varun gupta carnegie mellon university 1 with: mor harchol-balter (cmu)

31
Optimal Load Balancing Policies for Heterogeneous Server Farms VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

Upload: amina-braswell

Post on 29-Mar-2015

217 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

Optimal Load Balancing Policies for Heterogeneous Server Farms

VARUN GUPTACarnegie Mellon University

1

With:

Mor Harchol-Balter(CMU)

Page 2: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

2

Warm up

Khomogeneous

First-Come-First-Servedservers

Exponentially-distributedjob sizes

Load Balancer

Knows queue lengthsNot job sizes

Q: What is the optimal load balancing policy?A: Join-the-Shortest-Queue

Q: Why?A: JSQ = Minimize Expected Response time of arrival

GOAL:Minimize MeanResponse Time

E[T]

Poisson(λ)

Page 3: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

3

This Talk

μ=4

μ=4

μ=1

Kheterogeneous

First-Come-First-Servedservers

Exponentially-distributedjob sizes

Load Balancer

Knows queue lengthsNot job sizes

Q: What is the optimal load balancing policy?

μ=1

GOAL:Minimize MeanResponse Time

E[T]

Poisson(λ)

Page 4: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

Smart-JSQ = Join-Shortest-Queue

(with smart tie breaks)

4

MER = Minimum Expected Response

time

μ=4

μ=1

μ=4

μ=1

μ=4

μ=1

μ=4

μ=1

Q: Which is the better policy?Q: What is the optimal policy?

Page 5: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

5

OutlineMany-servers limit:

Simulation Results• Effect of K• Effect of arrival rate (λ)• Effect of degree of heterogeneity

Light-traffic regime Heavy-traffic regime

Partial characterization of the optimal policy

Complete characterization of optimal policies First asymptotic approximations

Page 6: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

6

Many-servers light-traffic limit4

4

1

Poisson(λ)

1

K1 = α1 K

K2 = α2 K

Page 7: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

7

Many-servers light-traffic limit4

4

1

K1 = K/3

K2 = 2K/3

Poisson(λ)

Q: Performance of MER

1

Case 1: λ < 4K/3

• Fast can handle λ• Arrivals find at least one fast idle• E[T] = 1/4

Case 2: λ > 4K/3

• Fast can not handle λ• Can not use slow until each fast has 3 jobs !

Page 8: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

8

Many-servers light-traffic limit4

4

1

K1 = K/3

K2 = 2K/3

Poisson(λ)

Q: Performance of Smart-JSQ

1

Case 1: λ < 4K/3

• Fast can handle λ• Arrivals find at least one fast idle• E[T] = 1/4

Case 2: λ > 4K/3

Use slow as soon as each fast has 1 job !

Page 9: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

9

Many-servers light-traffic limit4

4

1

K1 = K/3

K2 = 2K/3

Poisson(λ)

Smart-JSQ better than MER!

…but any policy which sends to slow when all fast are busy is identical in light-

traffic

1

Page 10: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

HYBRID(smart-

JSQ+MER)

Smart-JSQ

10

MER

μ=4

μ=1

μ=4

μ=1

Light-traffic HYBRID = Smart-JSQ

μ=4

μ=1

μ=4

μ=1

μ=4

μ=1

μ=4

μ=1

smart-JSQ when some server idle

MER when all busy

Page 11: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

11

OutlineMany-servers limit:

Simulation Results• Effect of K• Effect of arrival rate (λ)• Effect of degree of heterogeneity

Light-traffic regime Heavy-traffic regime

Partial characterization of the optimal policy

Complete characterization of optimal policies First asymptotic approximations

Page 12: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

12

Many-servers heavy-traffic limit

4

4

1

1

K1 = α1 K

K2 = α2 K

Poisson(λ)

GOALAnalysis of policies for

heterogeneous servers

Analysis of JSQ for

homogeneous server

Page 13: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

13

Many-servers heavy-traffic limit

4

4

1

1

K1 = α1 K

K2 = α2 K

Poisson(λ)

GOALAnalysis of policies for

heterogeneous servers

Analysis of JSQ for

homogeneous server

Page 14: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

14

Many-servers heavy-traffic analysis for homogenous JSQ

KPoisson(λ)

Analysis technique: Markov chain for total jobs in system

0 1 K 2K+22K+12K3K/2

λ λ λ λ λ λ

? = mean departure rate given 3K/2 jobs

Page 15: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

15

N = 3K/2

Poisson(λ)

