G. and Horning, M. (1990). Age dependent changes of a biochemical rythm - the glycolytic oscillator of the blowfly Phormia terraenovae. Comp. Biochem. Physiol. 96B, 771-774.

73. Coons, D.C., Boulton, R.B. and Bisson, L.F. (1995). Computer-assisted nonlinear regression analysis of the multicomponent glucose uptake kinetics of Saccharamyces cerevisiae. J. Bacteriol. 177, 3251-3258.

74. Coons, D.M., Vagnoli, P. and Bisson, L.F. (1997). The C-terminal domain of Snf3p is sufficient to complement the growth defect of snf3 null mutants in Saccharomyces cerevisiae. SNF3 functions in glucose recognition. Yeast 13,9-20.

75. Cornish-Bowden, A. (1995). Metabolic control analysis in theory and practice. Adv. Mol. Cell. Biol. 11 , 21-64.

76. Cornish-Bowden, A. (1996). Fundamentals of enzyme kinetics, Portland Press, 77. Cortassa, S. and Aon, M.A. (1994). Metabolic control analysis of glycolysis and branching to

ethanol production in chemostat cultures of Saccharomyces cerevisiae under carbon, nitrogen or phosphate limitations. Enzym. Microbiol. Technol. 16, 761-770.

78. Cortassa, S. and Aon, M.A. (1997). Distributed control of the glycolytic flux in wild-type cells and catabolite repression mutants of Saccharomyces cerevisiae growing in carbon-limited chemostat cultures. Enzyme Microb. Technol. 21 , 596-602.

79. Cortassa, S., Aon, M.A. and Westerhoff, H.V. (1991). Linear nonequilibrium thermodynamics describes the dynamics of an autocatalytic system. Biophys. J60, 794-803.

80. Das, J. and Busse, H.-G. (1985). Long term oscillations in glycolysis. J. Biochem. 97, 719-727. 81. Davies, S.E. and Brindle, K.M. (1992). Effects of overexpression of phosphofructokinase on

glycolysis in the yeast Saccharomyces cerevisiae. Biochemistry'31, 4729-4735. 82. De Koning, W. and Van Dam, K. (1992). A method for the determination of changes of glycolytic

metabolites in yeast on a subsecond time scale using extraction at neutral pH. Anal. Biochem. 204, 118-123.

83. De Winde, J.H., Crauwels, M., Hohmann, S., Thevelein, J.M. and Winderinckx, J. (1997). Differential requirement of the yeast sugar kinases for sugar sensing in establishing the catabolite-repressed state. Eur. J. biochem. 241, 633-643.

84. Diamond, D.L. and Carruthes, A. (1993). Metabolic control of sugar transport by derepression of cell surface glucose transporters. J. Biol. Chem. 268, 6437-6444.

85. Diderich, J.A., Teusink, B., Valkier, J., Anjos, 1 , Spencer-Martins, I., Van Dam, K. and Walsh, M.C. (1998). Modulation of glucose transport and strategies to determine the control of glucose transport on glycolysis in yeast {Saccharomyces). submitted.

REFERENCES 195

Page 6: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

86. Doran, P.M. and Bailey, J.E. (1987). Effects of immobilization on the nature of glycolytic oscillations in yeast. Biotech. Bioeng, 29, 892-897.

87. Drong, K. (1991). Glykolytische Oszillationen bei Hefezellextrakten, Thesis Freie Universitaet Berlin,

88. Dujon, B. (1996). The yeast genome project: What did we learn? Trends in Genet. 12, 263-270. 89. Duysens, L.N.M. and Amesz, J. (1957). Fluorescence spectrophotometry of reduced

phosphopyridine nucleotide in intact cells in the near-ultraviolet and visible region. Biochim. Biophys. Acta 24, 19-26.

90. Dykhuizen, D. and Hartl, D. (1978). Transport by the lactose permease of Eschericha coli as the basis for lactose killing. J. Bacteriol. 135, 876-882.

91. Dynnik, V.V. and Sel'kov, E.E. (1973). On the possibility of self-oscillations in the lower part of the glycolytic system. FEBSlett. 37, 342-346.

92. Easterby (1990). Eur. J. Biochem. 269, 255-259. 93. Ellenrieder, G.v., Kirschner, K. and Schuster, I. (1972). The binding of oxidized and reduced

nicotinamide adenine dinucleotide to yeast glyceraldehyde 3 phosphate dehydrogenase. Eur J Biochem 26, 220-236.

94. Entian, K.-D., Meurer, B., Koehler, H., Mann, K.-H. and Mecke, D. (1987). Studies on the regulation of enolases and compartmentation of cytosolic enzymes in Saccharomyces cerevisiae. Biochim. Biophys. Acta 923, 214-221.

95. Ernandes, J.R., De Meirsman, C, Rolland, P., Winderinckx, J., De Winde, J., Lopes Barndao, R. and Thevelein, J.M. (1998). During the initiation of fermentation overexpression of hexokinase PII in yeast transiently causes a similar deregulation of glycolysis as deletion of Tpsl. Yeast 14, 255-269.

96. Estevez, A.M., Heinisch, J.J. and Aragon, J.J. (1995). Functional complementation of yeast PFK mutants by the non-allosteric enzyme from Dictostylium discoideum. FEBS Lett. 374, 100-104.

97. Fell, D.A. (1992). Metabolic control analysis: a survey of its theoretical and experimental development. Biochem. J. 286, 313-330.

98. Fell, D.A. (1997). Understanding the control of metabolism, Portland Press, London & Miami 99. Fell, D.A. and Saura, H.M. (1985). Metabolic control analysis: additional relationships between

elasticities and control coefficients. Eur. J. Biochem. 148, 555-561. 100. Fisher, L.M., Alberty, W.J. and Knowles, J.R. (1986). Energetics of proline racemase: tracer

perturbation experiments using [14C]proline that measure the interconversion rate of the two forms of free enzyme. Biochemistry 25, 2538-2542.

101. Flint, H.J., Tateson, R.W., Barthelmess, I.B., Porteous, DJ., Donachie, W.D. and Kacser, H. (1981). Control of the flux in the arginine pathway of Neurospora crassa. Modulations of enzyme activity and concentration. Biochem. J. 200, 231-246.

102. Fraenkel, D.G. (1982). Carbohydrate metabolism, in: Strathem, J.N., Jones, E.W. and Btoach, J.R. (Eds), The molecular biology of the yeast Saccharomyces, Cold Spring Harbor Laboratory, New York, 1-37.

103. Francois, J., Neves, M.-J. and Hers, H.-G. (1991). The control of trehalose biosynthesis in Saccharomyces cerevisiae: evidence for a catabolite inactivation and repression of trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase. Yeastl, 575-587.

104. Francois, J., Van, S.E. and Hers, H.G. (1984). The mechanism by which glucose increases fructose 2,6-bisphosphate concentration in Saccharomyces cerevisiae. A cyclic-AMP-dependent activation of phosphofructokinase 2. European Journal'of'Biochemistry'145, 187-93.

105. Francois, J., Van, S.E. and Hers, H.G. (1988). Characterization of phosphofructokinase 2 and of enzymes involved in the degradation of fructose 2,6-bisphosphate in yeast. European Journal of Biochemistry'171, 599-608.

196

Page 7: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

106. Fuhrmann, G.F., Voelker, B., Sander, S. and Potthast, M. (1989). Kinetic analysis and simulation of glucose transport in plasma membrane vesicles of glucose-repressed and derepressed Saccharomyces cerevisiae cells. Experientia 45, 1018-1023.

107. Funaguma, T., Toyoda, Y. and Sy, J. (1985). Catabolite inactivation of fructose 1,6-bisphosphatase and cytoplasmic malate dehydrogenase in yeast. Biochem Biophys Res Commun 130, 467-71.

108. Galazzo, J.L. and Bailey, J.E. (1990). Fermentation pathway kinetics and metabolic flux control in suspended and immobilized Saccharomyces cerevisiae. Enz. Microbiol. Techno/. 12, 162-172.

109. Gamo, F.J., Moreno, E. and Lagunas, R. (1995). The low-affinity component of the glucose-transport system in Saccharomyces cerevisiae is not due to passive diffusion. Yeast 11, 1393-1398.

110. Gamo, F.- l , Navas, M.A., Blazquez, MA , Gancedo, C. and Gancedo, J.M. (1994). Catabolite inactivation of heterologous F16BPase and F16BPase-b galactosidase fusion proteins in Saccharomyces cerevisiae. Eur. J. Biochem. 222, 879-884.

111. Gancedo, C. and Serrano, R. (1989). Energy-yielding metabolism, in: Rose, A.H. and Harrison, J.S. (Eds), The Yeast, Academic Press, London, 205-259.

112. Ganzhorn, A.J., Green, D.W., Hershey, A.D., Gould, R.M. and Plapp, B.V. (1987). Kinetic characterization of yeast alcohol dehydrogenases. J. Biol. Chem. 262, 3754-3761.

