v diagram por inverter control

59
Design, Prototyping and Test of Power Electronics + - m v PWM + - V sup i d Javier Gutierrez Business Development Manager

Upload: javier-gutierrez

Post on 25-Jun-2015

1.101 views

Category:

Technology


5 download

DESCRIPTION

This presentation show National instruments platform to design, prototype and validate algorithms and solutions for inverter control used in hybrid vehicles, wind turbines, etc

TRANSCRIPT

Page 1: V diagram por inverter control

Design, Prototyping and Test of Power Electronics

+-

+

-

R Li

mv

PWM+- Vsup

id

Javier Gutierrez Business Development Manager

Page 2: V diagram por inverter control

Typical Application

GRID  DC  

DC  

AC  

Motor/Generator  

AC  

Inverter/Converter/Drive  Power  System  

Control    Systems  

Transformer   Converter/Rec<fier   Inverter/Drive  

Ba?ery  Stack,  Solar  Array  

DC  DC   Management  

System  

Page 3: V diagram por inverter control

NI Power Electronics Tool Chain

VA (AC)

Power Inverter Output Filter Stage

DC-

DC+

VB (AC)

VC (AC)

DCPOWER

BUS M/GM/G

3-Phase AC SystemEnergy Source

NI sbRIO-9606

NI GPIC Mezzanine Card

Test Cells Design

Deploy

Prototype HIL Testing

Page 4: V diagram por inverter control

Business Benefits

Reduce your engineering cost, risk and development time

Focus on your core competency and value (not DSP board design)

Incorporate the latest technologies while reusing software investments

Ship fully tested, supported commercial embedded systems

Empower your control experts to do embedded development

Profitability

Product differentiation

On-time delivery

Product quality

Development efficiency

Page 5: V diagram por inverter control

Technical Benefits •  LabVIEW development tool chain

–  Deployment-ready commercial embedded system for high-volume grid-tied inverter and motor/generator drive applications

–  High level graphical system design platform enables rapid development of differentiated, high performance products

–  Complete, industry proven LabVIEW tool chain and drivers for real-time OS, reconfigurable FPGA, and inverter control I/O board

–  Available IP block libraries, reference design examples and integration with common simulation environments

•  FPGA-based control system –  FPGA-based system for silicon level reconfigurability, lifetime

field upgradability, IP protection and true parallel execution in dedicated hardware with 25 nanosecond timing resolution

–  Xilinx Spartan-6 LX45 FPGA with 22.6 GMACs DSP performance for advanced control, custom PWM, protection interlocks, inter-board communication protocols, GPS timestamping, …

LabVIEW FPGA graphical development*

* NI Power Electronics Library included with NI SoftMotion Module 2011 f1 or higher

Page 6: V diagram por inverter control

Technical Benefits •  Measurement and signal processing capabilities

–  DMA data scope capabilities for high speed waveform capture and transient event recording of physical I/O and internal register signals

–  Real-time power analysis and transient event recording –  400 MHz PowerPC processor with VxWorks OS for hard real-

time multi-threaded floating point signal processing, networking, data logging, …

•  Flexibility –  Expandable for synchronized control of large, multilevel

inverters –  Software-defined device– install once, upgrade remotely –  Smart grid utility communication protocol support (DNP3, IEC

60870, IEC 61850, Modbus, …), remote client dashboards, SCADA systems and remote firmware upgrade tools

–  Options for depopulation, current AI, 16-bit calibrated AI, real-time clock battery, conformal coating, top/bottom/right-angle connectors

LabVIEW Real-Time graphical user interface

Page 7: V diagram por inverter control

Vision  

Industrial  buses,  communica<on  

3rd-­‐Party  Products  

Mo<on  

HMIs  

RIO  Pla(orm  

Suppor/ng  Products  &  Services  

Services  and  Training  

WSN  

Alliance  &  Design  Partners  

     IP  for  control,    

Analysis,  comm,  …  

NI Embedded Control & Monitoring Platform

LabVIEW LabVIEW Real-Time

LabVIEW FPGA

Proc. FPGA I/O I/O I/O

Page 8: V diagram por inverter control

CompactRIO  &  Single-­‐Board  RIO  

NI RIO Technology

PXI,PC  RIO  (R  Series,  FlexRIO)  

