velocity kinematics - tu chemnitz

108
Velocity Kinematics Dr.-Ing. John Nassour Artificial Intelligence & Neuro Cognitive Systems FakultΓ€t fΓΌr Informatik The Jacobian 13.01.2018 J.Nassour 1

Upload: others

Post on 17-Mar-2022

9 views

Category:

Documents


0 download

TRANSCRIPT

Velocity Kinematics

Dr.-Ing. John Nassour

Artificial Intelligence & Neuro Cognitive Systems FakultΓ€t fΓΌr Informatik

The Jacobian

13.01.2018 J.Nassour 1

13.01.2018 J.Nassour 2

Motivation

β€’ Positions are not enough when commanding motors.

β€’ Velocities are needed for better interaction.

β€’ How fast the end-effector move given joints velocities?

β€’ How fast each joint needs to move in order to guarantee a desired end-effector velocity.

13.01.2018 J.Nassour 3

Differential Motion

Base

Forward Kinematics πœƒ β†’ π‘₯

Differential Kinematicsπœƒ + π›Ώπœƒ β†’ π‘₯+𝛿π‘₯

We are interested in studying the relationship: π›Ώπœƒ ↔ 𝛿π‘₯

Linear and angular velocities

13.01.2018 J.Nassour 4

Joint’s VelocityPrismatic Joint:

𝑣 = π‘žπ‘˜πœ” = 0

Revolute Joint :

𝑣 = π‘žπ‘˜ Γ— π‘Ÿπœ” = π‘žπ‘˜

π‘˜ is the unit vector.

π‘žπ‘˜ 𝑣

π‘ž

π‘˜

𝑣

πœ”

π‘Ÿ

13.01.2018 J.Nassour 5

Joint’s Velocity

With more than one joint, the end effector velocities are a function of joint velocity and position:

π‘£πœ”

= 𝑓( π‘ž1, π‘ž2, π‘ž1, π‘ž2)

For any number of joints:

π‘£πœ”

= 𝑓( π‘ž, π‘ž)

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 6

The Jacobian

The Jacobian is a matrix that is a function of joint position, that linearly relates joint velocity to tool point velocity.

π‘£πœ”

= π’₯(π‘ž1, π‘ž2) π‘ž1 π‘ž2

For the linear velocity:

𝑣 = π’₯𝑣 π‘ž ⟺ π‘₯ 𝑦

=π’₯11 π’₯12

π’₯21 π’₯22

π‘ž1 π‘ž2

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 7

The Jacobian

The elements of the Jacobian π’₯𝑖𝑗 can be obtained by partial differentiation of the forward kinematic equations:

π‘₯ 𝑦

=π’₯11 π’₯12

π’₯21 π’₯22

π‘ž1 π‘ž2

𝑑π‘₯

𝑑𝑑=

πœ•π‘₯

πœ•π‘ž1

π‘‘π‘ž1𝑑𝑑

+πœ•π‘₯

πœ•π‘ž2

π‘‘π‘ž2𝑑𝑑

𝑑𝑦

𝑑𝑑=

πœ•π‘¦

πœ•π‘ž1

π‘‘π‘ž1𝑑𝑑

+πœ•π‘¦

πœ•π‘ž2

π‘‘π‘ž2𝑑𝑑

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 8

The Jacobian

The elements of the Jacobian π’₯𝑖𝑗 can be obtained by partial differentiation of the forward kinematic equations:

π‘₯ 𝑦

=π’₯11 π’₯12

π’₯21 π’₯22

π‘ž1 π‘ž2

𝑑π‘₯

𝑑𝑑=

πœ•π‘₯

πœ•π‘ž1

π‘‘π‘ž1𝑑𝑑

+πœ•π‘₯

πœ•π‘ž2

π‘‘π‘ž2𝑑𝑑

𝑑𝑦

𝑑𝑑=

πœ•π‘¦

πœ•π‘ž1

π‘‘π‘ž1𝑑𝑑

+πœ•π‘¦

πœ•π‘ž2

π‘‘π‘ž2𝑑𝑑

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 9

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 10

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 11

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 12

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 13

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 14

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 15

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 16

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 17

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 18

The Jacobian

In this example the forward kinematics are given by:

π‘₯ = π‘ž2 cos(π‘ž1)𝑦 = π‘ž2 sin(π‘ž1)

Find the elements of the Jacobian π’₯𝑖𝑗.

π’₯11 =πœ•π‘₯

πœ•π‘ž1

= βˆ’π‘ž2 sin(π‘ž1) π’₯12 =πœ•π‘₯

πœ•π‘ž2

= π‘π‘œπ‘ (π‘ž1)

π’₯21 =πœ•π‘¦

πœ•π‘ž1

= π‘ž2 cos(π‘ž1) π’₯22 =πœ•π‘¦

πœ•π‘ž2

= 𝑠𝑖𝑛(π‘ž1)

This is the linear velocity Jacobian.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 19

The Jacobian

The angular velocity Jacobian:

π‘£πœ”

= π’₯(π‘ž1, π‘ž2) π‘ž1 π‘ž2

For the angular velocity:

πœ” = π’₯πœ” π‘ž

πœ” = π’₯1 π’₯2

π‘ž1 π‘ž2

In this example: π’₯1 = 1 , π’₯2 = 0

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 20

The Jacobian

The angular velocity Jacobian:

π‘£πœ”

= π’₯(π‘ž1, π‘ž2) π‘ž1 π‘ž2

For the angular velocity:

πœ” = π’₯πœ” π‘ž

πœ” = π’₯1 π’₯2

π‘ž1 π‘ž2

In this example: π’₯1 = 1 , π’₯2 = 0

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 21

The Jacobian

The angular velocity Jacobian:

π‘£πœ”

= π’₯(π‘ž1, π‘ž2) π‘ž1 π‘ž2

For the angular velocity:

πœ” = π’₯πœ” π‘ž

πœ” = π’₯1 π’₯2

π‘ž1 π‘ž2

In this example: π’₯1 = 1 , π’₯2 = 0

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 22

Full Manipulator Jacobian

By combining the angular velocity Jacobian and the linear velocity Jacobian:

π‘£πœ”

= π’₯(π‘ž1, π‘ž2) π‘ž1 π‘ž2

π‘₯ π‘¦πœ”

= βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

1 0

π‘ž1 π‘ž2

The full Jacobian is an nΓ—m matrix where n is the number of joints, and m is the number of variables describing motion.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 23

Full Manipulator Jacobian

Work out the linear and the angular velocities, with joint 2 extendedto 0.5 m. The arm points in the x direction. Joint 1 is rotating at 2 rad/s and joint 2 is extending at 1 m/s.