113. Garfinkel, D., Frenkel, R.A. and Garfinkel, L. (1968). Simulation of the detailed regulation of glycolysis in a heart supernatant preperation. Comp. Biomed. Res. 2, 68-91.

114. Gari, E., Piedrafita, L, Aldea, M. and Herero, E. (1997). A set of vectors with a tetracycline-regulatable promoter system for modulating gene expression in Saccharomyces cerevisiae. Yeast 13, 837-848.

115. Gautan, N. (1988). Mutated forms of phosphoglycerate mutase affect reversal of metabolic flux. J. Biol. Chem. 263, 15400-15406.

116. Ghosh, A.K., Chance, B. and Pye, E.K. (1971). Metabolic coupling and synchronization of NADH oscillations in yeast cell populations. Arch. Biochem. Biophys. 145, 319-331.

117. Giersch, C. (1995). Concerning the measurement of flux control coefficients by enzyme titration. Eur. 1 Biochem. 231, 587-592.

118. Giersch, C, Betz, A. and Richter, O. (1975). A new method for determining the individual reaction rates of the glycolytic system. Biosystemsl, 147-153.

119. Glansdorff, P. and Prigogine, I. (1971). Thermodynamic theory of structure, stability and fluctuations, Wiley, London

120. Gnaiger, E. and Wyss, M. (1994). Chemical forces in the cell: calculations for the ATP system, in: Gnaiger, E., Gellerich, F.N. and Wyss, M. (Eds), Modern Trends in BioThermoKinetics, Innsbruck University Press, Innsbruck, 207-212.

121. Goffeau, A., Barrel!, B.G., Bussey, H., Davis, R.W., Dujon, B., Feldmann, H., Galibert, F., Hoheisel, J.D., Jacq, C, Johnston, M., Louis, E.J., Mewes, H.W., Murakami, Y., Philippsen, P., Tettelin, H. and Oliver, S.G. (1996). Life with 6000 genes. Science 274, 546.

122. Goldbeter, A. (1973). Patterns of spatiotemporal organisation in an allosteric enzyme model. Proc. Natl. Acad. Sei. USA 70, 3255-3259.

123. Goldbeter, A. (1974). Modulation of the adenylate energy charge by sustained metabolic oscillations. FEBS Lett. 43, 327-330.

124. Goldbeter, A. (1996). Biochemical oscillations and cellular rythms, Cambridge Universuty Press, Cambridge, Great Britain

125. Goldbeter, A. and Caplan, S.R. (1976). Oscillatory enzymes. Ann. Rev. Biophys. & Bioenerg. 6, 449-476.

126. Goldbeter, A. and Lefever, R. (1972). Dissipative structures for an allosteric model. Biophys. J. 12, 1302-1315.

1 Q7 REFERENCES • L 3 /

Page 8: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

127. Goldbeter, A. and Nicolis, G. (1976), in: Rosen, R. (Ed), Prog. Theor. Biol., Academic Press, New York, 65-160.

128. Gonzales, B., Francois, J. and Renaud, M. (1997). A rapid and reliable method for metabolite extraction using boiling buffered erthanol. Yeast 13, 1347-1356.

129. Gonzalez, M.I., Stucka, R., Blazquez, M.A., Feldmann, H. and Gancedo, C. (1992). Molecular cloning of CIF1, a yeast gene necessary for growth on glucose. Yeast8, 183-92.

130. Gozalbo, D., Gil-Navarro, I., Azorin, I., Renau-Piqueras, J., Martinez, J.P. and Gil, M.L (1998). The cell wall-associated glyceraldehyde-3-phosphate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 66, 2052-9.

131. Grisolia (1962). Phosphoglyceric acid mutase. Meth. Enzymol. 5, 236-247. 132. Grisolia, S. and Carreras, J. (1975). Phosphoglycerate mutase from yeast, chicken breast muscle,

and kidney (2, 3-PGA-dependent). Meth Enzymol. 42, 435-50. 133. Groen, A.K., Van Roermond, C.W.T., Vervoorn, R.C. and Tager, J.M. (1986). Control of

gluconeogenesis in rat-lever cells - flux control coefficients of the enzymes in the gluconeogenetic pathway in the absence and presence of glucagon. Biochem. J. 237, 379-389.

134. Groen, A.K., Wanders, R.J.A., Westerhoff, H.V., Van der Meer, R. and Tager, J.M. (1982). Quantification of the contribution of various steps to the control of mitochondrial respiration. J. Biol. Chem. 257, 2754-2757.

135. Grospietsch, T., Drong, K. and Lamprecht, I. (1995). Experimental data on the energetic flux during glycolytic oscillations in yeast extracts. Experientia 5 1 , 117-120.

136. Gustafsson, L. (1979). The ATP pool in relation to the production of glycerol and heat during growth of the halotolerant yeast Debaryomyces hansenii. Arch. Microbiol. 120, 15-23.

137. Gustafsson, L. (1991). Microbiological calorimetry. Thermochim. Acta 193, 145-171. 138. Hafner, R.P., Brown, G.C. and Brand, M.D. (1990). Analysis of the control of respiration rate,

phosphorylation rate, proton leak rate and protonmotive force in isolated mitochondria using the 'top-down' approach of metabolic control theory. Eur. J. Biochem. 188, 313-319.

139. Harris, J.I. and Waters, M. (1982). Glyceraldehyde-3-phosphate dehydrogenase, in: Boyer, P.D. (Ed), The Enzymes, Academic Press, New York, 1-49.

140. Hebert, D.N. and Carruthers, A. (1992). Glucose transporter oligomeric structure detrmines transporter function. J. Biol. Chem. 267, 23829-23838.

141. Heinisch, J.J., Boles, E. and Timpel, C. (1996). A yeast phosphofructokinase insensitive to the allosteric activator fructose 2,6-bisphosphate. J. Biol. Chem. 271, 15928-15933.

142. Heinrich, R., Montera, F., Klipp, E., Waddell, T.G. and Melendez-Hevia, E. (1997). Theoretical approaches to the evolutionary optimization of glycolysis. Eur. J. Biochem. 243, 191-201.

143. Heinrich, R., Rapoport, S.M. and Rapoport, T.A. (1977). Metabolic regulation and mathematical models. Prog. Biophys. Mol. Biol. 32,1-82.

144. Heinrich, R. and Rapoport, T. (1974). A linear steady-state treatment of enzymatic chains. Eur. J. Biochem. 42, 89-95.

145. Heinrich, R. and Reder, C. (1991). Metabolic control analysis of relaxation processes. J. Theor. Biol. 151, 343-350.

146. Heinrich, R. and Schuster, S. (1996). The regulation of cellular systems, Chapman & Hall, New York

147. Heinrich, R. and Schuster, S. (1998). The modelling of metabolic systems. Structure, control and optimality. BioSystems 47, 61-77.

148. Herrero, P., Galindez, J., Ruiz, N. and Moreno, F. (1995). Transcriptional regulation of the Saccharomyces cerevisiae HXK1, HXK2 and GLK1 genes. Yeast11, 137-144.

149. Hess, B. (1973). Organization of glycolysis: oscillatory and stationary control, Symp.Soc. Exp. Biol., Cambridge University Press, Cambridge, .

150. Hess, B. (1979). The glycolytic oscillator. J. Exp. Biol. 8 1 , 7-14.

198

Page 9: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

151. Hess, B. and Boiteux, A. (1968). Mechanism of glycolytic oscillations in yeast I. Hopp-Seyler's Z. Physiol. Chem. 349,1567-1574.

152. Hess, B. and Boiteux, A. (1973). Substrate control of glycolytic oscillations, in: Chance, B., Pye, E.K., Ghosh, A.K. and Hess, B. (Eds), Biological and biochemical oscillators, Academic Press, New York, 229-241.

153. Hess, B., Boiteux, A. and Krueger, J. (1969). Cooperation of glycolytic enzymes. Adv. Enz. Regul. 7,149-167.

154. Hess, B., Haeckel, R. and Brand, K. (1966). FDP-activation of yeast pyruvate kinase. Biochem. Biophys. Res. Comm. 24, 824-831.

155. Hess, B. and Plesser, T. (1978). Temporal and spatial order in biochemical systems. Ann. N. Y. Acad. Sei. 316, 203-213.

156. Hilborn, R.C. (1994). Chaos and nonlinear dynamics, Oxford University Press, New York 157. Hoefer, T. and Heinrich, R. (1993). A second-order approach to metabolic control analysis. J.

Theor. Biol. 164, 85-102. 158. Hofmann, E. and Kopperschlaeger, G. (1982). Phosphofructokinase from yeast. Meth. Enzymol.