Value  

Value   Ultra  Rugged   Performance   High  Performance  

LabVIEW    

LabVIEW  Real-­‐Time  LabVIEW  FPGA  

Processor   FPGA  I/O  I/O  

Custom  I/O  

I/O  

Application IP  

Signal  Processing  IP  Control  IP  

Third-­‐Party  IP  

Middleware    

Driver  APIs  Device  Drivers  I/O  Drivers  

Page 9: V diagram por inverter control

Real-Time BLDC/PMSM Motor Simulation

Controller

Requires solving complex equations in microseconds

Page 10: V diagram por inverter control

NI Power Electronics Tool Chain

Test Cells Design

Deploy

Prototype HIL Testing

Page 11: V diagram por inverter control

11

LabVIEW Tools for Signal Processing, Analysis, and Control

Advanced Signal Processing

Digital Filter Design Control Design and Simulation Module

•  Wavelets • Time-series analysis

(independent component analysis, principal component analysis, model-based spectral analysis, … )

• Time-frequency analysis (Gabor, STFT, … )

•  FIR/IIR filter design/analysis, quantization

•  Fixed-point modeling, fixed-point simulation, code generation (FPGA /ANSI C), …

• Model construction, conversion, and reduction

• Time and frequency response • Dynamic characteristics • Classical control design

•  root locus, PID, lead/lag ... • State-space control/estimation

• LQR, LQG, pole placement, Kalman filter ...

Page 12: V diagram por inverter control

LabVIEW FPGA Power Electronics IP

Control Signal Processing

Output

Input

Motion Trajectory Splining

Digital Filters

Space Vector PWM

Digital Logic

Encoder I/F

Hall I/F

Voltage, Current Triggers

Protection Interlocks

State Space

Fixed Point Math

DMA Data Streaming

Park, Clarke Transforms

1,3-Phase PLL

Signal Generators

FFT, Resampling, Zero Crossing

DC, RMS, Period Measurements

FPGA-to-FPGA Communication, Synchronization

Multichannel PID

CORDIC Trig Functions

Matrix*Vector Multiply

Loop Structures

Look Up Table

H-Bridge Logic

JMAG RT Simulator

ni.com/ipnet

IEC Power Quality, Phasor Measurements

Page 13: V diagram por inverter control

NI Power Electronics IP Library* •  New officially supported IP blocks for power electronics control, including Trapezoidal and Space

Vector commutation for three phase inverters and PMSM/BLDC motor/generators!

Typical Field Oriented Control Architecture for PMSM Motor/Generator

* Included with NI SoftMotion Module 2011 f1 or higher

Page 14: V diagram por inverter control

NI Power Electronics IP Library

•  Complete reference design examples for Field Oriented (Space Vector) and Trapezoidal Commutation •  Plug and play support for the NI 9502 BLDC/PMSM drive module and AKM brushless servo motors.

Page 15: V diagram por inverter control

15

Power Electronics - Design

Page 16: V diagram por inverter control

NI Power Electronics Tool Chain

Test Cells Design

Deploy

Prototype HIL Testing

Page 17: V diagram por inverter control

NI  CompactRIO  FPGA-­‐based  Pla(orm    

•   Reconfigurable  FPGA  for  high-­‐speed  and  custom  I/O  <ming,  triggering,  and  control  

•   Real-­‐/me  processor  for  reliable  measurement,  analysis,  connec<vity,  and  control  •   I/O  modules  with  built-­‐in  signal  condi<oning  for  connec<on  to  sensors/actuators  

Real-Time Processor

FPGA

Environmental  •   -­‐40  to  70  °C  temperature  range  •   50g  shock,  5g  vibra<on  

Low  Power  Consump/on  •   9  to  35  VDC  power,  7-­‐10  W  typical  

Page 18: V diagram por inverter control

Small Size, Low Power 21 x 9 cm. (8.2 x 3.7 in.) 19-30 VDC power, (7-10 W typ.)

