vanderbruggen_nanofiltration

Upload: nguyen-van-dzung

Post on 14-Apr-2018

214 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/27/2019 VanderBruggen_Nanofiltration

    1/22

    28/11/2008

    1

    Nanofil tration: drawbacks

    for application

    - research challenges

    Bart Van der Bruggen

    Department of Chemical Engineering

    K.U.Leuven, [email protected]

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Applied

    pressure

    Flux range

    (l/m/h/bar)

    Transport

    mechanism

    Application range

    Microfiltration 0.1-2 bar > 50 Sieving Removal of particles

    Ultrafiltration 1-5 bar 10-50 Sieving Removal of

    macromolecules

    Nanofiltration 5-15 bar 1.4-12 Sieving

    Diffusion

    Charge effects

    Removal of

    multivalent ions and

    relatively (small)

    organic molecules

    Reverse

    osmosis

    10-100 bar 0.05-1.4 Diffusion Removal of ions and

    (small) organic

    molecules

    Nanofiltration compared to other pressure driven

    membrane processes

    mailto:[email protected]:[email protected]
  • 7/27/2019 VanderBruggen_Nanofiltration

    2/22

    28/11/2008

    2

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Nanofil tration: some history 1970s: low pressure reverse osmosis becomes

    nanofiltration (NF)

    1980s: NF applications: softening, NOM removal in

    drinking water treatment

    1987: first journal publication on NF

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Nanofil tration: some history 1970s: low pressure reverse osmosis becomes

    nanofiltration (NF)

    1980s: NF applications: softening, NOM removal in

    drinking water treatment

    1987: first journal publication on NF- Conlon, W.J., McClellan, S.A., 1989. Membrane softening: treatment

    process comes of age, J. AWWA 81(11), 47-51.

    - Eriksson, P., 1988. Nanofiltration extends the range of membrane filtration.

    Environm. Prog. 7 (1), 58-62.

    - D. Watson, C.D. Hornburg, Low energy membrane nanofiltration for

    removal of color organics and hardness from water supplies, Desalination

    72 (1989) 11

  • 7/27/2019 VanderBruggen_Nanofiltration

    3/22

    28/11/2008

    3

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Nanofil tration: some history 1970s: low pressure reverse osmosis becomes

    nanofiltration (NF)

    1980s: NF applications: softening, NOM removal in

    drinking water treatment

    1987: first journal publication on NF

    1990s: process coming to age- Scientific research booming

    - Applications from small scale to large scale (Mry-sur-Oise)

    >2000: fouling resistant membranes, ceramic NF

    membranes, solvent resistant NF

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Research on nanofiltration

    1

    10

    100

    1000

    10000

    1985 1988 1991 1994 1997 2000 2003 2006

    Year

    Number

    ofpublications

    UF

    NF

    RO

  • 7/27/2019 VanderBruggen_Nanofiltration

    4/22

    28/11/2008

    4

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Some principles Tight vs. loose NF membranes

    near RO

    Ca, SO4 > 99%

    Na, Cl 60-90%

    MW 200 organics

    PA, PI

    Tight vs. loose NF membranes

    near UF

    Ca, SO4 90-99%

    Na, Cl 10-60%

    MW 500-1000organics

    P(E)S, ceramics

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Process performance Flux equation: Hagen-Poiseuille

    Rejection:

    (MWCO?)

    Spiegler & Kedem:

    surface porosity ()

    pore radius (r)

    tortuosity ()

    membrane thickness (x)

    x

    PrJ

    8

    .

    100).1((%),

    ,

    if

    ip

    ic

    cR

    RF

    F

    .( )

    .

    1

    1).

    1exp( J

    PF

    s

  • 7/27/2019 VanderBruggen_Nanofiltration

    5/22

    28/11/2008

    5

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Not only MW

    02040

    6080

    100

    0 50 100 150 200Molecular weight

    Reten

    tion(%

    Desal-HL-51, MWCO

    = 150-300

    Desal-HL-51

    0

    20

    40

    60

    80

    1 00

    - 4 - 2 0 2 4

    log P

    Retentie(%)

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Molecular weight cut-offCut- off curve: sharp or diffuse

    0%

    10 0%

    Rejection(%)

    10 0 500 750 1 000

  • 7/27/2019 VanderBruggen_Nanofiltration

    6/22

    28/11/2008

    6

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    NF: Challenges?1. Advanced Membrane Technology and

    Applications (Eds. Norman N. Li,

    Anthony G. Fane, W.S. Winston Ho,

    Takeshi Matsuura), Wiley, 2008.