90, 49-60. 159. Hofmeyr, J.-H.S. (1995). Metabolic regulation: a control analytic perspective. J. Bioenerget

Biomembr. 27, 479-490. 160. Hofmeyr, J.-H.S. and Cornish-Bowden, A. (1991). Quantitative assesment of regulation in

metabolic systems. Eur. J. Biochem. 200, 223-236. 161. Hofmeyr, J.-H.S. and Cornish-Bowden, A. (1996). Co-response analysis: A new experimental

strategy for metabolic control analysis. J. Theor. Biol. 182, 371-380. 162. Hofmeyr, J.-H.S., Cornish-Bowden, A. and Rohwer, J.M. (1993). Taking enzyme kinetics out of

control; putting control into regulation. Eur. J. Biochem. 212, 833-837. 163. Hofmeyr, J.-H.S., Kacser, H. and Van der Merwe, K.J. (1986). Metabolic control analysis of moiety

conserved cycles. Eur. J. Biochem. 155, 631-641. 164. Hoggett, J.G. and Kellett, G.L. (1995). Kinetics of the cooperative binding of glucose to dimeric

yeast hexokinase PT. Biochem. J. 305,405-10. 165. Hohmann, S., Bell, W., Neves, M.J., Valckx, D. and Thevelein, J.M. (1996). Evidence for

trehalose-6-phosphate-dependent and trehalose-6-phosphate-independent mechanisms in the control of sugar influx into yeast glycolysis. Mol. Microbiol. 20, 981-991.

166. Hohmann, S., Huse, K., Valentin, E., Mbony, K., Thevelein, J.M. and Zimmermann, F.K. (1992). Glucose-induced regulatory defects in the Saccharomyces cerevisiae growth initiation mutant bypl and identification of MIG1 as a partial repressor. J. Bacteriol. 174, 4183-4188.

167. Hohmann, S., Neves, M.J., De Koning, W., Alijo, R., Ramos, J. and Thevelein, J.M. (1993). The growth and signalling defects of the ggsl (fdpl/bypl) deletion mutant on glucose are suppressed by a deletion of the gene encoding hexokinase PII. Curr. Genet. 23, 281-289.

168. Hölzer, H. (1989). Proteolytic catabolite inactivation in Saccharomyces cerevisiae. Revis Biol Celular 2 1 , 305-19.

169. Horak, J. and Wolf, D.H. (1997). Catabolite inactivation of the galactose transporter in the yeast Saccharomyces cerevisiae: ubiquitination, endocytosis, and degradation in the vacuole. J Bacteriol'179,1541-9.

170. Hubner, G., Weidhase, R. and Schellenberger, A. (1978). The mechanism of substrate activation of pyruvate decarboxylase: a first approach. Eur. J. Biochem. 92, 175-81.

171. Hunsley, J.R. and Suelter, C.H. (1969). Yeast pyruvate kinase. I I . Kinetic properties. J Biol Chem 244, 4819-22.

172. Jensen, P.R., Michelsen, O. and Westerhoff, H.V. (1995). Experimental determination of control by the H+-ATPase in Escherichia coli. J. Bioenerget. Biomem. 27, 543-554.

REFERENCES 1 S 9

Page 10: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

173. Jensen, P.R., Snoep, I L , Molenaar, D., Van Heeswijk, W.C, Kholodenko, B.N., Van der Gugten, A.A. and Westerhoff, H.V. (1995). Molecular biology for flux control. Biochem. Soc. Trans. 23, 367-370.

174. Jensen, P.R., Westerhoff, H.V. and Michelsen, 0. (1993). Excess capacity of H+-ATPase and inverse respiratory control in Escherichia-co/i. EMBOJ. 12, 1277-1282.

175. Jensen, P.R., Westerhoff, H.V. and Michelsen, 0. (1993). The use of lac-type promoters in control analysis. Eur. J. Biochem. 211, 181-191.

176. Johannes, K.J. and Hess, B. (1973). Allosteric kinetics of pyruvate kinase of Saccharomyces carlsbergensis. J. Mol. Biol. 76, 181-205.

177. Kacser, H. and Acerenza, L. (1993). A universal method for achieving increases in metabolite production. Eur. J. Biochem. 216, 361-367.

178. Kacser, H. and Burns, J.A. (1973). The control of flux. Symp. Soc. Exp. Biol. 27, 65-104. 179. Kacser, H. and Burns, J.A. (1980). The molecular basis of dominance. genetics97, 639-666. 180. Kacser, H., Burns, J.A. and Fell, D.A. (1995). The control of flux. Biochem. Soc. Trans. 23, 341-

366. 181. Kahn, D. and Westerhoff, H.V. (1991). Control theory of regulatory cascades. J. Theor. Biol. 153,

255-285. 182. Kahn, D. and Westerhoff, H.V. (1993). The regulatory strength: how to be precise about

regulation and homeostasis. Biotheor. Acta 4 1 , 85-96. 183. Kattevilder, A. Personal communication. . 184. Keil, D.B. and Westerhoff, H.V. (1986). Metabolic control theory: its role in microbiology and

biotechnology. FEMS Microbiol. Rev. 39, 305-320. 185. Kessler, R., Gaertner, G., Schellenberger, W. and Hofmann, E. (1991). Fructose-2,6-bisphosphate

metabolism in permeabilized yeast cells. Biomed. Biochim. Acta 50, 851-860. 186. Kessler, R., Nissler, K., Schellenberger, W. and Hofmann, E. (1986). Binding of fructose-1,6-

bisphosphate to yeast phosphofructokinase. Biomed. Biochim. Acta AS, 1121-5. 187. Kessler, R., Schellenberger, W., Nissier, K. and Hofmann, E. (1988). Binding of fructose 2,6-

bisphosphate to yeast phosphofructokinase. Biomed. Biochim. Acta 47, 221-5. 188. Kholodenko, B.N. and Brown, G.C. (1996). Paradoxical control properties of enzymes within

pathways: can activation cause an enzyme to have increased control? Biochem .7314, 753-60. 189. Kholodenko, B.N., Cascante, M., Hoek, J.B., Westerhoff, H.V. and Schwaber, J. (1988). Metabolic

design: how to engineer a living cell to desired metabolite concentrations and fluxes. Biotech. Bioeng. 59, 239-247.

190. Kholodenko, B.N., Cascante, M. and Westerhoff, H.V. (1994). Control theory of metabolic channeling. Mol. Cell. Biochem. 133/134, 313-331.

191. Kholodenko, B.N., Denim, O.V. and Westerhoff, H.V. (1997). Control analysis of periodic phenomena in biological systems. J. Phys. Chem. 101, 2070-2081.

192. Kholodenko, B.N., Molenaar, D., Schuster, S., Heinrich, R. and Westerhoff, H.V. (1995). Defining control coefficients in non-ideal metabolic pathways. Biophys. Chem. 56, 215-226.

193. Kholodenko, B.N., Rohwer, J.M., Cascante, M. and Westerhoff, H.V. (1998). Subtleties in control by metabolic channelling and enzyme organization. Mol Cell Biochem 184, 311-20.

194. Kholodenko, B.N., Schuster, S., Rohwer, J.M., Cascante, M. and Westerhoff, H.V. (1995). Composite control of cell function: metabolic pathways behaving as single control units. FEBS Lett. 368, 1-4.

195. Kholodenko, B.N. and Westerhoff, H.V. (1994). Control theory of one enzyme. Biochim. Biophys. Acta 1208, 284-305.

196. Kholodenko, B.N. and Westerhoff, H.V. (1995). Control Theory of group transfer pathways. Biochim. Biophys. Acta 1229, 256-274.

200

Page 11: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

197. Kholodenko, B.N. and Westerhoff, H.V. (1995). The macroworld versus the microworld of biochemical regulation and control. Trends Biochem. Sei. 20, 52-54.

198. Kopetzki, E. and Entian, K.-D. (1985). Glucose repression and hexokinase isoenzymes in yeast. Eur. J. Biochem. 146, 657-662.

199. Kotyk, A. (1967). Mobility of the free and of the loaded monosaccharide carrier in Saccharomyces cerevisiae. Biochim. Biophys. Acta 135, 112-119.

200. Kotyk, A. (1989). Kinetic Studies of transport in yeast. Meth. Enzymol. 174, 567-591. 201. Kretschmer, M., Schellenberger, W., Otto, A., Kessler, R. and Hofmann, E. (1987). Fructose-2,6-

bisphosphatase and 6-phosphofructo-2-kinase are separable in yeast. Biochem. J. 246, 755-759. 202. Kretschmer, M., Tempst, P. and Fraenkel, D.G. (1991). Identification and cloning of yeast

phosphofructokinase 2. Eur. J. Biochem. 197, 367-372. 203. Kreuzberg, K. (1978). Interaction of D-fructose and fructose 1-phosphate with yeast

phosphofructokinase and its influence on glycolytic oscillations. Biochim. Biophys. Acta 527, 229-238.

204. Kreuzberg, K. and Betz, A. (1988). Rate limiting steps in oscillating plant glycolysis: experimental evidence for control sites additional to phosphofructokinase, in: Lamprecht, I. and Zotin, A.I. (Eds), Thermodynamics and pattern formation in biology, Walter de Gruyter, Berlin-New York, 185-203.

205. Kreuzberg, K.H., Richter, O., Martin, W. and Betz, A. (1977). Statistical analysis of NADH oscillations in the yeast Saccharomyces carlsbergensis fermenting on different sugars. J. Interdiscipl. Cycle. Res. 8,135-146.