π‘₯ π‘¦πœ”

= βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

1 0

π‘ž1 π‘ž2

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 24

Full Manipulator Jacobian

Work out the linear and the angular velocities, with joint 2 extendedto 0.5 m. The arm points in the x direction. Joint 1 is rotating at 2 rad/s and joint 2 is extending at 1 m/s.

π‘₯ π‘¦πœ”

= βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

1 0

π‘ž1 π‘ž2

π‘₯ π‘¦πœ”

= 0 10.5 01 0

21

=112

π‘₯=1 m/s ; 𝑦=1 m/s ; πœ”=2 rad/s

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 25

Inverting The Jacobian

To determine the joint velocities for a given end effector velocity, weneed to invert the Jacobian:

π‘£πœ”

= π’₯ π‘ž π‘ž

π‘ž = π’₯βˆ’1 π‘žπ‘£πœ”

13.01.2018 J.Nassour 26

Inverting The Jacobian

Find the joint velocities ( π‘ž1, π‘ž2) in terms of the end effector velocity ( π‘₯, 𝑦).

π‘₯ 𝑦

= βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

π‘ž1 π‘ž2

π‘ž1 π‘ž2= π’₯βˆ’1 π‘ž

π‘₯ 𝑦

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 27

Inverting The Jacobian

Find the joint velocities ( π‘ž1, π‘ž2) in terms of the end effector velocity ( π‘₯, 𝑦).

π‘ž1 π‘ž2=

βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

βˆ’1 π‘₯ 𝑦

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 28

Inverting The Jacobian

Find the joint velocities ( π‘ž1, π‘ž2) in terms of the end effector velocity ( π‘₯, 𝑦).

π‘ž1 π‘ž2=

βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

βˆ’1 π‘₯ 𝑦

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 29

Inverting The Jacobian

Find the joint velocities ( π‘ž1, π‘ž2) in terms of the end effector velocity ( π‘₯, 𝑦).

π‘ž1 π‘ž2=

βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

βˆ’1 π‘₯ 𝑦

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 30

Inverting The Jacobian

Find the joint velocities ( π‘ž1, π‘ž2) in terms of the end effector velocity ( π‘₯, 𝑦).

π‘ž1 π‘ž2=

βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

βˆ’1 π‘₯ 𝑦

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 31

Inverting The Jacobian

Find the joint velocities ( π‘ž1, π‘ž2) in terms of the end effector velocity ( π‘₯, 𝑦).

π‘ž1 π‘ž2=

βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

βˆ’1 π‘₯ 𝑦

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 32

Inverting The Jacobian

Find the joint velocities ( π‘ž1, π‘ž2) in terms of the end effector velocity ( π‘₯, 𝑦).

π‘ž1 π‘ž2=

βˆ’π‘ž2 sin(π‘ž1) cos(π‘ž1)π‘ž2 cos(π‘ž1) sin(π‘ž1)

βˆ’1 π‘₯ 𝑦

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 33

Inverting The Jacobian

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

The example arm points in the x Direction, with joint 2 extended to 0.5 m.

Find the joint velocities to move the end effector such that: π‘₯=1 m/s ; 𝑦=1 m/s

π‘ž1= 2 rad/s ; π‘ž2= 1 m/s

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 34

Singularities

The effect of the determinant in the inverse Jacobian example:

π‘ž1 π‘ž2=

1

βˆ’π‘ž2

sin(π‘ž1) βˆ’cos(π‘ž1)βˆ’π‘ž2 cos(π‘ž1) βˆ’π‘ž2 sin(π‘ž1)

π‘₯ 𝑦

Whenever π‘ž2= 0 m, there are no valid joint velocity solutions.

Limited end effector velocities give unlimited joint velocities.

π‘ž2, π‘ž2𝑣

πœ”π‘ž1, π‘ž1

13.01.2018 J.Nassour 35

Singularities

If the determinant of a square Jacobian is zero, the manipulator cannot be controlled.

β€’ It is useful to observe the determinant of the Jacobian as the robot moves to avoid singularities.

β€’ Avoid configuration where the determinant approaches zero.

13.01.2018 J.Nassour 36

Joint’s VelocityPrismatic Joint:

𝑣 = π‘žπ‘˜πŽ = 𝟎

Revolute Joint :

𝑣 = π‘žπ‘˜ Γ— π‘ŸπŽ = π’’π’Œ

π‘˜ is the unit vector.

π‘žπ‘˜ 𝑣

π‘ž

π‘˜

𝑣

πœ”

π‘Ÿ

13.01.2018 J.Nassour 37

Angular Velocity

Prismatic joint gives πœ” = 0 and revolute joint gives πœ” = π‘žπ‘˜

The general Jacobian for the angular velocity: π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

β€’ πœŒπ‘– is 1 if the joint is revolute and 0 if the joint is prismatic. β€’ 𝑧𝑖is the direction of the z axis of the ith coordinate frame with

respect to the base frame.β€’ 𝑧𝑖 is the first three elements of third column of the general

transformation matrix.

A1.A2…Ai = T0i =

π‘₯π‘₯ 𝑦π‘₯π‘₯𝑦 𝑦𝑦

𝑧π‘₯ π‘œπ‘₯𝑧𝑦 π‘œπ‘¦

π‘₯𝑧 𝑦𝑧0 0

𝑧𝑧 π‘œπ‘§0 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 38

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 =? , 𝜌2 =?, 𝜌3 =?