K/2

K/2

Rate = K/2 Rate = K

Departure rate = K–1

(not K)

Finding the O(1) fluctuations critical

to analysis

O(1) idle queues

Page 16: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

16

N = (1+γ)K(0<γ<1)

Poisson(λ)

γK

(1- γ)K

Rate = (1-γ)K Rate = K

Departure rate = K–(1-γ)/ γ

(not K)

Finding the O(1) fluctuations critical

to analysis

O(1) idle queues

Page 17: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

17

Many-servers heavy-traffic analysis for homogenous JSQ

KPoisson(λ)

Analysis technique: Markov chain for total jobs in system

0 1 K 2K+22K+12K3K/2

λ λ λ λ λ λ

KKK-1Asymptotically negligible

probability mass First closed-form approx for JSQ!

Page 18: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

18

Many-servers heavy-traffic limit

4

4

1

1

K1 = α1 K

K2 = α2 K

Poisson(λ)

GOALAnalysis of policies for

heterogeneous servers

Analysis of JSQ for

homogeneous server

Page 19: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

19

Many-servers heavy-traffic limit

OPT policy maximize departure rate for each NÞ (preemptively) send jobs to slow servers even when they have 1 job and all fast servers have >

1

Smart-JSQ is optimal in many-servers

4

4

1

1

K1 = α1 K

K2 = α2 K

Poisson(λ)

Page 20: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

20

OutlineMany-servers limit:

Simulation Results• Effect of K• Effect of arrival rate (λ)• Effect of degree of heterogeneity

Light-traffic regime Heavy-traffic regime

Partial characterization of the optimal policy

Complete characterization of optimal policies First asymptotic approximations

Page 21: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

21

0 200 400 6000.1

0.5

0.9

1.3

Arrival rate (λ)

E[T]

Many-servers light-traffic

μ1=4, μ2=1, K1=100, K2=200

Smart-JSQ

Page 22: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

22

0 200 400 6000.1

0.5

0.9

1.3

Arrival rate (λ)

E[T]

Many-servers light-traffic

μ1=4, μ2=1, K1=100, K2=200

MER

Smart-JSQ

Page 23: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

23

0 200 400 6000.1

0.5

0.9

1.3

Arrival rate (λ)

E[T]

Many-servers light-traffic

μ1=4, μ2=1, K1=100, K2=200

MER

Smart-JSQ

HYBRID

Page 24: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

24

590 592 594 596 598 6000.4

0.8

1.2

1.6

2

Arrival rate (λ)

E[T]

Many-servers heavy-traffic

μ1=4, μ2=1, K1=100, K2=200

MER

Smart-JSQ

HYBRID

Page 25: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

25

3 300.4

0.6

0.8

1

1.2

1.4

Number of servers

E[T]

Effect of number of servers

μ1=4, μ2=1, α1=1/3, α2=2/3

Smart-JSQ

Page 26: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

26

3 300.4

0.6

0.8

1

1.2

1.4

Number of servers

E[T]

Effect of number of servers

μ1=4, μ2=1, α1=1/3, α2=2/3

MER

Smart-JSQ

Page 27: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

27

3 300.4

0.6

0.8

1

1.2

1.4

Number of servers

E[T]

Effect of number of servers

μ1=4, μ2=1, α1=1/3, α2=2/3

MER

Smart-JSQ

HYBRID

Page 28: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

Conclusions A new many-servers heavy-traffic scaling to

analyze load balancing policies

First closed-form approx of load balancing heuristics

Choosing the right load balancer• Few servers, Small load, High heterogeneity HYBRID• Many servers, High load, Low heterogeneity smart-JSQ

28

Page 29: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

29

0 200 400 600 800 1000 12000.1

0.5

0.9

1.3

Arrival rate (λ)

E[T]

Many-servers light-traffic

μ1=8, μ2=1, K1=100, K2=400

MER

Smart-JSQ≈ HYBRID

Page 30: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

30

1190 1192 1194 1196 1198 12000.4

0.8

1.2

1.6

2

Arrival rate (λ)

E[T]

Many-servers heavy-traffic

μ1=8, μ2=1, K1=100, K2=400

MER

Smart-JSQ

HYBRID

Page 31: VARUN GUPTA Carnegie Mellon University 1 With: Mor Harchol-Balter (CMU)

31

5 500.3

0.5

0.7

0.9

1.1

Number of servers

E[T]

Effect of number of servers

μ1=8, μ2=1, α1=1/5, α2=4/5

MER

Smart-JSQ

HYBRID