    2. Van der Bruggen, B.; Mnttri, M.;Nystrm, M. Drawbacks of applying

    nanofiltration and how to avoid them: a

    review. Separ. Purif. Technol. 2008,

    63, 251-263.

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    NF: ChallengesI. avoiding membrane fouling, and possibilities to

    remediate

    II. improving the separation between solutes that can be

    achieved

    III. further treatment of concentrates

    IV. chemical resistance and limited lifetime of membranes

    V. insufficient rejection of pollutants in water treatment

    VI. the need for modelling and simulation tools

  • 7/27/2019 VanderBruggen_Nanofiltration

    7/22

    28/11/2008

    7

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    NF: Challenges Not exhaustive in particular towards engineering

    aspects

    - module development for special applications

    (solvents, extreme pH)

    - membrane configurations with improved performance

    (surface area per volume, hydrodynamics) NF applications will not wait for answers and are already

    successful improvements will broaden up the range

    and make life easier

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Membrane fouling Interactions to be understood at nanoscale

    Pretreatment, membrane cleaning, limited recoveries and

    feed water loss, and short li fetimes of membranes

    0

    20

    40

    60

    80

    100

    120

    0 100 200 300 400

    time (min)

    relativeflux(%)

    NF270 (HP11)

    water cleaning NF270 (HP11)

    NF270 (rim cleaner)

    water cleaning NF270 (rim cleaner)

    0

    20

    40

    60

    80

    100

    120

    0 100 200 300 400

    time (min)

    relativeflux(%)

    NFPES10 (HP11)

    water cleaning NFPES10 (HP11)

    NFPES10 (rim cleaner)

    water cleaning NFPES10 (rim cleaner)

  • 7/27/2019 VanderBruggen_Nanofiltration

    8/22

    28/11/2008

    8

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Parameters influencing NOM fouling

    Value NOM fouling Rate Cause

    Ionic strength concentration Increased Increased Electrostatic repulsion

    pH High pH

    Low pH

    Increased

    Increased

    Hydrofobic forces

    Electrostatic repulsion

    Divalent cations Presence Increased Electrostatic repulsion and bridging

    between NOM and surface

    NOM fraction Hydrophobic

    Hydrophilic

    Increased

    Decreased

    Hydrophobicity

    Molecule or membrane charge High charge Increase Electrostatic repulsion

    CP High Increased

    Surface morphology Higher Increased Valley blocking

    Permeate flux (High recovery) Higher Increased Hydrophobicity

    Pressure Higher Increased Compaction

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Membrane fouling

    Fouling vs. compaction

    Membrane thickness

    170 m Membrane thickness

    150 m

  • 7/27/2019 VanderBruggen_Nanofiltration

    9/22

    28/11/2008

    9

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Membrane fouling Organic fouling

    - Adsorption on the membrane surface

    - Parameters of influence: log P, dipole moment, solubility

    membrane hydrophobicity (contact angle)

    - Electrostatic attraction repulsion for charged solutes

    Colloidal fouling- Related to surface roughness of membranes

    - Hydrophobicity and charge interaction play a role

    - Concentration and size of the colloids

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Membrane fouling Scaling

    - Calcium carbonate, gypsum, barium/strontium sulphate and silica

    - Thermodynamical problem module design?

    Biofouling

    - Mainly bacteria and (in some cases) fungi

    - Biofilms 20-30 m

    - Indirect problems: cake layer, exopolymeric substances

  • 7/27/2019 VanderBruggen_Nanofiltration

    10/22

    28/11/2008

    10

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Solutions to fouling Pretreatment

    - When? Provide UF quality feed water

    - Ultrafiltration and microfiltration, ozonation or UV/H2O2 oxidation,

    adsorption (PAC) and flocculation

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Solutions to fouling Cleaning

    - When? In al l cases

    - Physical cleaning by flushing (backflush, forward flush, reverse

    flush), scrubbing, air sparging, vibrations and sonication

    - Chemical cleaning: hydrolysis, saponification, solubilisation,dispersion, chelation, and peptisation

    - Various cleaning solutions and protocols

  • 7/27/2019 VanderBruggen_Nanofiltration

    11/22

    28/11/2008

    11

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Solutions to fouling Membrane modifications

    - Hydrophilic groups into a polymeric structure: grafting, ion beam

    irradiation, plasma treatment, adsorption, self-assembling

    nanoparticles

    - Ceramic membranes (titania, alumina, zirconia)

    - Development, upscaling needed

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Solutions to fouling Membrane manufacturing