206. Krietsch, W.K.G., Pentchev, P.G., Klingenburg, H., Hofstatter, T. and Bucher, T. (1970). Eur. J. Biochem. 14, 289-300.

207. Kruckeberg, A.L. (1997). The hexose transporter family of Saccharomyces cerevisiae. Arch. Microbiol. 166, 283-292.

208. Kruckeberg, A.L., Walsh, M.C. and Van Dam, K. (1998). How do yeast cells sense glucose? BioEssays 20,1-5.

209. Lagunas, R. (1993). Sugar transport in Saccharomyces cerevisiae. FEMS Microbiol. Rev. 104, 229-242.

210. Lagunas, R., Dominguez, C., Busturia, A. and Saez, MJ. (1982). Mechanisms of appearance of the Pasteur effect in Saccharomyces cerevisiae. inactivation of the sugar transport system. J. Bacteriol. 152,19-25.

211. Lambeir, A., Loiseau, A.M., Kuntz, F.M., Michels, P.M. and Opperdoes, F.R. (1991). The cytosolic and glycosomal glyceraldehyde 3-phosphate dehydrogenase from Trypanosoma brucei. Eur. J. Biochem. 198, 429-435.

212. Lamprecht, I. (1992). Microcalorimetric investigations of oscillating reactions - instrumental approach and some results. Indian J. Technol. 30, 578-592.

213. Lang, J.M. and Cirillo, P. (1987). Glucose transport in a kinaseless Saccharamyces cerevisiae mutant. J. Bacteriol. 169, 2932-2937.

214. Larsson, C, Blomberg, A. and Gustafsson, L. (1991). Use of microcalorimetric monitoring in establishing continuous energy balances and in continuous determinations of substrate and product concentrations of batch-grown Saccharomyces cerevisiae. Biotechno/. Bioeng. 38, 447-458.

215. Larter, R., Rabitz, H. and Kramer, M. (1984). Sensitivity analysis of limit-cycles with application to the Brusselator. J. Chem. Phys. 80, 4121-4128.

216. Lasko, P.F. and Brandriss, M.C. (1981). Proline transport in Saccharomyces cerevisiae. J. Bacteriol. 148, 241-247.

217. Laurent, M., Seydoux, F.J. and Dessen, P. (1979). Allosteric regulation of yeast phosphofructokinase. J. Biol. Chem. 254, 7515-7520.

REFERENCES 201

Page 12: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

218. Laurent, M. and Yon, J.M. (1989). Yeast phosphofructo kinase, in: Hervé, G. (Ed), Allosteric enzymes, CRC Press, 255-276.

219. Lewis, D.A. and Bisson, L.F. (1991). The HXT1 gene product of Saccharomyces cerevisiae is a new member of hexose transporters. Mol. Cell. Biol. 11, 3804-3813.

220. Li, Y.-X. and Goldbeter, A. (1989). Frequency specificity in intercellular communication. Biophys. J. 55, 125-145.

221. Liden, A., Persson, A., Gustafsson, L. and Niklasson, C. (1995). Energetics and product formation by Saccharomyces cerevisiae grown in anaerobic chemostats under nitrogen limitation. Appl. Microbiol. Biotechnol. 43, 1034-1038.

222. Lobo, Z. and Maitra, P.K. (1977). Physiological role of glucose-phosphotylating enzymes in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 182, 639-645.

223. Londesborough, J. and Vuorio, O.E. (1993). Purification of trehalose synthase from Baker's yeast. Eur. J. Biochem. 216, 841-848.

224. Lowry, O.H., Roseborough, N.J., Farr, A.L. and Randall, R.J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.

225. Lucero, P., Herweijer, M. and Lagunas, R. (1993). Catabolite inactivation of the yeast maltose transporter is due to proteolysis. FEBSLett'333,165-8.

226. Luyten, K., Albertyn, J., Skibbe, W.F., Prior, B.A., Ramos, J., Thevelein, J.M. and Hohmann, S. (1995). Fpsl, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EmboJ. 14,1360-71.

227. Luyten, K., De Koning, W., Tesseur, I., Ruiz, M.C., Ramos, J., Cobbaert, P., Thevelein, J.M. and Hohmann, S. (1993). Disruption of the Kluyveromyces lactis GGS1 gene causes inability to grow on glucose and fructose and is suppressed by mutations that reduce sugar uptake. Eur. J. Biochem. 217, 701-713.

228. Macfarlane, N. and Ainsworth, S. (1972). A kinetic study of Baker's-yeast pyruvate kinase activated by fructose 1,6-diphosphate. Biochemical'Journal'129, 1035-47.

229. Macreadie, I.G., Horaitis, O., Verkuylen, A.J. and Savin, K.W. (1991). Improved shuttle vectors for cloning and high-level Cu2+-mediated expression of foreign genes in yeast. Gene 104, 107-111.

230. Marini, A.M., Soussi-Boudekou, S., Vissers, S. and Andre, B. (1997). A family of ammonium transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 17, 4282-4293.

231. Markus, M. and Hess, B. (1984). Transition between oscillatory modes in a glycolytic model system. Proc. Natl. Acad. Sei. USA 8 1 , 4394-4398.

232. Markus, M. and Hess, B. (1985). Input-response relationships in the dynamics of glycolysis. Arch. Biol. Med. Exp. 18, 261-271.

233. Markus, M. and Hess, B. (1990). Control of metabolic oscillations: unpredictability, critical slowing down, optimal stability and hysteresis, in: Cornish-Bowden, A. and Cardenas, M.L. (Eds), Control of metabolic processes, Plenum Press, New York, .

234. Markus, M., Kuschmitz, D. and Hess, B. (1984). Chaotic dynamics in yeast glycolysis under periodic substrate input flux. FEBS Lett. 72, 235-238.

235. Martinez, P., Zvyagilskaya, R., Allard, P. and Persson, B.L. (1998). Physiological regulation of the repressible phosphate transporter in Saccharomyces cerevisiae. J. Bacterid. 180, 2253-2256.

236. Mas, M.T., Resplandor, Z.E. and Riggs, A.D. (1987). Site-directed mutagenesis of glutamate-190 in the hinge region of yeast 3-phosphoglycerate kinase: implications for the mechanism of domain movement. Biochemistry'26, 5369-77.

237. Mc Quate (1959). J. Biol. Chem. 234, 2151 238. Meijer, M.C.M., Boonstra, J., Verkleij, A.J. and Verrips, C.T. (1996). Kinetic analysis of hexose

uptake in Saccharomyces cerevisiae cultivated in continuous culture. Biochim. Biophys. Acta 1277, 209-216.

202

Page 13: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

239. Meijer, M.M., Boonstra, J., Verkleij, AJ. and Verrips, C.T. (1998). Glucose repression in Saccharomyces cerevisiae is related to the glucose concentration rather than the glucose flux. J. Biol. Chem. 273, 24102-7.

240. Melendez-Hevia, E., Torres, N.V., Sicilia, J. and Kacser, H. (1990). Control analysis of transition times in metabolic systems. Biochem. J. 265, 195-202.

241. Melendez-Hevia, E., Waddell, T.G., Heinrich, R. and Montera, F. (1997). Theoretical approaches to the evolutionary optimization of glycolysis. Chemical analysis. Eur. J. Biochem. 244, 527-543.

242. Mewes, H.W., Albermann, K., Baehr, M., Frishmann, D., Gleissner, A., Hani, J., Heumann, K., Kleine, K., Maierl, A., Oliver, S.G. and Pfeiffer, F. (1997). Overview of the yeast genome. Nature 187, (Supp.) 7-65.

243. Michnick, S., Dequin, S., Roustan, J.-L, Remize, F. and Barre, P. (1997). Modulation of glycerol and ethanol yields during alcoholic fermentation in Saccharomyces cerevisiae strains overexpressed or disrupted for GPD1 encoding glycerol 3-phosphate dehydrogenase. Yeast 13, 783-793.

244. Midelfort, CF., Gupta, R.K. and Rose, I.A. (1976). Fructose 1,6-bisphosphate: isomeric composition, kinetics, and substrate specificity for the aldolases. Biochemistry IS, 2178-2185.

245. Monod, J., Wyman, J. and Changeux, J.-P. (1965). On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12, 88-118.

246. Mueller, K.H. and Plesser, T. (1987). Deconvolution of periodic heat signals by fast Fourier transform. Thermochim. Acta 119, 189-201.

247. Muller, M., Muller, H. and Holzer, H. (1981). Immunochemical studies on catabolite inactivation of phosphoenolpyruvate carboxykinase in Saccharomyces cerevisiae. J Biol Chem 256, 723-7.

248. Muller, S., Zimmermann, F.K. and Boles, E. (1997). Mutant studies of phosphofructo-2-kinases do not reveal an essential role of fructose-2,6-bisphosphate in the regulation of carbon fluxes in yeast cells. Microbiology143, 3055-61.