NI  Single-­‐Board  RIO  Embedded  Control  &  Acquisi/on  Real-Time Processor 400 MHz processor for floating-point control, analysis, and logging

Reconfigurable FPGA Customized timing and processing of I/O

Expansion I/O Connect up to three C Series modules for additional I/O (strain, TC, comm., motion, etc…)

Onboard Analog and Digital I/O 110 DIO, Up to 32-ch AI, up to 4-ch AO, Up to 32-ch of 24 V DIO

Networking/Peripherals 10/100 Ethernet port RS232 Serial port

LabVIEW •  Graphical software for rapid development •  Program processor, FPGA and I/O with one tool •  Integrate existing C/VHDL

Page 19: V diagram por inverter control

LabVIEW FPGA vs VHDL

Counter Analog I/O Streaming

66 Pages ~4000 lines

Page 20: V diagram por inverter control

NI  RIO  Hardware  Plaaorm  

Processor  Performance     Up  to  400MHz   Up  to  800  MHz   Up  to  1.33  GHz  Dual-­‐Core   Up  to  2.26  GHz  Quad-­‐Core  

FPGA  Performance   Up  to  43,661  logic  cells,                    up  to  58  mul<pliers  

Up  to  110,592  logic  cells,                    up  to  64  mul<pliers  

Up  to  147,443  logic  cells,                        up  to  180  mul<pliers  

Up  to  94,208  logic  cells,                                up  to  640  mul<pliers  

Analog  I/O  Speed   Up  to  1  MS/s   Up  to  1  MS/s   Up  to  1  MS/s   Up  to  250  MS/s  

Opera<ng  System   Real-­‐Time  OS   Real-­‐Time  OS   Window/Real-­‐Time  OS   Windows/Real-­‐Time  OS  

Ruggedness   -­‐20  to  55°  C*,                        passively  cooled  

-­‐40  to  70°  C,                      passively  cooled  

0  to  55°  C,                                  passively  cooled    

0  to  55°  C,                                              ac<vely  cooled  

Size   Starts  at  17.8x9.3x8.7  cm.3*     Starts  at  18x9.3x8.7cm.3     Starts  at  40.4x13.4x8.7  cm.3     Starts  at  25.7x21.4x18.4  cm.3    

Target  Applica<on  Examples  

•  Smart  grid  analyzer  •  Environmental  Monitoring  

•  Mobile  robo<cs  •  Medical  diagnos<cs  &  

device  control  •  Special  Purpose  Machines  

(SPM)  •  Chemical  Process  Control  

•  Mo<on  control  

•  In-­‐vehicle  logging  •  Machine  Condi<on  

Monitoring  •  Industrial  Machine  

Control  •  Oil  &  Gas  Monitoring  

•  Power  Monitoring  •  Structural  Monitoring  •  Automated  Welding  

Control  

•  Machine  Vision  •  Power  Distribu<on/Control  

•  ECU  Prototyping  •  Analy<cal  Instruments  

•  Turbine  Control  •  Industrial  Robo<cs  

•  Rapid  Control  Prototyping  •  Big  physics  &  research  

•  Hardware-­‐in-­‐the-­‐Loop  (HIL)  Test  

•  Medical  Imaging  •  High-­‐end  Simula<on  •  Protocol  Aware  Test  

•  Wireless  Test  •  Soiware  Defined  Radio  

•  Signal  Intelligence  

High  Performance  Performance  Ultra  Rugged  

Value  

Value  

*Single-­‐Board  RIO  versions  are  available  that  operate  from  -­‐40  to  85°  C  and  start  at  10.3x9.7x2.4  cm3    