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 39

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 40

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑧0=001

, 𝑧1=βˆ’π‘ 1𝑐10

, 𝑧2=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 41

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑧0=001

, 𝑧1=βˆ’π‘ 1𝑐10

, 𝑧2=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 42

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑧0=001

, 𝑧1=βˆ’π‘ 1𝑐10

, 𝑧2=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 43

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑧0=001

, 𝑧1=βˆ’π‘ 1𝑐10

, 𝑧2=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 44

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑧0=001

, 𝑧1=βˆ’π‘ 1𝑐10

, 𝑧2=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 45

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑧0=001

, 𝑧1=βˆ’π‘ 1𝑐10

, 𝑧2=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

𝑇 20= 𝐴 1 𝐴 2 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

𝑇 10= 𝐴 1 =

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

Example: RRP Robot

13.01.2018

Find the angular velocity Jacobianfor the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 46

π’₯πœ” = 001

βˆ’π‘ 1𝑐10

000

π’₯πœ” = 𝜌1𝑧0 𝜌2𝑧1 … πœŒπ‘›π‘§π‘› βˆ’ 1

𝜌1 = 1 , 𝜌2 = 1, 𝜌3 = 0

𝑧0=001

, 𝑧1=βˆ’π‘ 1𝑐10

, 𝑧2=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

Example: RRP Robot

13.01.2018

Find the angular velocity of the endeffector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 fixedAt 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 47

Example: RRP Robot

13.01.2018

Find the angular velocity of the endeffector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 fixedAt 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 48

π’₯πœ” = 001

βˆ’π‘ 1𝑐10

000

= 001

010

000

πœ”π‘₯

πœ”π‘¦

πœ”π‘§

=001

010

000

2βˆ’19

=0βˆ’12

π‘Ÿπ‘Žπ‘‘/𝑠

The end effector is rotating 0 rad/s around x axis, -1 rad/s around y axis, and 2 rad/s around z axis.

Example: RRP Robot

13.01.2018

Find the angular velocity of the endeffector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 fixedAt 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 49

π’₯πœ” = 001

βˆ’π‘ 1𝑐10

000

= 001

010

000

πœ”π‘₯

πœ”π‘¦

πœ”π‘§

=001

010

000

2βˆ’19

=0βˆ’12

π‘Ÿπ‘Žπ‘‘/𝑠

The end effector is rotating 0 rad/s around x axis, -1 rad/s around y axis, and 2 rad/s around z axis.

Example: RRP Robot

13.01.2018

Find the angular velocity of the endeffector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 fixedAt 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 50

π’₯πœ” = 001

βˆ’π‘ 1𝑐10

000

= 001

010

000

πœ”π‘₯

πœ”π‘¦

πœ”π‘§

=001

010

000

2βˆ’19

=0βˆ’12

π‘Ÿπ‘Žπ‘‘/𝑠

The end effector is rotating 0 rad/s around x axis, -1 rad/s around y axis, and 2 rad/s around z axis.

Example: RRP Robot

13.01.2018

Find the angular velocity of the endeffector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 fixedAt 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 51

π’₯πœ” = 001

βˆ’π‘ 1𝑐10

000

= 001

010

000

πœ”π‘₯

πœ”π‘¦

πœ”π‘§

=001

010

000

2βˆ’10

=0βˆ’12

π‘Ÿπ‘Žπ‘‘/𝑠

The end effector is rotating 0 rad/s around x axis, -1 rad/s around y axis, and 2 rad/s around z axis.

Example: RRP Robot

13.01.2018

Find the angular velocity of the endeffector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 fixedAt 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 52

π’₯πœ” = 001

βˆ’π‘ 1𝑐10

000

= 001

010

000

πœ”π‘₯

πœ”π‘¦

πœ”π‘§

=001

010

000

2βˆ’19

=0βˆ’12

π‘Ÿπ‘Žπ‘‘/𝑠

The end effector is rotating 0 rad/s around x axis, -1 rad/s around y axis, and 2 rad/s around z axis.

Example: RRP Robot

13.01.2018

Find the angular velocity of the endeffector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 fixedAt 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 53

π’₯πœ” = 001

βˆ’π‘ 1𝑐10

000

= 001

010

000

πœ”π‘₯

πœ”π‘¦

πœ”π‘§

=001

010

000

2βˆ’19

=0βˆ’12

π‘Ÿπ‘Žπ‘‘/𝑠

The end effector is rotating 0 rad/s around x axis, -1 rad/s around y axis, and 2 rad/s around z axis.

Example: RRR Robot

13.01.2018

Find the angular velocity of the end effector in the configuration shown with joint 1 rotating at 2 rad/s, joint 2 rotating at -1 rad/s and joint 3 rotating at 2 rad/s.

β€œThis is a typical example that can be discussed in the oral exam”

J.Nassour 54

Link 0 (fixed)

Joint 1

Link 1

Joint variable 𝜽1

Joint 2

Link 2

Joint variable 𝜽2

Link 3

π’›πŸ

Joint 3

Joint variable 𝜽3

π’›πŸ‘

π’™πŸŽ

π’šπŸŽ

π’›πŸŽ

π’›πŸ π’™πŸ

π’šπŸ

π’™πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

Link 1= 2 mLink 2= 2 mLink 3= 2 m

Linear Velocity Jacobian

13.01.2018

The velocity of the end effector for an n link manipulator is the race of change of the origin of the end effector frame with respect to the base frame.