    - Surface charge

    - Surface roughness

    - Biofouling: e.g., silver nanoparticles

    25 years of experience but many aspects

    yet to learn

  • 7/27/2019 VanderBruggen_Nanofiltration

    12/22

    28/11/2008

    12

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Synthesis of polymeric membranes

    Parameters determining the

    membrane structure:

    wt% polymer

    Type of solvent

    Temperature

    Air humidity

    Additives

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    The concept of crit ical flux The membrane has a limited

    capacity

    - represents the shift from repulsive

    interaction (dispersed matter-

    polarised layer) to attractive

    interaction (condensed matter-deposit)

    - Sustainable flux: protection

    against fouling

    - depends on hydrodynamics, feed

    conditions and process time0

    20

    40

    60

    80

    100

    120

    0 2 4 6 8 10 12 14 16

    Pressure, bar

    Flux,l/(m2h)

    a)

  • 7/27/2019 VanderBruggen_Nanofiltration

    13/22

    28/11/2008

    13

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Membranes are not an absolute barrier

    Filtration in series: removal of a given compound

    increases with each step added

    Rejection is not only determined by solute size

    vs. pore size

    II. Can we achieve complete

    separation?

    0.110 1 0.01

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Typical rejection curve

    01020304050

    60708090

    100

    0 50 100 150 200 250 300 350 400 450 500

    Molecular size

    Rejectio

    n(%)

  • 7/27/2019 VanderBruggen_Nanofiltration

    14/22

    28/11/2008

    14

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Ideal rejection curve

    0102030405060708090

    100

    0 50 100 150 200 250 300 350 400 450 500

    Molecular size

    Rejection(%)

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    and possibly:

    01020304050

    60708090

    100

    0 50 100 150 200 250 300 350 400 450 500

    Molecular size

    Rejectio

    n(%)

  • 7/27/2019 VanderBruggen_Nanofiltration

    15/22

    28/11/2008

    15

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    How to achieve this?

    Membrane stack: N membranes in a

    single module

    N modules in series

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Combined cascades:

    distillationTotal condensor

    Feed

    Overheadvapour

    BoilupN

    2

    1

    Distillation

    f

    Reflux drum

    Enrichment section

    Stripping section

    Feed tray

    Bottom products

    Partial reboiler

    Reflux Distillate

  • 7/27/2019 VanderBruggen_Nanofiltration

    16/22

    28/11/2008

    16

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Membrane cascades

    2

    3

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Rejection curvesN30F

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 100 200 300 400 500 600

    MW

    R

    ejection(%)

    (1)

    (2)

    (3)

    NF270

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 100 200 300 400 500 600

    MW

    Rejection(%)

    (1)

    (2)

    (3)

    Desal-HL-51

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 100 200 300 400 500 600

    MW

    Rejection(%)

    (1)

    (2)

    (3)

    Desal-5-DL

    0

    10

    20

    30

    40

    50

    60

    70

    80

    90

    100

    0 100 200 300 400 500 600

    MW

    Retjection(%)

    (1)

    (2)

    (3)

  • 7/27/2019 VanderBruggen_Nanofiltration

    17/22

    28/11/2008

    17

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Separation of solutes from

    one another?

    Applications in pharmaceutical industry

    Diafiltration may be possible for product

    recovery, not for separation

    Food industry: xylose/glucose, stevioside, tailor-made milk products

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Ion separation, organic-

    inorganic separation?

    NF270, rejection (single passage) NaCl 59% -

    CaCl2 63% - Na2SO4 96%

    Rejections too high to apply in cascade (no

    separation)

    Rejections organic inorganic not feasible

    Membrane optimisation: lower salt rejections

    required

  • 7/27/2019 VanderBruggen_Nanofiltration

    18/22

    28/11/2008

    18

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Ion separation, organic-

    inorganic separation?

    N30F: rejection (single passage) NaCl ca. 10% -

    rejection maltose 63%

    In cascade: NaCl overall rejection ca. 20% -

    rejection maltose 97%

    Not (yet) perfect

    Membrane tailoring in terms of separation

    potential

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    V. Insufficient rejection of

    individual compounds

    Originally: partial softening, bulk organics

    removal

    New trend = complete absence of all possible

    pollutants, even at ultra-low concentrations

    - Subjective customer criterion not necessarily based

    on risks or toxicity

    - But a reality

  • 7/27/2019 VanderBruggen_Nanofiltration

    19/22

    28/11/2008

    19

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Nitrate removal

    Health effects?

    - None for adults

    - Methemoglobinemia (children < 6 m) related to nitrite

    - Synergetic toxic effects?