249. Mumberg, D., Muller, R. and Funk, M. (1994). Regulatable promoters of Saccharomyces cerevisiae: comparison of transcriptional activity and their use in heterologous expression. Nucl. Acids Res. 22, 5767-5768.

250. Murcott, T.H., Gutfreund, H. and Muirhead, H. (1992). The cooperative binding of fructose-1,6-bisphosphate to yeast pyruvate kinase. Embo Journal'11, 3811-4.

251. Navas, M.A., Cerdan, S. and Gancedo, J.M. (1993). Futile cycles in Saccharomyces cerevisiae strains expressing the gluconeogenic enzymes during growth on glucose. Proc Natl Acad Sei USA 90, 1290-1294.

252. Navon, G., Shulman, R.G., Yamame, T., Eccleshall, T.R., Lam, K.B., Baronofsky, J.J. and Marmur, J. (1979). Phosphorus-31 nuclear magnetic resonance studies of wild-type and glycolytic pathway mutants of Saccharomyces cerevisiae. Biochem. 18, 4487-4498.

253. Nelissen, B., De Wachterm, R. and Goffeau, A. (1997). Classification of all putative permeases and other membrane plurispanners of the major facilitator superfamily encoded by the complete genome of Saccharomyces cerevisiae. FEMS Microbiol. Rev. 21,113-134.

254. Neves, M.-J. and Francois, J. (1992). On the mechanism by which a heat shock induces trehalose accumulation in Saccharomyces cerevisiae. Biochem. J. 288, 859-864.

255. Nevoigt, E. and Stahl, U. (1996). Reduced pyruvate decarboxylase and increased glycerol-3-phosphate dehydrogenase [NAD+] levels enhance glycerol production in Saccharomyces cerevisiae. Yeast 12, 1331-1337.

256. Nicolis, G. and Prigogine, I. (1977). Self-organization in nonequilibrium systems from dissipative structures to order through fluctuations, Wiley, New York

257. Niederberger, P., Prasad, R., Miozzari, G. and Kacser, H. (1992). A strategy for increasing an in vivo flux by genetic manipulations - the tryptophan system of yeast. Biochem. J. 287, 473-479.

REFERENCES 2 0 3

Page 14: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

258. Nielsen, J. (1998). Metabolie engineering: techniques for analysis of targets for genetic manipulations. Biotechncl. Bioeng. 58, 125-132.

259. Nissen, T.L, Schulze, U., Nielsen, J. and Villadsen, J. (1997). Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiol. 143, 203-18.

260. Nissler, K., Otto, A., Schellenberger, W. and Hofmann, E. (1983). Similarity of activation of yeast phosphofructokinase by AMP and fructose 2,6-bisphosphate. Biochem. Biophys. Res. Comm. I l l , 294-300.

261. Noltmann, E. and Bruns, F.H. (1958). Phosphomannose-isomerase. Biochem. Z. 330, 514-520. 262. Nuezil, J., Danielson, H., Welch, G.R. and Ovadi, J. (1990). Cooperative effect of fructose

bisphosphate and glyceraldehyde-3-phosphate dehydrogenase on aldolase action. Biochim. Biophys. Acta 1037, 307-312.

263. Oehlen, L.J., Schölte, M.E., de Koning, W. and van Dam, K. (1994). Decrease in glycolytic flux in Saccharomyces cerevisiae cdc35-l cells at restrictive temperature correlates with a decrease in glucose transport. Microbiol. 140, 1891-8.

264. Oliver, S.G. (1996). From DNA sequence to biological function. Naturelle, 597-600. 265. Oliver, S.G. (1996). A network approach to the systematic analysis of yeast gene function. Trends

Genet. 12, 241-242. 266. Oliver, S.G. (1997). Yeast as a navigation aid in genome analysis. Microbiology'143, 1483-1487. 267. O'Rourke, B., Ramza, B.M. and Marban, E. (1994). Oscillations of membrane current and

excitability driven by metabolic oscillations in heart cells. Science 265, 962-966. 268. Otto, A., Przybylski, F., Nissler, K., Schellenberger, W. and Hofmann, E. (1986). Kinetic effects of

fructose 1,6-bisphosphate on yeast phosphofructokinase. Biomed. Biochem. Acta 45, 865-875. 269. Ovadi, J., Bathe, J., Bartha, F. and Keteli, T. (1979). Effects of association-dissociation on the

catalytic properties of GAPDH. Arch. Biochem. Biophys. 193, 28-33. 270. Ozcan, S., Dover, J., Rosenwald, A.G., Wolfl, S. and Johnston, M. (1996). Two glucose

transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene-expression. Proc. Natl. Acad. Sei. USA 93, 12428-12432.

271. Ozcan, S. and Johnston, M. (1995). 3 different regulatory mechanisms enable yeast hexose transporter (HXT) genes to be induced by different levels of glucose. Mol. Cell. Biol. 15, 1564-1572.

272. Panek, A.C., de Araujo, P.S., Moura Neto, V. and Panek, A.D. (1987). Regulation of the trehalose-6-phosphate synthase complex in Saccharomyces. I. Interconversion of forms by phosphorylation. Curr. Genet. 11 , 459-465.

273. Panek, A.D. and Panek, A.C. (1990). Metabolism and thermotolerance function of trehalose in Saccharomyces cerevisiae. a current perspective. J. Biotechnol. 14, 229-238.

274. Perea, J. and Gancedo, G. (1978). Glucose transport in a glucosephosphate isomeraseless mutant of Saccharomyces cerevisiae. Curr. Microbiol. 1 , 209-211.

275. Plesser, T. and Lamprecht, I. (1988). Chemical turnover and the rate of heat production in complex reaction systems, in: Markus, M., Mueller, S.C. and Nicolis, G. (Eds), From Chemical to Biological Organization, Springer-Verlag, Berlin, 182-192.

276. Plesser, T. and Lamprecht, I. (1988). Monitoring oscillating chemical reactions: the rate of heat production and simultaneous measurement of other physical sugnals, Thermodynamics and pattern formation in biology, Walter de Gruyter & Co., Berlin-New York, .

277. Plesser, T., Mueller, S.C., Hess, B., Lamprecht, I. and Schaarschmidt, B. (1985). Periodic heat production by oscillating glycolysis in a cytoplasmic medium extracted from yeast. FEBS lett. 189, 42-44.

278. Postgate, J.R. and Hunter, J.R. (1963). Acceleration of bacterial death by growth substrates. Nature 198, 273.

204

Page 15: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

279. Postma, E., Verduyn, C , Kuiper, A., Scheffers, W.A. and Van Dijken, J.P. (1990). Substrate-accelerated death of Saccharomyces œrevisiae CBS 8066 under maltose stress. Yeast 6, 149-158.

280. Postma, P.W., Lengeier, J.W. and Jacobson, G.R. (1993). Phosphoenolpyruvate - carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57 , 543-594.

281. Pronk, J.T., Steensma, H.Y. and Van Dijken, J.P. (1996). Pyruvate metabolism in Saccharomyces cerevisiae. Yeast 12,1607-1633.

282. Przybylski, F., Otto, A., Nissler, K., Schellenberger, W. and Hofmann, E. (1985). Effects of fructose 1,6-bisphosphate on the activation of yeast phosphofructokinase by fructose 2,6-bisphosphate and AMP. Biochim. Biophys. Acta 8 3 1 , 350-352.

283. Pye, E.K. (1969). Biochemical mechanisms underlying the metabolic oscillations in yeast. Can. J. Bot. 4 7 , 271-285.

284. Pye, E.K. (1973). Glycolytic oscillations in cells and extracts of yeast - some unsolved problems, in: Chance, B., Pye, E.K., Ghosh, A.K. and Hess, B. (Eds), Biological and Biochemical Oscillators, Academic Press, New York, 269-283.

285. Ramos, J. and Cirillo, V.P. (1989). Role of cyclic-AMP-dependent protein kinase in catabolite inactivation of the glucose and galactose transporters in Saccharomyces cerevisiae. J Bacteriol 1 7 1 , 3545-8.

286. Randez-Gil, F., Sanz, P., Entian, K.-D. and Prieto, J.A. (1998). Carbon source-dependent phosphorylation of hexokinase PII and its role in glucose-signalling response in yeast. Mol. Cell. Biol. 18 , 2940-2948.

287. Randzio, S.L. and Suurkuusk, J. (1980). Interpretation of calorimetric thermograms and their dynamic corrections, in: Beezer, A.E. (Ed), Biological Microcalorimetry, Academic Press, London, 311-341.

288. Rapoport, T.A., Heinrich, R., Jacobasch, G. and Rapoport, S. (1974). A linear steady-state treatment on enzymatic chains. A mathematical model of glycolysis of human erythrocytes. Eur. J. Biochem. 42,107-120.

289. Rapp, P.E. (1981). Frequency encoded biochemical regulation is more accurate than amplitude dependent control. J. Theor. Biol. 9 0 , 531-544.