π‘œπ‘›0 =

𝑖=1

π‘›πœ•π‘œπ‘›

0

πœ•π‘žπ‘– π‘žπ‘–

J.Nassour 55

The Origin π‘œπ‘–0

13.01.2018

The origin of the ith reference frame

𝑇𝑖0 =

π‘Ÿ11 π‘Ÿ12π‘Ÿ21 π‘Ÿ22

π‘Ÿ13 π‘œπ‘₯π‘Ÿ23 π‘œπ‘¦

π‘Ÿ31 π‘Ÿ320 0

π‘Ÿ33 π‘œπ‘§0 1

J.Nassour 56

Linear Velocity Jacobian

13.01.2018

π‘œπ‘›0 =

𝑖=1

π‘›πœ•π‘œπ‘›

0

πœ•π‘žπ‘– π‘žπ‘–

The contribution of each joint in the linear velocity of the end effector.

π’₯𝑣𝑖=πœ•π‘œπ‘›

0

πœ•π‘žπ‘–

Each column in the Jacobian is the rate of changes of the end effector in the base reference frame with respect to the rate of change of a joint variable qi.The ith column shows the movement of the end effector caused by π‘žπ‘–.

J.Nassour 57

Prismatic Joint

13.01.2018

Displacement along the axis of actuation π‘§π‘–βˆ’1:

π‘œπ‘›0 = π‘‘π‘–π‘§π‘–βˆ’1

0

𝑣 = π‘§π‘–βˆ’10 π‘žπ‘–

π“™π’—π’Š= π’›π’Šβˆ’πŸ

𝟎

J.Nassour 58

End effectorVelocity

Joint Velocity

Revolute Joint

13.01.2018

Displacement around the axis of actuation π‘§π‘–βˆ’1:

π‘œπ‘›0 = πœ” Γ— π‘Ÿ

π‘œπ‘›0 = π‘žπ‘– π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

𝑣 = π‘§π‘–βˆ’10 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1 π‘žπ‘–

π“™π’—π’Š= π’›π’Šβˆ’πŸ

𝟎 Γ— 𝒐𝒏 βˆ’ π’π’Šβˆ’πŸ

J.Nassour 59

End effectorVelocity

Joint Velocity

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 60

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 61

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

π’₯𝑣1= 𝑧0

0 Γ— π‘œ3 βˆ’ π‘œ0

π’₯𝑣1=

001

Γ—

βˆ’πΏπŸ‘π‘1𝑠2 βˆ’ 0βˆ’πΏπŸ‘π‘ 1𝑠2 βˆ’ 03 βˆ’πΏπŸ‘π‘2 βˆ’ 0

=πΏπŸ‘π‘ 1𝑠2βˆ’πΏπŸ‘π‘1𝑠2

0

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 62

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

π’₯𝑣1= 𝑧0

0 Γ— π‘œ3 βˆ’ π‘œ0

π’₯𝑣1=

001

Γ—

βˆ’πΏπŸ‘π‘1𝑠2 βˆ’ 0βˆ’πΏπŸ‘π‘ 1𝑠2 βˆ’ 03 βˆ’πΏπŸ‘π‘2 βˆ’ 0

=πΏπŸ‘π‘ 1𝑠2βˆ’πΏπŸ‘π‘1𝑠2

0

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 63

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

π’₯𝑣2= 𝑧1

0 Γ— π‘œ3 βˆ’ π‘œ1

π’₯𝑣2=

βˆ’π‘ 1𝑐10

Γ—

βˆ’πΏπŸ‘π‘1𝑠2βˆ’πΏπŸ‘π‘ 1𝑠2βˆ’πΏπŸ‘π‘2

=

βˆ’πΏπŸ‘π‘1𝑐2βˆ’πΏπŸ‘π‘ 1𝑐2

𝐿3𝑠12 𝑠2 + 𝐿3𝑐1

2 𝑠2

=

βˆ’πΏπŸ‘π‘1𝑐2βˆ’πΏπŸ‘π‘ 1𝑐2𝐿3 𝑠2

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 64

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

π’₯𝑣2= 𝑧1

0 Γ— π‘œ3 βˆ’ π‘œ1

π’₯𝑣2=

βˆ’π‘ 1𝑐10

Γ—

βˆ’πΏπŸ‘π‘1𝑠2βˆ’πΏπŸ‘π‘ 1𝑠2βˆ’πΏπŸ‘π‘2

=

βˆ’πΏπŸ‘π‘1𝑐2βˆ’πΏπŸ‘π‘ 1𝑐2

𝐿3𝑠12 𝑠2 + 𝐿3𝑐1

2 𝑠2

=

βˆ’πΏπŸ‘π‘1𝑐2βˆ’πΏπŸ‘π‘ 1𝑐2𝐿3 𝑠2

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 65

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

π’₯𝑣3= 𝑧2

0

π’₯𝑣3=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 66

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

π’₯𝑣3= 𝑧2

0

π’₯𝑣3=

βˆ’π‘1𝑠2βˆ’π‘ 1𝑠2βˆ’π‘2

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 67

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

𝓙𝒗 =

π‘³πŸ‘π’”πŸπ’”πŸ βˆ’π‘³πŸ‘π’„πŸπ’„πŸ βˆ’π’„πŸπ’”πŸβˆ’π‘³πŸ‘π’„πŸπ’”πŸ βˆ’π‘³πŸ‘π’”πŸπ’„πŸ βˆ’π’”πŸπ’”πŸ

𝟎 π‘³πŸ‘ π’”πŸ βˆ’π’„πŸ

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 68

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’πΏπŸ‘π‘1𝑠2βˆ’π‘ 1𝑠2 βˆ’πΏπŸ‘π‘ 1𝑠2

βˆ’π‘ 2 00 0

βˆ’π‘2 3 βˆ’πΏπŸ‘π‘20 1

Example: RRP Robot

13.01.2018

Find the linear velocity Jacobian for the arm RRP.