CompactRIO  &  Single-­‐Board  RIO   PXI/PC  RIO  

Page 21: V diagram por inverter control

21

High-Performance Multicore CompactRIO

CPU Expansion Module

Spartan-6 LX150 FPGA

Dual-Core 1.33GHz Processor

USB & Serial Connectivity

VGA Graphics

MXI-Express for C Series Expansion

Gigabit Ethernet 8 Slots of C

Series IO

2GB DDR3 RAM

32GB cFast Storage

Specifications for cRIO-9082

Page 22: V diagram por inverter control

22

Rapid Control Prototyping (RCP)

•  Recommended Software §  NI Power Electronics IP Library

(included with NI SoftMotion 2011 f1) §  NI Power Measurement Suite

(pioneer program) §  NI MultiSim (co-simulation pioneer

program) §  NI Veristand (for control prototyping

and real-time HIL simulation) §  NI Simulation Interface Toolkit

High-Performance Multicore CompactRIO

Page 23: V diagram por inverter control

23

RPC Demo

Controller

Page 24: V diagram por inverter control

24

Field Oriented Motor Control: Selex-Galileo •  Field-Orientated Control of a Three-Phase

Brushless Permanent Magnet Motor §  Rapid development of next generation motor control

systems §  Increases peak power to squeeze extra performance

from existing motors §  As FPGAs increase in capacity, the role evolves from

motor control to full servo system control

•  Key Enabling Technologies §  NI LabVIEW FPGA, NI PXI Reconfigurable I/O

hardware “Using the NI PXI-7831R FPGA, we have demonstrated a new technology to our customer with minimal time and equipment investment.“ - Brian Mann, Selex-Galileo (formerly BAE) case study

Page 25: V diagram por inverter control

NI Power Electronics Tool Chain

Test Cells Design

Deploy

Prototype HIL Testing

Page 26: V diagram por inverter control

NI Single-Board RIO General Purpose Inverter Controller (GPIC)

VA (AC)

CONTROL SYSTEM

Power Inverter Output Filter Stage

DC-

DC+

VB (AC)

VC (AC)

DCPOWER

BUS M/GM/G

3-Phase AC SystemEnergy Source

Page 27: V diagram por inverter control

Small Size, Low Power 10.3 x 9.6 cm (4 x 3.8 in.) 9-30 VDC power

NI  Single-­‐Board  RIO  960x  

Real-Time Processor 400 MHz PowerPC for floating-point control, analysis, logging and network communication

Reconfigurable FPGA Silicon level reconfigurability, lifetime upgradability, true parallel execution in dedicated hardware

Networking Peripherals Ethernet, RS-232, CAN, USB Modbus, DNP3, HTTPS and SSL support

LabVIEW Tool Chain •  Rapid commercialization of differentiated, high performance products •  Complete, industry proven graphical system design tools •  Available IP block libraries and reference design examples •  Fully integrated support for processor, FPGA , I/O and networking in single language •  Integrate existing C, VHDL, simulation or text-based math code

ni.com/singleboard

3.8”

4”

RIO Mezzanine Connector (RMC) High density, high bandwidth connector gives direct access to FPGA and processor I/O

Page 28: V diagram por inverter control

Mechanical Design

•  Sturdy 100-mil header connectors with high retention force (non-latching)

•  Support for bottom, top and right-angle connector orientations

•  Mating board options: –  Ribbon cable to gate drive board –  Connector interface PCB with custom

cable harness –  Signal conditioning PCB with custom

cable harness –  Fiber optic interface PCB –  Directly mate to gate drive board

sbRIO-9606 GPIC Mezzanine Card

7.080 [179.83]

4.700 [119.38]

1.747 [44.37]

SS AI GP AI, AO

GP DI

GP DO Contactor DO

HS DO Expansion I/O

ENET, RS-232, CAN, USB

Top Mount Connectors

Page 29: V diagram por inverter control

Typical Stack 1. NI Single-Board RIO sbRIO-9606 2. NI GPIC RIO Mezzanine Card (bottom orientation connectors) 3. Custom Connector I/F PCB (not provided by NI)

To SEMIKRON SKiiP 3

To Application Specific I/O

Page 30: V diagram por inverter control

Mechanical Design High Speed Digital Output (Gate Drive) (20-pin 100 mil header)