290. Rapp, P.E. (1987). Why are so many biological systems periodic? Progress in Neurobiol. 29 , 261-273.

291. Reder, C. (1988). Metabolic control analysis: a structural approach. J. Theor. Biol. 135, 175-201. 292. Reifenberger, E., Boles, E. and Ciriacy, M. (1997). Kinetic characterization of individual hexose

transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur. J. Biochem. 245, 324-333.

293. Reifenberger, E., Freidel, K. and Ciriacy, M. (1995). Identification of novel HXT genes in Saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol. Microbiol. 16 , 157-167.

294. Reijenga, CA. , Teusink, B., Van Verseveld, H.W., Snoep, J.L. and Westerhoff, H.V. (1998). Correlation of glucose catabolism and the frequency of glycolytic oscillations in Saccharomyces cerevisiae, in: Larsson, C , I., P. and Gustafsson, L. (Eds), Biothermokinetics in the post genomic era, Chalmers Reproservice, Gothenburg, 246-249.

295. Reuter, R., Eschrich, K., Schellenberger, W. and Hofmann, E. (1979). Kinetic modelling of yeast phosphofructokinase. Acta Biol. Med. Germ. 38,1067-1079.

296. Riballo, E., Herweijer, M., Wolf, D.H. and Lagunas, R. (1995). Catabolite inactivation of the yeast maltose transporter occurs in the vacuole after internalization by endocytosis. J Bacteriol 177, 5622-7.

REFERENCES 2 0 5

Page 16: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

297. Richard, P., Bakker, B., Teusink, B., Van Dam, K. and Westerhoff, H.V. (1996). Acetaldehyde mediates the synchronization of sustained glycolytic oscillations in yeast-cell populations. Eur. J. Biochem. 235, 238-241.

298. Richard, P., Diderich, J.A., Bakker, B.M., Teusink, B., Van Dam, K. and Westerhoff, H.V. (1994). Yeast cells with a specific cellular make-up and an environment that removes acetaldehyde are prone to sustained glycolytic oscillations. FEBSLett. 341 , 223-226.

299. Richard, P., Teusink, B., Hemker, M.B., Van Dam, K. and Westerhoff, H.V. (1996). Sustained oscillations in free energy state and hexose phosphates in yeast. Yeast 12, 731-740.

300. Richard, P., Teusink, B., Westerhoff, H.V. and Van Dam, K. (1993). Around the growth phase transition 5. cerevisiads make-up favours sustained oscillations of intracellular metabolites. FEBS Lett. 318, 80-82.

301. Richard, P., Teusink, B., Westerhoff, H.V. and Van Dam, K. (1994). Synchronization of glycolytic oscillations in intact yeast cells, in: Schuster, S., Rigoulet, M., Ouhabi, R. and Mazat, J.P. (Eds), Modern Trends in Biothermokinetics, Plenum Press, London, 413-416.

302. Richards, O.C. and Rutter, WJ. (1961). Comparative properties of yeast and muscle aldolase. J. Biol. Chem. 236, 3185-3191.

303. Richter, O., Betz, A. and Giersch, C. (1975). The response of oscillating glycolysis to perturbations in the NADH/NAD system: a comparison between experiments and a computer model. BioSystemsl, 137-146.

304. Richter, P.H. and Ross, J. (1981). Concentration oscillations and efficiency: glycolysis. Science 211, 715-716.

305. Rizzi, M., Baltes, M., Theobald, U. and Reuss, M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I I . mathematical model. Biotech. Bioeng. 55, 592-608.

306. Rizzi, M., Theobald, U., Querfurth, E., Rohrhirsch, T., Baltes, M. and Reuss, M. (1996). In vivo investigation of glucose transport in Saccharomyces cerevisiae. Biotech. Bioeng. 49, 316-327.

307. Rohwer, J.M. (1997). Interaction of functional units in metabolism, Thesis University of Amsterdam,

308. Rohwer, J.M., Postma, P.W., Kholodenko, B.N. and Westerhoff, H.V. (1998). Implications of macromolecular crowding for signal transduction and metabolite channeling. Proc Natl Acad Sei U SA 95, 10547-52.

309. Rohwer, J.M., Schuster, S. and Westerhoff, H.V. (1996). How to recognize monofunctional units in a metabolic system. J. Theor. Biol. 179, 213-228.

310. Rose, M., Albig, W. and Entian, K.-D. (1991). Glucose repression in Saccharomyces cerevisiae is directly associated with hexose phosphorylation by hexokinases PI and PII. Eur. J. Biochem. 199, 511-518.

311. Rosenzweig, R.F. (1992). Regulation of fitness in yeast overexpressing glycolytic enzymes: parameters of growth and viability. Genet. Res, Camb. 59, 35-48.

312. Roustan, C, Brevet, A., Pradel, L.A. and Nguyen, V.T. (1973). Yeast 3-phosphoglycerate kinase. Interaction of enzyme with substrates studied by partial isotopic exchange and difference spectrophotometry. Eur. J. Biochem. 37, 248-55.

313. Ruyter, G.J.G., Postma, P.W. and Van Dam, K. (1991). Control of glucose metabolism by enzyme-IIGIc of the phosphoenolpyruvate-dependent phosphotransferase sysytem in Escherichia coli. J. Bacteriol. 173, 6184-6191.

314. Saez, MJ. and Lagunas, R. (1976). Determination of intermediary metabolites in yeast. Critical examination of the effect of sampling condition and recommendations for obtaining true levels. Mol. Cell. Biochem. 13, 73-78.

315. Sauro, H.M. and Fell, D.A. (1991). SCAMP: a metabolic simulator and control analysis program. Math/. Comp. Model/ing 15, 15-28.

206

Page 17: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

316. Saura, H.M., Small, J.R. and Fell, D.A. (1987). Metabolic control and its analysis: extension to the theory and matrix method. Eur. J. Biochem. 165, 215-221.

317. Savageau, M.A. (1971). Concepts relating the behavior of biochemical systems to their underlying molecular properties. Arch. Biochem. Biophys. 145, 612-621.

318. Savageau, M.A. (1976). Biochemical Systems Analysis: a study of function and design in molecular biology, Addison-Wesley, Reading, Massachusetts

319. Schaaff, I., Heinisch, J. and Zimmermann, F.K. (1989). Overproduction of glycolytic enzymes in yeast. Yeast 5, 285-290.

320. Scheek, R.M., Kalkman, M.L., Berden, J.A. and Slater, E.C. (1980). Subunit interactions in glyceraldehyde-3-phosphate dehydrogenases. Their involvement in nucleotide binding and cooperativity. Biochim Biophys Acta 613, 275-91.

321. Schena, M. and Yamamoto, K.R. (1988). Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science 241, 965967.

322. Schierbeck and Larsson-Raznikiewicz (1979). Biochim. Biophys. Acta 568, 195-204. 323. Schlosser, P.M., Riedy, G. and Bailey, J.E. (1994). Ethanol production in Baker's yeast: application

of experimental perturbation techniques for model development and resultant changes in flue control analysis. Biotechnol. Prog. 10,141-154.

324. Schlosser, P.M., Riedy, G. and Bailey, J.E. (1994). Ethanol production in Baker's yeast: application of experimental perturbation techniques for model developments and resultant changes in flux control analysis. Biotech. Prog. 10,141-154.

325. Schmidt, P.P., Travers, F. and Barman, T. (1995). Transient and equilibrium kinetic studies on yeast 3-phosphoglycerate kinase . Evidence that an intermediate containing 1,3-bisphosphoglycerate accumulates in the steady state. Biochemistry34, 824-832.

326. Schmitt, H.D. and Zimmermann, F.K. (1982). Genetic analysis of the pyruvate decarboxylase reaction in yeast glycolysis. J. Bacteriol. 151,1146-1152.

327. Schork, S.M., Thumm, M. and Wolf, D.H. (1995). Catabolite inactivation of fructose-1,6-bisphosphatase of Saccharomyces cerevisiae. Degradation occurs via the ubiquitin pathway. J. Biol. Chem. 270, 26446-50.

328. Schuddemat, J., Van den Broek, P.J.A. and Van Stevenick, 1 (1988). The influence of ATP on sugar uptake mediated by the constitutive glucose carrier of Saccharomyces cerevisiae. Biochim. Biophys. Acta 937, 81-87.

329. Schulze, U., Liden, G., Nielsen, 1 and Villadsen, J. (1996). Physiological effects of nitrogen starvation in an anaerobic batch culture of Saccharomyces cerevisiae. Microbiol. 142, 2299-310.

330. Schuster, R. and Holzhuetter, H.-G. (1995). Use of mathematical models for predicting the metabolic effect of large-scale enzyme activity alterations. Eur. J. Biochem. 229, 403-418.

331. Schuster, S. and Heinrich, R. (1992). The definitions of metabolic control analysis revisited. BioSystems TJ, 1-15.

332. Schuster, S., Kahn, D. and Westerhoff, H.V. (1993). Modular analysis of the control of complex metabolic pathways. Biophys. Chem. 48,1-17.