For Prismatic joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0

For Revolute joint:

π’₯𝑣𝑖= π‘§π‘–βˆ’1

0 Γ— π‘œπ‘› βˆ’ π‘œπ‘–βˆ’1

𝓙𝒗 =

π‘³πŸ‘π’”πŸπ’”πŸ βˆ’π‘³πŸ‘π’„πŸπ’„πŸ βˆ’π’„πŸπ’”πŸβˆ’π‘³πŸ‘π’„πŸπ’”πŸ βˆ’π‘³πŸ‘π’”πŸπ’„πŸ βˆ’π’”πŸπ’”πŸ

𝟎 π‘³πŸ‘ π’”πŸ βˆ’π’„πŸ

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 69

𝑇 10=

𝑐1 0𝑠1 0

βˆ’π‘ 1 0𝑐1 0

0 βˆ’10 0

0 30 1

, 𝑇 20=

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 0βˆ’π‘ 1𝑠2 0

βˆ’π‘ 2 00 0

βˆ’π‘2 30 1

, 𝑇30 =

𝑐1𝑐2 𝑠1𝑠1𝑐2 βˆ’π‘1

βˆ’π‘1𝑠2 βˆ’π‘³πŸ‘π’„πŸπ’”πŸβˆ’π‘ 1𝑠2 βˆ’π‘³πŸ‘π’”πŸπ’”πŸ

βˆ’π‘ 2 00 0

βˆ’π‘2 πŸ‘ βˆ’π‘³πŸ‘π’„πŸ0 1

Example: RRP Robot

13.01.2018

Find the linear velocity of the end effector in the configuration shown with joint 1 rotation at 2 rad/sec, joint 2 rotating at -1 rad/sec, and joint 3 fixed at 2 m.

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 70

Example: RRP Robot

13.01.2018

Find the linear velocity of the end effector in the configuration shown with joint 1 rotation at 2 rad/sec, joint 2 rotating at -1 rad/sec, and joint 3 fixed at 2 m.

π’₯𝑣 =

𝐿3𝑠1𝑠2 βˆ’πΏ3𝑐1𝑐2 βˆ’π‘1𝑠2βˆ’πΏ3𝑐1𝑠2 βˆ’πΏ3𝑠1𝑐2 βˆ’π‘ 1𝑠2

0 𝐿3 𝑠2 βˆ’π‘2

πœƒ1 = 0Β°, πœƒ2 = βˆ’90Β°, 𝐿3 = 2 π‘š

π’₯𝑣 =0 0 12 0 00 βˆ’2 0

𝑣 =0 0 12 0 00 βˆ’2 0

2βˆ’10

=042

π‘š/𝑠

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 71

Example: RRP Robot

13.01.2018

Find the linear velocity of the end effector in the configuration shown with joint 1 rotation at 2 rad/sec, joint 2 rotating at -1 rad/sec, and joint 3 fixed at 2 m.

π’₯𝑣 =

𝐿3𝑠1𝑠2 βˆ’πΏ3𝑐1𝑐2 βˆ’π‘1𝑠2βˆ’πΏ3𝑐1𝑠2 βˆ’πΏ3𝑠1𝑐2 βˆ’π‘ 1𝑠2

0 𝐿3 𝑠2 βˆ’π‘2

πœƒ1 = 0Β°, πœƒ2 = βˆ’90Β°, 𝐿3 = 2 π‘š

π’₯𝑣 =0 0 12 0 00 βˆ’2 0

𝑣 =0 0 12 0 00 βˆ’2 0

2βˆ’10

=042

π‘š/𝑠

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 72

13.01.2018 J.Nassour 73

Inverting The Jacobian

β€’ Analytical inverse (more DOF more Complexity)

β€’ Numerical inverse

13.01.2018 J.Nassour 74

Reminder

Example: RRP Robot

13.01.2018

Find the joint velocities in the configuration shown if the desired linear velocities of the end effector are: 0 m/sec on x axis 4 m/sec on y axis 2 m/sec on z axis

π’₯𝑣 =

𝐿3𝑠1𝑠2 βˆ’πΏ3𝑐1𝑐2 βˆ’π‘1𝑠2βˆ’πΏ3𝑐1𝑠2 βˆ’πΏ3𝑠1𝑐2 βˆ’π‘ 1𝑠2

0 𝐿3 𝑠2 βˆ’π‘2

πœƒ1 = 0Β°, πœƒ2 = βˆ’90Β°, 𝐿3 = 2 π‘š

π’₯𝑣 =0 0 12 0 00 βˆ’2 0

π’₯π‘£βˆ’1 =

0 0.5 00 0 βˆ’0.51 0 0

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 75

Example: RRP Robot

13.01.2018

Find the joint velocities in the configuration shown if the desired linear velocities of the end effector are: 0 m/sec on x axis 4 m/sec on y axis 2 m/sec on z axis

π’₯π‘£βˆ’1 =

0 0.5 00 0 βˆ’0.51 0 0

π‘ž =0 0.5 00 0 βˆ’0.51 0 0

042

=2βˆ’10

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 76

Example: RRP Robot

13.01.2018

Find the joint velocities in the configuration shown if the desired linear velocities of the end effector are: 0 m/sec on x axis 4 m/sec on y axis 2 m/sec on z axis

π’₯π‘£βˆ’1 =

0 0.5 00 0 βˆ’0.51 0 0

π‘ž =0 0.5 00 0 βˆ’0.51 0 0

042

=2βˆ’10

Joint 3

Joint 1

Joint 2

Tool π’›πŸŽ

π’™πŸŽ

π’šπŸŽ

π’›πŸπ’™πŸπ’šπŸ

π’™πŸ

π’šπŸ

π’›πŸ

π’›πŸ‘

π’šπŸ‘

π’™πŸ‘

𝑳3

3π‘š

J.Nassour 77

13.01.2018 J.Nassour 78

Example: NAO

Throwing in 2D only with ShoulderPitch and ElbowRoll.

13.01.2018 J.Nassour 79

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸ

π‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

End Effector

Xe

Ye

Find the end-effector velocities in function of joint velocities.