•  12-ch HS DO (18-pins, 6 GND) •  1 VPWR_IN (1-pin) •  1-pin reserved

General Purpose and Contactor Digital Output (40-pin 100 mil header)

•  24-ch GP DO (28-pins, 4 GND) •  4-ch Contactor DO (8-pins, 4 GND) •  4-pins reserved

FPGA and Processor Expansion I/O (50-pin 100 mil header)

•  16-ch +3.3 V FPGA IO (24-pins, 8 GND) •  +3.3 V FPGAPWR_IN (1-pin) •  +5 V SYSPWR_OUT (1-pin) •  24-pins reserved

General Purpose Digital Input (26-pin 100 mil header)

•  24-ch GP DI (26-pins, 2 VPWR_IN)

High Speed Simultaneous AI, General Purpose Scanned AI , General Purpose AO (60-pin 100 mil header)

•  16-ch Differential SS AI (32 pins) •  8-ch Scanned GP AI (9-pins,1 COM) •  8-ch GP AO (9-pins, 1 COM) •  10-pins reserved

SS AI GP AI, AO

GP DI

GP DO Contactor DO

HS DO Expansion I/O

ENET, RS-232, CAN, USB

sbRIO-9606 GPIC Mezzanine Card

7.080 [179.83]

4.700 [119.38]

1.747 [44.37]

Bottom Mount Connectors

Page 31: V diagram por inverter control

MPC5125

Processor

Spartan  6

FPGA

Enet

CAN

USB

SB-­‐RIO  9606

Inverter  Controller  RMC

Gate  Drive  High  Speed   12  ch.  DO Ext.  PS

Digital  I/O

24  sourcing  DI 24  sinking  DO  4  ch.  relay  DO Ext.  PS

Analog  I/O  16  Ch.  ±10V  SS  AI  8  Ch.  0-­‐5  V  Mux  AI  8  Ch.  0-­‐5  V  AO

Semikron

 SKiiP

or  SKAII

Driver DC  In

U

V

W

AC  Out

9-­‐30  V

5-­‐24  V 5-­‐24  V

Other  systems

HMI

Ba?ery

or  Vehicle

Addi<onal  I/O:  Current  Sensors

Voltage  Sensors

Temperature  Sensors

Status  Signals

Control  Signals

CAN RS-­‐232

Typical Configuration

Expansion  I/O  16  Ch.  3.3  V  DIO  

Page 32: V diagram por inverter control

Software Hierarchy Elements

Power Analysis

SCADA Comm.

Supervisory Logic

Health Monitor

HMI Comm.

Dashboard Comm.

Live Waveform

Trend, Meter

Log File Viewer

Settings Config.

Firmware Update

Event Record

DNP3 TCP, HTTPS

HMI Panel

Utility SCADA

Sensor Decoding,

Filtering

Pulse Width Modulation

DMA Data Scope

Space Vector

Modulation

Clarke, Park

Transforms

PID Control Loops

Protection Interlocks

PCI, DMA

Remote Client Dashboard

Real-Time Processor

Field Programmable Gate Array

RS-232

Simultaneous, Differential AI

High Speed DO

Raw FPGA & uP I/O

General Purpose DO

Contactor Relay DO

General Purpose DI

Scanned AI, AO

RMC GPIC Mezzanine Card

Gate Drivers, Fiber TX

Pilot Relays, Faults, Fans, Resets, LEDs

AC, DC, Precharge Contactors

FPGA-FPGA Comm & Synch, GPS, Fiber I/F

IGBT Error, Contactor Aux, E-Stop, Sensors

Phase I/V, DC I/V,

Commands

Temperature, Monitoring, Debugging

Page 33: V diagram por inverter control

Intelligent grid Advanced RTUs, Smart Distribution Switches

•  Houston field tests early in 2010 –  Advanced analytics for distribution automation –  Development and introduction of advanced switching

features –  Embedded electrical power measurements and monitoring –  Wireless communication for configuration and file transfer –  Remote updates, configuration and firmware upgrades