333. Scopes, R.K. (1978). The steady-state kinetics of yeast phosphoglycerate kinase. Eur. J. Biochem. 85, 503-516.

334. Sel'kov, E.E. (1975). Stabilization of energy charge, generation of oscillation and multiple steady states in energy metabolism as a result of purely stoichiometric regulation. Eur. J. Biochem. 59, 151-157.

335. Serrano, R. (1977). Energy requirements for maltose transport in yeast. Eur. J. Biochem. 80, 97-102.

336. Singh, R. and Green, M.R. (1993). Sequence-specific binding of transfer RNA by glyceraldehyde-3-phosphate dehydrogenase. Science 259, 365-8.

REFERENCES 207

Page 18: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

337. Small, IR . (1993). Flux control coefficients determined by inhibitor titration: the design and analysis of experiments to minimize errors. Biochem. J. 296, 423-433.

338. Small, J.R. and Fell, D.A. (1989). The matrix method of metabolic control analysis: Its validity for complex pathway structures. J. Theor. Biol. 136, 181-197.

339. Small, J.R. and Kacser, H. (1993). Responses of metabolic systems to large changes in enzyme activities and effectors. 1. The linear treatment of unbranched systems. Eur. J. Biol. 226, 649-657.

340. Small, J.R. and Kacser, H. (1993). Responses of metabolic systems to large changes in enzyme-activities and effectors. 2. The linear treatment of branched pathways and metabolite concentrations - assesment of the general nonlinear case. Eur. J. Biochem. 213, 625-640.

341. Small, J.R. and Kacser, H. (1994). A method for increasing the concentration of a specific internal metabolite in steady-state systems. Eur. J. Biochem. 226, 649-657.

342. Smits, H.P. (1996). Mechanism and regulation of glucose transport in Saccgaromyces cerevisiae, Thesis Universiteit van Amsterdam, Amsterdam

343. Smits, H.P., Smits, G.J., Postma, P.W., Walsh, M.C. and Van Dam, K. (1996). High-affinity glucose uptake in Saccharomyces cerevisiae is not dependent on the presence of glucose-phosphorylating enzymes. Yeast 12, 438-447.

344. Smolen, P. (1995). A model for glycolytic oscillations based on skeletal muscle phosphofructokinase kinetics. J. Theor. Biol. 174, 137-148.

345. Snoep, J.L., Jensen, P.R., Groeneveld, P., Molenaar, D., Kholodenko, B.N. and Westerhoff, H.V. (1994). How to determine control of growth rate in a chemostat. Using metabolic control analysis to resolve the paradox. Biochem. Mol. Biol. Int. 33, 1023-1032.

346. Snoep, J.L., Yomano, L.P., Westerhoff, H.V. and Ingram, L.O. (1995). Protein burden in Zymomonas-mobilis -negative flux and growth control due to overexpression of glycolytic enzymes. Microbiol. 141, 2329-2337.

347. Spink, C. and Wadsoe, I. (1976). Calorimetry as an analytical tool in biochemistry and biology. Meth. Biochem. Anal. 23, 1-159.

348. Srere, P.A. (1987). Complexes of sequential metabolic enzymes. Ann. Rev. Biochem. 56, 89-124. 349. Stein, W.D. (1986). Transport and diffusion across cell membranes, Academic Press, London 350. Stryer (1988). Biochemistry, Freeman, New York 351. Stucki, J.W. and Somogyi, R. (1994). A dialoque on Ca++ oscillations: An attempt to understand

the essentials of mechanisms leading to hormone-induced intracellular Ca++ oscillations in various kinds of cell on a theoretical level. Biochim. Biophys. Acta 1183, 453-472.

352. Suurkuusk, J. and Wadsoe, I. (1982). A multichannel microcalorimetry system. Chemica Scripta 20, 155-163.

353. Tang, Y. and Othmer, H.G. (1995). Frequency encoding in excitable systems with applications to calcium oscillations. Proc. Natl. Acad. Sei. USA 92, 7869-7873.

354. Ter Kuyle, B.H. and Opperdoes, F.R. (1991). Glucose-uptake by Tryponosoma brucei - rate-limiting steps in glycolysis and regulation of the glycolytic flux. J. Biol. Chem. 266, 857-862.

355. Termonia, Y. and Ross, J. (1981). Oscillations and control features in glycolysis: numerical analysis of a comprehensive model. Proc. Natl. Acad. Sei. USA 78, 2952-2956.

356. Teusink, B., Baganz, F., Westerhoff, H.V. and Oliver, S.G. (1998). Metabolic Control Analysis as a tool in the elucidation of the function of novel genes, in: Tuite, M.F. and Brown, A.J.P. (Eds), Methods in Microbiol., Academic Press, London, 297-336.

357. Teusink, B., Walsh, M.C., Van Dam, K., Gustafsson, L. and Westerhoff, H.V. (1996). The extent to which the glycolytic flux in Saccharomyces cerevisiae is controlled by the glucose transport system varies with the extracellular glucose concentration, in: Westerhoff, H.V., Snoep, J.L., Sluse, F.E., Wijker, J.E. and Kholodenko, B.N. (Eds), BioThermoKinetics of the living cell, BioThermoKinetics Press, Amsterdam, 417-421.

208

Page 19: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

358. Tewari, Y.B., Steckler, D.K. and R.N., G. (1988). Thermodynamics of hydrolysis of sugar phosphates. J. Biol. Chem. 263, 3670-5775.

359. Tewari, Y.B., Steckler, D.K. and R.N., G. (1988). Thermodynamics of isomerization reactions involving sugar phosphates. J. Biol. Chem. 263, 3664-3669.

360. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M. and Reuss, M. (1997). In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae. I. experimental observations. Biotech. Bioeng. 55, 305-316.

361. Thevelein, J.M. (1992). The Ras-adenylate cyclase pathway and cell-cycle control in Saccharomyces cerevisiae. Ant. van Leeuwenhoek J. Microbiol. 62, 109-130.

362. Thevelein, J.M. (1994). Signal transduction in yeast. Yeast 10,1753-1790. 363. Thevelein, J.M. and Hohmann, S. (1995). Trehalose synthase: guard to the gate of glycolysis in

yeast? Trends Biochem. Sei. 20, 3-10. 364. Tompa, P., Bar, J. and Batke, J. (1986). Interaction of enzymes involved in triosephosphate

metabolism. Comparison of yeast and rabbit muscle cytoplasmic systems. Eur. J. Biochem. 159, 117-124.

365. Tornheim, K. (1979). Oscillations of the glycolytic pathway and the purine nucleotide cycle. J. Theor. Biol., 491-541.

366. Tornheim, K., Andres, V. and Shultz, V. (1991). Modulation by citrate of glycolytic oscillations in skeletal muscle extracts. J. Biol. Chem. 266, 15675-15678.

367. Van Aelst, L, Hohmann, S., Bulaya, B., de Koning, W., Sierkstra, L, Neves, M.J., Luvten, K., Alijo, R., Ramos, J. and Coccetti, P. (1993). Molecular cloning of a gene involved in glucose sensing in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 8, 927-943.

368. Van Aelst, L, Hohmann, S., Zimmermann, F.K., Jans, A.W. and Thevelein, J.M. (1991). A yeast homologue of the bovine lens fibre MIP gene family complements the growth defect of a Saccharomyce cerevisiae mutant on fermentable sugars but not its defect in glucose-induced RAS-mediated cAMP signalling. EMBOJ. 10, 2095-2104.

369. Van Dam, K., Van der Vlag, J., Kholodenko, B.N. and Westerhoff, H.V. (1993). The sum of the flux control coefficients of all enzymes on the flux through a group-transfer pathway can be as high as two. Eur. J. biochem. 212, 791-799.

370. Van der Poll, K.W., Kerkenaar, A. and Schamhart, D.H. (1974). fdpl. J. Bacteriol. 117, 965-970. 371. Van der Vlag, J., Van 't Hof, R., Van Dam, K. and Postma, P.W. (1995). Control of glucose

metabolism by the enzymes of the glucose phosphotransferase system in Salmonella typhimurium. Eur. J. Biochem. 230,170-182.

372. Van Dijken, J.P. and Scheffers, W.A. (1986). Redox balances in the metabolism of sugar by yeasts. FEMS Microbiol. Rev. 32, 199-224.

373. Van Schaftingen, E. (1987). Fructose-2,6-bisphosphate. Adv. Enzymol. Relat. Areas Mol. Biol. 59, 315-395.

374. Van Schaftingen, E. and Hers, H.G. (1981). Inhibition of fructose 1,6-bisphosphatase by fructose 2,6-bisphosphate. Proc. Natl. Acad. Sei. USA 78, 2861-2863.

375. Van Schaftingen, E., Hue, L. and Hers, H.G. (1980). F26bP. Biochem. J. 192, 897-901. 376. Van Steveninck, J. (1969). The mechanism of transmembrane glucose transport in yeast:

evidence for phosphorylation-associated transport. Arch. Biochem. Biophys. 130, 244-252. 377. Vertessy, B.G., Orosz, F. and Ovadi, J. (1991). Modulation of the interaction between aldolase

and glycerol-phosphate dehydrogenase by fructose phosphates. Biochim. Biophys. Acta 1078, 236-242.