The total derivatives of the kinematics equations:

𝑑𝑋𝑒 =πœ•π‘‹π‘’(π‘ž1, π‘ž2)

πœ•π‘ž1π‘‘π‘ž1+

πœ•π‘‹π‘’(π‘ž1, π‘ž2)

πœ•π‘ž2π‘‘π‘ž2

π‘‘π‘Œπ‘’ =πœ•π‘Œπ‘’(π‘ž1, π‘ž2)

πœ•π‘ž1π‘‘π‘ž1+

πœ•π‘Œπ‘’(π‘ž1, π‘ž2)

πœ•π‘ž2π‘‘π‘ž2

The Jacobian matrix represents the differential relationship between the joint displacement and the resulting end effector motion.

It comprises the partial derivatives of 𝑋𝑒(π‘ž1, π‘ž2) and Y𝑒(π‘ž1, π‘ž2)with respect to the joint displacements π‘ž1 and π‘ž2.

13.01.2018 J.Nassour 80

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸ

π‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

End Effector

Xe

Ye

π’₯𝑣 =

πœ•π‘‹π‘’(π‘ž1,π‘ž2)

πœ•π‘ž1

πœ•π‘‹π‘’(π‘ž1,π‘ž2)

πœ•π‘ž2πœ•π‘Œ

𝑒(π‘ž

1,π‘ž

2)

πœ•π‘ž1

πœ•π‘Œπ‘’(π‘ž

1,π‘ž

2)

πœ•π‘ž2

π’₯𝑣 = βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1 + 𝐼2𝑐12 𝐼2𝑐12

13.01.2018 J.Nassour 81

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸ

π‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

End Effector

Xe

Ye

π’₯𝑣 =

πœ•π‘‹π‘’(π‘ž1,π‘ž2)

πœ•π‘ž1

πœ•π‘‹π‘’(π‘ž1,π‘ž2)

πœ•π‘ž2πœ•π‘Œ

𝑒(π‘ž

1,π‘ž

2)

πœ•π‘ž1

πœ•π‘Œπ‘’(π‘ž

1,π‘ž

2)

πœ•π‘ž2

π’₯𝑣 = βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1 + 𝐼2𝑐12 𝐼2𝑐12

13.01.2018 J.Nassour 82

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸ

π‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

End Effector

Xe

Ye

π’₯𝑣 = βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1 + 𝐼2𝑐12 𝐼2𝑐12

We can divide the 2-by-2 Jacobian into two column vectors:

π’₯𝑣= (π’₯1 , π’₯2), π’₯1 , π’₯2 ∈ 𝕽2 Γ— 1

We can then write the resulting end-effector velocity vector:

𝑉𝑒 = π’₯1 . π‘ž1+ π’₯2 . π‘ž2

Each column vector of the Jacobian matrix represents the end –effector velocity generated by the corresponding joint moving when all other joints are not moving.

13.01.2018 J.Nassour 83

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸ

π‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

End Effector

Xe

Ye

π’₯𝑣 = βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1 + 𝐼2𝑐12 𝐼2𝑐12

π’₯1 =βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12𝐼1𝑐1+ 𝐼2𝑐12

π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

13.01.2018 J.Nassour 84

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸ

π‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

End Effector

π’₯1 =βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12𝐼1𝑐1 + 𝐼2𝑐12

, π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

Illustrate the column vector of the Jacobian in the space at the end-effector point.

13.01.2018 J.Nassour 85

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸ

π‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

End Effector

π’₯1 =βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12𝐼1𝑐1 + 𝐼2𝑐12

, π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

Illustrate the column vector of the Jacobian in the space at the end-effector point.

π’₯2 points in the direction perpendicular to link 2.

While π’₯1 is not perpendicular to link 1 but is perpendicular to the vector (Xe,Ye).This is because π’₯1 represent the endpoint velocity caused by joint 1 when joint 2 is not rotating.In other word, link 1 and 2 are rigidly connected, becoming a single rigid body of length (Xe,Ye) and π’₯1 is the tip velocity of this body.

13.01.2018 J.Nassour 86

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

π’₯1 =βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12𝐼1𝑐1 + 𝐼2𝑐12

, π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

Illustrate the column vector of the Jacobian in the space at the end-effector point.

π’₯2 points in the direction perpendicular to link 2.

While π’₯1 is not perpendicular to link 1 but is perpendicular to the vector (Xe,Ye).This is because π’₯1 represent the endpoint velocity caused by joint 1 when joint 2 is not rotating. In other word, link 1 and 2 are rigidly connected, becoming a single rigid body of length (Xe,Ye) and π’₯1 is the tip velocity of this body.

π’₯2

π’₯1

13.01.2018 J.Nassour 87

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

π’₯1 =βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12𝐼1𝑐1 + 𝐼2𝑐12

, π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

If the two Jacobian column vectors are aligned, the end-effector can not be moved in an arbitrary direction.

This may happen for particular arm configurations when the two links are fully contracted or extracted.

These arm configurations are referred to as singular configurations.

ACCORDINGLY, the Jacobian matrix become singular at these positions.

Find out the singular configurations…

π’₯2

π’₯1

13.01.2018 J.Nassour 88

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

π’₯1 =βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12𝐼1𝑐1 + 𝐼2𝑐12

, π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

π’₯2

π’₯1

13.01.2018 J.Nassour 89

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

π’₯𝑣 = βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1 + 𝐼2𝑐12 𝐼2𝑐12

The Jacobian reflects the singular configurations.When joint 2 is 0 or 180 degrees:

𝑑𝑒𝑑 π’₯𝑣 = detβˆ’ 𝐼1 Β± 𝐼2 𝑠1 βˆ“πΌ2𝑠1𝐼1 Β± 𝐼2 𝑐1 ±𝐼2𝑐1

= 0

π’₯2

π’₯1

13.01.2018 J.Nassour 90

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

Forward kinematics:

𝑋𝑒 = 𝐼1 𝑐1 + 𝐼2 𝑐12π‘Œπ‘’ = 𝐼1 𝑠1 + 𝐼2 𝑠12

π’₯𝑣 = βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1 + 𝐼2𝑐12 𝐼2𝑐12

The Jacobian reflects the singular configurations.When joint 2 is 0 or 180 degrees:

𝑑𝑒𝑑 π’₯𝑣 = detβˆ’ 𝐼1 Β± 𝐼2 𝑠1 βˆ“πΌ2𝑠1𝐼1 Β± 𝐼2 𝑐1 ±𝐼2𝑐1

= 0

π’₯2

π’₯1

13.01.2018 J.Nassour 91

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

Work out the joint velocities 𝒒 ( π’’πŸ, π’’πŸ) in terms of the end effector velocity Ve(Vx,Vy).