Analytics (NI Smart Grid Analyzer)

• 833 Samples/Cycle, 24-bit Resolution • Advanced Embedded Analytics • Data Storage, 1000+ event captures • Remote upgrade • Multi Protocol Communications

Distribution Switch • Rated Through 38kV • Vacuum Interruption Technology • Integrated CTs & Voltage Sensors

Page 34: V diagram por inverter control

NI Power Electronics Tool Chain

Test Cells Design

Deploy

Prototype HIL Testing

Page 35: V diagram por inverter control

NI power electronics HIL investments

GRID  DC  

DC  

AC  

Motor/Generator  

AC  

Inverter/Converter/Drive  Power  System  

Control    System  

Transformer   Converter/Rec<fier   Inverter/Drive  

Ba?ery  Stack,  Solar  Array  

DC  DC   Management  

System  

Real-Time Power Simulation (Cracked ECU or Full Power Simulator)

Physical Control Board

Page 36: V diagram por inverter control

Electric Motor HIL Simulation •  Benefits same as any HIL

§  Early functional tests §  Test under any situation at no-risk (e.g. failure) §  Reproducible and automated test

•  Differences §  High Speed Dynamics

•  Extremely high sampling frequency (1 µsec) •  Special requirements for capturing digital signals

§  Power Electronics •  Requires special interfacing •  ECUs provide actuation power

Page 37: V diagram por inverter control

Electric Motor HIL Interfaces •  Three types

§  Signal Level •  Cracked ECU or separate power electronics stage •  6-7 Gate Drive Signals •  2-3 current values •  Rotor position (Hall/Encoder/Resolver)

§  Power Level •  Power electronics

§  Mechanical Level •  Mechanical set-up with load motors

Page 38: V diagram por inverter control

Signal Level HIL •  Advantages

§  No real power application •  Low cost •  Safe •  Can test any motor parameters -> 2 kW to 400 kW

§  Full access to model •  Can model all physical effects

§  Mechanical §  Power Electronics

•  Same model for offline/on-line simulation •  Disadvantages

§  Typically ECUs will need to be cracked §  Testing of power stage not possible

Page 39: V diagram por inverter control

Motor Simulation Why so fast?

§  Switching frequencies are on the order of 20 KHz (Necessary for smooth winding currents)

§  Switching frequencies may vary with time

§  Sampling frequency 10x (~5 µsec) Simulation now quasi-continuous Better stability High computational demand requires FPGA

Page 40: V diagram por inverter control

Real-time power simulation challenges & solutions

•  Simulation of discontinuous switch mode power systems with active and passive switching components

–  Use piecewise state-space models with coefficients stored in FPGA RAM •  Very high speed discrete real-time simulations

–  Use first order state-space format for numerical stability •  Fixed point math

–  Use parallel connections when possible- avoid higher order blocks connected in series –  Create a test bench simulation to validate fixed point math before compiling to FPGA

•  Nonlinear models –  Use non-linear differential equations or look-up tables based on FEA

•  Stiff system (combined high and low bandwidth components) –  Use parallel loops, filter the lower speed signals when passing to the faster loops

Page 41: V diagram por inverter control
Page 42: V diagram por inverter control

FPGA Implementation

Page 43: V diagram por inverter control

FET (6)

hall (3)

tach

Real-Time BLDC/PMSM Motor Simulation

µP I/O UUT FPGA (BLDC)

Trq

Vbus

Motor Param

Page 44: V diagram por inverter control

RPC Demo

Controller

Page 45: V diagram por inverter control

HIL Testing of Wind Turbine Control System Software  

“The  modular  architecture  allows  us  to  scale-­‐up  the  system  to  meet  the  growing  requirements  of  rapidly  evolving  wind  energy  technology.”  