    Standards are under debate

    NF: partial removal

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Membrane Nitrate rejection (%)

    NF90 94-98

    HG19 9

    SX10 32

    SV10 28

    SX01 25

    BQ01 12

    MX07 8

    NF70 76

    NF45 16

    UTC-20 32

    UTC-60 11

    MPS44 90 50

    NF70 90 85

    Desal 60 33

    ESNA-1 LF 75-80

    NF 65-80

    NF90 85-95

    OPMN-K 25-50

    OPMN-P 40-70

  • 7/27/2019 VanderBruggen_Nanofiltration

    20/22

    28/11/2008

    20

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Boron removal

    Micronutrient with narrow range between deficiency andexcess

    Not a primary target compound but the times they area-changin ( low concentration by preference)

    Neutral pH: undissociated boric acid, removal with

    complexes (e.g., mannitol) Acid conditions (or alkaline conditions): removal in ionic

    form

    NF has a disadvantage

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Organic micropollutants

    Including: natural and synthetic hormones; industrialpollutants such as phthalates, alkylphenols, bisphenol-A,PCBs (polychlorinated biphenyls), PAHs (polyaromatichydrocarbons), NDMA (N-nitrosodimethylamine) and

    MTBE (methyl tertiarybutyl ether); pesticides;pharmaceuticals; personal care products and disinfectionby-products (DBPs)

    priority compounds in view of drinking water production:Verliefde, Environ. Pollut. 2007, 146 (1), 281-289

  • 7/27/2019 VanderBruggen_Nanofiltration

    21/22

    28/11/2008

    21

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Organic micropollutantsCompon ent Type MW Log Kow S iz e [nm] pKa Compone nt Type MW Log Kow S iz e [nm] pKa

    2-naftol Surrogate 144 2,7 9,5 Estrone EDC 270 3,43 0,8 10,4

    4-phenylphenol EDC 170 3,28 9,55 Fenacetine PhAC 179 1,58 /

    1,5-naftal ene

    disulfonic acid

    Surrogate 288 -3,15 0,71 / Fluoranthene EDC 202 4,93 /

    2-naftalene

    sulfonic acid

    Surrogate 208 0,63 0,55 / Ibuprofen PhAC 206 3,79 0,5 4,91

    9-ACA Surrogate 222 3,85 3,65 Isopropylantipyrine PhAC 231 1,94 /

    Atrazine Pes ticide 216 2,82 0,8 1,7 (weak

    base)

    Isoproturon Pesticide 206 2,84 0,81 /

    Mecoprop Pesticide 215 2,94 0,49 3,78

    Metamitron Pesticide 202 1,44 0,5 /

    Metazachlorine Pesticide 278 2,38 /

    Metribuzin Pes ticide 214 1,49 0,44 1 (weak base)

    Bisphenol A EDC 228 3,64 0,33 10 Pirimicarb Pes ticid e 238 1,4 0,79 4,53 (w eak

    base)

    Carbamazepin

    e

    PhAC 236 2,25 / Primidone PhAC 218 0,73 /

    Cyanazine Pe sticide 240 2,51 0,83 0,63 (w ea k

    base)

    Salicylic acid Surrogate 138 2,24 2,97

    DCAA DBP 129 0,92 1,26 Simazine Pes ticid e 202 2,4 0,75 1,67 (we ak

    base)

    Diclofenac PhAC 296 4,02 4,15 Sulphamethoxazole PhAC 253 0,48 /

    Diuron Pesticide 233 2,67 0,49 / TCAA DBP 163 1,33 0,51

    Estradiol EDC 272 3,94 10,7 Terbutylazine Pesticide 230 3,27 2 (weak

    base)

    0,8 3,3Bentazone Pes ticide 240 1,67

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Organic micropollutants

    Modelling and prediction of rejections is still difficult

    qualitative appraisal of rejections- classification of compound/membrane combinations

    - based on molecular weight, molecular weight cut-off of the

    membrane, pKa (solute charge) and log Kow (hydrophobicity)- See J. Chem. Technol. Biotechnol. 2006, 81 (7), 1166-1176

    Relatively low rejections for uncharged hydrophobiccompounds, e.g., 2-naphtol, 4-phenylphenol, estradiol,ibuprofen, fluoranthene and bisphenol-A, estradiol,estrone, atrazine, simazine, diuron, and isoproturon

    Small hydrophilic compounds (e.g., NDMA) areproblematic

  • 7/27/2019 VanderBruggen_Nanofiltration

    22/22

    28/11/2008

    22

    BMG-NMG Posterdag

    Antwerpen (BE), 26 Nov. 2008

    Acknowledgements

    -My colleagues from Lappeenranta University of Technology (LUT): Mika Mnttri &

    Marianne Nystrm