If the arm configuration is not singular, this can be obtained by taking the inverse of the Jacobian matrix:

π‘ž = π½βˆ’1. 𝑉𝑒

Note that the differential kinematics problem has a unique solution as long as the Jacobian is non-singular.

Since the elements of the Jacobian matrix are function of joint displacements, the inverse Jacobian varies depending on the arm configuration. This means that although the desired end-effector velocity is constant, the joint velocities are not.

13.01.2018 J.Nassour 92

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

We want to move the endpoint of the robot at a constant speed along a path starting at point β€œA” on the x-axis, (+2.0, 0), go around the origin through point β€œB” (+Ι›, 0) and β€œC” (0, +Ι›), and reach the final point β€œD” (0, +2.0) on the y-axis. Consider I1 = I2.

Work out joints velocities along this path.

D

13.01.2018 J.Nassour 93

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

We want to move the endpoint of the robot at a constant speed along a path starting at point β€œA” on the x-axis, (+2.0, 0), go around the origin through point β€œB” (+Ι›, 0) and β€œC” (0, +Ι›), and reach the final point β€œD” (0, +2.0) on the y-axis. Consider I1 = I2.

Work out joints velocities along this path.

The Jacobian is:

π’₯𝑣 = βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1+ 𝐼2𝑐12 𝐼2𝑐12

13.01.2018 J.Nassour 94

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

The Jacobian is:

π’₯𝑣 = βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1+ 𝐼2𝑐12 𝐼2𝑐12

The inverse of the Jacobian is:

π’₯π‘£βˆ’1 =

1

𝐼1𝐼2𝑠2

𝐼2𝑐12 𝐼2𝑠12βˆ’πΌ1𝑐1βˆ’ 𝐼2𝑐12 βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12

We want to move the endpoint of the robot at a constant speed along a path starting at point β€œA” on the x-axis, (+2.0, 0), go around the origin through point β€œB” (+Ι›, 0) and β€œC” (0, +Ι›), and reach the final point β€œD” (0, +2.0) on the y-axis. Consider I1 = I2.

Work out joints velocities along this path.

13.01.2018 J.Nassour 95

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

The inverse of the Jacobian is:

π’₯π‘£βˆ’1 =

1

𝐼1𝐼2𝑠2

𝐼2𝑐12 𝐼2𝑠12βˆ’πΌ1𝑐1βˆ’ 𝐼2𝑐12 βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12

π‘ž1 =𝐼2𝑐12. 𝑉π‘₯ + 𝐼2𝑠12. 𝑉𝑦

𝐼1𝐼2𝑠2

π‘ž2 =βˆ’πΌ1𝑐1βˆ’ 𝐼2𝑐12 . 𝑉π‘₯ + [βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12]. 𝑉𝑦

𝐼1𝐼2𝑠2

We want to move the endpoint of the robot at a constant speed along a path starting at point β€œA” on the x-axis, (+2.0, 0), go around the origin through point β€œB” (+Ι›, 0) and β€œC” (0, +Ι›), and reach the final point β€œD” (0, +2.0) on the y-axis. Consider I1 = I2.

Work out joints velocities along this path.

13.01.2018 J.Nassour 96

π‘ž1 =𝐼2𝑐12. 𝑉π‘₯ + 𝐼2𝑠12. 𝑉𝑦

𝐼1𝐼2𝑠2

π‘ž2 =βˆ’πΌ1𝑐1 βˆ’ 𝐼2𝑐12 . 𝑉π‘₯ + [βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12]. 𝑉𝑦

𝐼1𝐼2𝑠2

D

13.01.2018 J.Nassour 97

π‘ž1 =𝐼2𝑐12. 𝑉π‘₯ + 𝐼2𝑠12. 𝑉𝑦

𝐼1𝐼2𝑠2

π‘ž2 =βˆ’πΌ1𝑐1 βˆ’ 𝐼2𝑐12 . 𝑉π‘₯ + [βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12]. 𝑉𝑦

𝐼1𝐼2𝑠2

D

13.01.2018 J.Nassour 98

Example: RR Robot

Note that the joint velocities are extremely large near the initial and the final points, and are unbounded at points A and D. These are the arm singular configurations q2=0.

π‘ž1 =𝐼2𝑐12. 𝑉π‘₯ + 𝐼2𝑠12. 𝑉𝑦

𝐼1𝐼2𝑠2

π‘ž2 =βˆ’πΌ1𝑐1βˆ’ 𝐼2𝑐12 . 𝑉π‘₯ + [βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12]. 𝑉𝑦

𝐼1𝐼2𝑠2

D

13.01.2018 J.Nassour 99

Example: RR Robot

π‘ž1 =𝐼2𝑐12. 𝑉π‘₯ + 𝐼2𝑠12. 𝑉𝑦

𝐼1𝐼2𝑠2

π‘ž2 =βˆ’πΌ1𝑐1βˆ’ 𝐼2𝑐12 . 𝑉π‘₯ + [βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12]. 𝑉𝑦

𝐼1𝐼2𝑠2

As the end-effector gets close to the origin, the velocity of the first joint becomes very large in order to quickly turn the arm around from point B to C. At these configurations, the second joint is almost -180 degrees, meaning that the arm is near singularity.