           –  Samir  Bico,  Siemens  Wind  Power  A/S

Page 46: V diagram por inverter control

A New Era: Inverter Real-Time Virtual Prototype

System Parameters IGBTs: SEMIKRON SKM 50 GB 123D, 600 V, 80 A DC – link voltage: Vdc = 400 V Fundamental Freq = 60 Hz PWM (carrier) Freq = 3 KHz Output Filter: Lf = 800 µH Cf = 500 µF Load: Lload = 2 mH Rload = 5 Ω

Simulation loop rate of 3.57 MHz > 3000X Acceleration

Page 47: V diagram por inverter control

Development of State-Space Model

Apply Kirchoff’s current and voltage laws Final equation set scaled for more accurate FXP handling

I = iI0 V=vV0

Page 48: V diagram por inverter control

Partners – JMAG to LV FPGA Integration

JMAG-RT model • RTT file; look-up table • Binary

JMAG FEA

Converter • Reads RTT file • DLL

Ld(Id,Iq), Lq(Id,Iq) • For NI’s motor model

NI HIL

Page 49: V diagram por inverter control

NI VeriStand Real-Time Test Software

LabVIEW Real-Time LabVIEW FPGA Windows PC

Creating High Fidelity Models

Page 50: V diagram por inverter control

PXI  Pla(orm  –  Rugged,  Industrial  

NI  Intel    Quad  core  CPU  

LabVIEW  

Sound  and  Vibra<on  Toolkit,  Vision  Module  …  

NI-­‐DAQmx,    NI-­‐Scope…  

PXI  Express  Bus  

R  Series    PXI  DAQ  

5M  Gate  FPGA  

Modular  Instruments:  Digi<zer,  DMM  

Windows  and/or  RT  OS  

Timing,  Triggering    &Synchroniza<on  

Page 51: V diagram por inverter control

NI  FlexRIO  –  Speed  and  Flexibility  

FlexRIO  FPGA  Module  -­‐  PXI  &  PXIe  •   Up  to  132  channels  •   Up  to  1  Gb/s  per  pair  •   Up  to  128  MB  of  DDR2  DRAM  

FlexRIO  Adapter  Module  •   Interchangeable  I/O  •   Customizable  by  users  •   Module  Development  Kit  

Page 52: V diagram por inverter control

Resource Usage and Timing of Current Implementation (7965R)

• Total Slices: 37.9% (5585 out of 14720) • Slice Registers: 25.6% (15070 out of 58880) • Slice LUTs: 27.3% (16057 out of 58880) • DSP48s: 6.2% (40 out of 640)

Inverter Calculation time: 28 ticks of 100 MHz clock (0.5% resolution with respect to 20 kHz PWM switching frequency)

Page 53: V diagram por inverter control

Key Items for HILS

Product name • HKS-9609

・16-bit 12ch simultaneous analog ±12V input with 50MS/s sampling rate

・16-bit 12ch ±12V simultaneous analog

output with 50MS/s update rate ・16ch digital input and 16ch digital output at

50MHz

Page 54: V diagram por inverter control

HILS Configuration

54

HKS-9609 as I/O connection

Driver side

Controller side

HKS-9609

HKS-9612 as motor control

PXI as drive hardware

Page 55: V diagram por inverter control

NI Power Electronics Tool Chain

Test Cells Design

Deploy

Prototype HIL Testing

Page 56: V diagram por inverter control

ECU

Power Level Motor Simulation

DSP/µC Control Power Amp

SET VirtualComps

PXI/FPGA Simulator

Gate signals

Feedback signals (eg; hall/encoder)

Current feedback

Phase Current

Encoder

Page 57: V diagram por inverter control

Partners: Motor Emulation

Page 58: V diagram por inverter control

NI’s Role in Power Electronics Applications

Power Electronics

Control

Power Monitoring

Power Electronics

Test

Renewable Energy

Energy Storage

Motor Drives

Distribution Switches

PMU

Power Analyzer

Fault Prediction

Functional Test

Performance Characterization

HIL Validation

Metering

Electric Vehicles

Inverters

Page 59: V diagram por inverter control

Questions?

[email protected]

+-

+

-

R Li

mv

PWM+- Vsup

id