378. Viola, R.E., Raushel, F.M., Rendina, A.R. and Cleland, W.W. (1982). Substrate synergism and the kinetic mechanism of yeast hexokinase. Biochemistry 21, 1295-1302.

REFERENCES 2 0 9

Page 20: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

379. Von Stockar, U., Gustafsson, L, Larsson, C, Marison, I., Tissot, P. and Gnaiger, E. (1993). Thermodynamic considerations in constructing energy balances for cellular growth. Biochim. Biophys. Acta 1183, 221-240.

380. Vuorio, O.E., Kalkkinen, N. and Londesborough, J. (1993). Cloning of two related genes encoding the 56-kDa and 123-kDa subunits of trehalose synthase from the yeast Saccharomyces cerevisiae. Eur. J. Biochem. 216, 849-861.

381. Wallace, P.G., Pedler, S.M., Wallace, J.C. and Berry, M.N. (1994). A method for the detection of the cellular phosphorylation potential and glycolytic intermediates in yeast. Anal. Biochem. 222, 404-408.

382. Walsh, M.C., Schölte, M., Valkier, J., Smits, H.P. and Van Dam, K. (1996). Glucose sensing and signalling properties in Saccharomyces cerevisiae require the presence of at least two members of the glucose transporter family. J. Bacterid. 178, 2593-2597.

383. Walsh, M.C., Smits, H.P., Schölte, M. and Van Dam, K. (1994). The affinity of glucose transport in Saccharomyces cerevisiae is modulated during growth on glucose. J. Bacterid. 176, 953-958.

384. Walsh, M.C., Smits, H.P. and Van Dam, K. (1994). Respiratory inhibitors affect incorporation of glucose into Saccharomyces cerevisiae cells, but not the activity of glucose transport. Yeast 10, 1553-1558.

385. Wang, H. and Iynedjian, P.B. (1997). Acute glucose intolerance in insulinoma cells with unbalanced overexpression of glucokinase. J. Biol. Chem. 272, 25731-25736.

386. Weibel, K.E., Mor, J.R. and Fiechter, A. (1974). Rapid sampling of yeast cells and automated assays of adenylate, citrate, pyruvate and glucose-6-phosphate pools. Anal. Biochem. 58, 208-216.

387. Welch, P. and Scopes, R.K. (1985). Studies on cell-free metabolism: ethanol production by a yeast glycolytic system reconstituted from purified enzymes. J. Biotechno/. 2, 257-273.

388. Westerhoff, H.V. (1995). Subtlety in control. Metabolic pathway engineering taken seriously. Trends Biotechno/. 13, 242-244.

389. Westerhoff, H.V., Aon, M.A., Van Dam, K., Cortassa, S., Kahn, D. and Van Workum, M. (1990). Dynamical and hierarchical coupling. Biochim. Biophys. Acta 1018, 142-146.

390. Westerhoff, H.V. and Chen, Y. (1984). How do enzyme activities control metabolite concentrations? Eur. J. Biochem. 142, 425-430.

391. Westerhoff, H.V., Hellingwerf, K.J. and van Dam, K. (1983). Thermodynamic efficiency of microbial growth is low but optimal for maximal growth rate. Proc Natl Acad Sei USA 80, 305-309.

392. Westerhoff, H.V., Hofmeyr, J.H. and Kholodenko, B.N. (1994). Getting to the inside using Metabolic Control Analysis. Biophys. Chem. 50, 273-283.

393. Westerhoff, H.V. and Kahn, D. (1993). Control involving metabolism and gene expression: the square-matrix method for modular decomposition. Biotheor. Acta 4 1 , 75-83.

394. Westerhoff, H.V. and Kell, D.B. (1987). Matrix method for determining steps most rate-limiting to metabolic fluxes in biothechnological processes. Biotech. Bioeng. 30, 101-107.

395. Westerhoff, H.V. and Keil, D.B. (1996). What biotechnologists knew all along...? J. Theor. Biol. 182,411-420.

396. Westerhoff, H.V. and Van Dam, K. (1987). Thermodynamics and control of biological free-energy transduction, Elsevier, Amsterdam

397. Westerhoff, H.V., Van Rotterdam, B.J., Van Heeswijk, W.C., Somsen, O. and Kholodenko, B.N. (1998). BTK traditions and perspectives: complex biothermokinetics and control analysis, in: Larsson, C, Pahlman, I.-L. and Gustafsson, L. (Eds), BiothermoKinetics in the post genomic era, Chalmers Reproservice, Gothenburg, 1-6.

398. Westerhoff, H.V. and Welch, G.R. (1992). Enzyme organization and the direction of metabolic flux: physicochemical considerations. Curr. Top. Cell Reg. 33, 361-390.

210

Page 21: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

399. White, M.F., Fothergill-Gilmore, LA., Kelly, S.M. and Price, N.C. (1993). Dissociation of the tertameric PGM from yeast by a mutation in the subunit contact region. Biochem. J. 295, 743-748.

400. Wieker, HJ. and Hess, B. (1971). Allosteric interactions of yeast pyruvate kinase as a function of pH. Biochemistry10, 1243-8.

401. Wilhoit, R.C. (1969). Selected values of thermodynamic properties, in: Brown,. H.D. (Ed), Biochemical Microcalorimetry, Academic Press, New York,.

402. Wills, C. (1976). Production of yeast alcohol dehydrogenase isoenzymes by selection. Nature 261, 26-29.

403. Winderickx, J., de Winde, J.H., Crauwels, M., Hino, A., Hohmann, S., Van Dijck, P. and Thevelein, J.M. (1996). Regulation of genes encoding subunits of the trehalose synthase complex in Saccharomyces cerevisiae: novel variations of STRE-mediated transcription control? Mol. Gen. Genet. 252, 470-482.

404. Winfree, A.K. (1980). The geometry of biological time, Springer Verlag, New York 405. Wolf, J. and Heinrich, R. (1997). Dynamics of two-component biochemical systems in interacting

cells; synchronization and desynchronization of oscillations and multiple steady states. BioSystems43, 1-24.

406. Wratten, C.C. and Cleland, W.W. (1963). Product inhibition studies on yeast and liver alcohol dehydrogenases. Biochemistry!, 935-941.

407. Wright, B.E. and Albe, K.R. (1994). Carbohydrate metabolism in Dictyostelium discoideum: I. Model construction. J. Theor. Biol. 169, 231-41.

408. Wright, B.E., Butler, M.H. and Albe, K.R. (1992). Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction. J. Biol. Chem. 267, 3101-5.

409. Wurster, B. and Scneider, F. (1970). Kinetik der Glucosephosphate-Isomerase (EC 5.3.1.9) aus Hefe und ihre Anwendung auf Flussberechnungen durch die Gaerungkette anaeroben Hefezelle. Hoppe-Seyler's Z. Physiol. Chem. 351, S. 961-966.

410. Yang, S.T. and Deal, 1 , W.C. (1969). Metabolie control and structure of glycolytic enzymes. VI. Competitive inhibition of yeast glyceraldehyde 3-phosphate dehydrogenase by cyclic adenosine monophosphate, adenosine triphosphate, and other adenine-containing compounds. Biochemistry 8, 2806-2813.

411. Yano, K. (1997). Galactose dependent reversible interaction of Gal3p with Gal80p in the induction pathway of Gal4p-activated genes of Saccharomyces cerevisiae. Proc. Natl. Acad. Sei. USA 94, 1721-1726.

412. Yap, W.M.G.J., Van Verseveld, H., J.L., S., Postma, P.W. and Van Dam, K. (1996). Enzyme IICB_Glc of the phosphoenolpyruvate: glucose phosphotransferase system controls the growth rate of Escherichia coli at fixed, low glucose concentrations as determined using glucose-limited chemostats, in: Westerhoff, H.V., Snoep, J.L., Wijker, D.E., Sluse, F.E. and Kholodenko, B.N. (Eds), BioThermoKinetics of'the living cell, BioThermoKinetics Press, Amsterdam, 428-432.

413. Yates, W.F. and Heider, R.L. (1952). The dissociation of lactonitril in aqueous solution. J. Am. Chem. Soc. 74, 4153-4155.

414. Yun, S.L., Aust, A.E. and Suelter, C.H. (1976). A revised preparation of yeast {Saccharomyces cerevisiae) pyruvate kinase. J. Biol. Chem. 251,124-8.

415. Zottola, R.J., Cloherty, E.K., Coderre, P.E., Hansen, A., Hebert, D.N. and Carruthers, A. (1995). Glucose transporter function is controlled by transporter oligomeric structure. A single, intramolecular disulfide promotes GLUTI tetramerization. Biochemistry'34, 9734-9747.

REFERENCES 2 1 1

Page 22: UvA-DARE (Digital Academic Repository) Exposing a complex ...44. BolesE.(1996) . Redundan,t regulatory mechanisms enable yeast cells without fructose 2,6-bisphosphate to sustain glycolytic

212