D

13.01.2018 J.Nassour 100

Example: RR Robot

π‘ž1 =𝐼2𝑐12. 𝑉π‘₯ + 𝐼2𝑠12. 𝑉𝑦

𝐼1𝐼2𝑠2

π‘ž2 =βˆ’πΌ1𝑐1βˆ’ 𝐼2𝑐12 . 𝑉π‘₯ + [βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12]. 𝑉𝑦

𝐼1𝐼2𝑠2

This result agrees with the singularity condition using the determinant of the Jacobian:

𝑑𝑒𝑑 π’₯𝑣 = sin π‘ž2 = 0 for π‘ž2 = π‘˜πœ‹, π‘˜ = 0, Β±1,Β±2,…

D

13.01.2018 J.Nassour 101

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

Using the Jacobian, analyse the arm behaviour at the singular points. Consider (l1=l2=1).

The Jacobian is:

π’₯𝑣 = βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1+ 𝐼2𝑐12 𝐼2𝑐12

, π’₯1 =βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12𝐼1𝑐1+ 𝐼2𝑐12

, π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

For q2=0:

π’₯1 =βˆ’2𝑠12𝑐1

, π’₯2 =βˆ’π‘ 1𝑐1

The Jacobian column vectors reduce to the ones in the same direction. Note that no endpoint velocity can be generated in the direction perpendicular to the aligned arm links (singular configuration A and D).

13.01.2018 J.Nassour 102

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

Using the Jacobian, analyse the arm behaviour at the singular points. Consider (l1=l2=1).

The Jacobian is:

π’₯𝑣 = βˆ’πΌ1𝑠1 βˆ’ 𝐼2𝑠12 βˆ’πΌ2𝑠12𝐼1𝑐1+ 𝐼2𝑐12 𝐼2𝑐12

, π’₯1 =βˆ’πΌ1𝑠1βˆ’ 𝐼2𝑠12𝐼1𝑐1+ 𝐼2𝑐12

, π’₯2 =βˆ’πΌ2𝑠12𝐼2𝑐12

For q2=𝝅:

π’₯1 =00, π’₯2 =

𝑠1βˆ’π‘1

The first joint cannot generate any endpoint velocity, since the arm is fully contracted (singular configuration B).

13.01.2018 J.Nassour 103

Example: RR Robot

π’™πŸŽ

π’šπŸŽ

π‘°πŸπ‘ž1

π‘ž2π‘°πŸ

π’₯2

π’₯1

Using the Jacobian, analyse the arm behaviour at the singular points. Consider (l1=l2=1).

At the singular configuration, there is at least one direction is which the robot cannot generate a non-zero velocity at the end effector.

Example: RRR Robot

13.01.2018

The robot has three revolute joints that allow the endpoint to move in the three dimensional space. However, this robot mechanism has singular points inside the workspace. Analyze the singularity, following the procedure below.

J.Nassour 104

Link 0 (fixed)

Joint 1

Link 1

Joint variable 𝜽1

Joint 2

Link 2

Joint variable 𝜽2

Link 3

π’›πŸ

Joint 3

Joint variable 𝜽3

π’›πŸ‘

π’™πŸŽ

π’šπŸŽ

π’›πŸŽ

π’›πŸ π’™πŸ

π’šπŸ

π’™πŸ

π’šπŸ

π’™πŸ‘

π’šπŸ‘

Link 1= 2 mLink 2= 2 mLink 3= 2 m

Step 3 Find the joint angles that make det J =0.Step 4 Show the arm posture that is singular. Show where in the workspace it becomes singular. For each singular configuration, also show in which direction the endpoint cannot have a non-zero velocity.

Step 1 Obtain each column vector of the Jacobian matrix by considering the endpoint velocity created by each of the joints while immobilizing the other joints.

Step 2 Construct the Jacobian by concatenating the column vectors, and set the determinant of the Jacobian to zero for singularity: det J =0.

13.01.2018 J.Nassour 105

Stanford Arm

π’…πŸ‘

𝑑6

𝜽𝟏

𝜽𝟐

πœ½πŸ’

πœ½πŸ“

πœ½πŸ”

π’›πŸŽ

π’›πŸ

π’›πŸ

π’›πŸ’

π’›πŸ‘ π’›πŸ“

𝑑2

π’›πŸ”

π’™πŸ π’™πŸ

𝒙

π’šπŸ”

π’™πŸ”

Give one example of singularity that can occur.

Whenever πœ½πŸ“ = 𝟎 , the manipulator is in a singular configuration because joint 4 and 6 line up. Both joints actions would results the same end-effector motion (one DOF will be lost).

13.01.2018 J.Nassour 106

PUMA 260

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“ πœ½πŸ”

π’›πŸŽ

π’™πŸŽπ’šπŸŽ

π’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’›πŸ

π’šπŸπ’™πŸ‘

π’šπŸ‘

π’›πŸ‘

π’›πŸ’π’šπŸ’

π’™πŸ’

π’™πŸ“

π’šπŸ“π’›πŸ“

π’™πŸ”

π’šπŸ”π’›πŸ”

π’…πŸ

π’‚πŸ

π’…πŸ’

π’‚πŸ‘

π’…πŸ”

Give two examples of singularities that can occur.

Whenever πœ½πŸ“ = 𝟎 , the manipulator is in a singular configuration because joint 4 and 6 line up. Both joints actions would results the same end-effector motion (one DOF will be lost).

Whenever πœ½πŸ‘ = βˆ’πŸ—πŸŽ , the manipulator is in a singular configuration. In this situation, the arm is fully extracted. This is classed as a workspace boundary singularity.

13.01.2018 J.Nassour 107

𝜽𝟏

𝜽𝟐

πœ½πŸ‘

πœ½πŸ’

πœ½πŸ“

𝒛𝑻

π’™π‘»π’šπ‘»

π’›πŸŽπ’™πŸŽ

π’šπŸŽ

π’›πŸ

π’šπŸπ’™πŸ

π’›πŸ

π’šπŸ

π’™πŸ

π’šπŸ‘

π’™πŸ‘

π’›πŸ‘

π’›πŸ’

π’™πŸ’

π’šπŸ’

NAO Left Arm

π’›πŸ“

π’™πŸ“π’šπŸ“

13.01.2018 J.Nassour 108

NAO Right Arm