vibrios is

Upload: guna-babu

Post on 05-Apr-2018

224 views

Category:

Documents


0 download

TRANSCRIPT

  • 7/31/2019 Vibrios Is

    1/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 1 of 35

    Identification ofVibrionaceae from Australian aquatic animals

    using phenotypic and PCR procedures

    J Carson

    MJ HigginsTK Wilson

    Fish Health Unit

    Department of Primary Industries & WaterPO Box 46, Kings Meadows

    Launceston, Tasmania [email protected]

    N Gudkovs AAHL Australian Fish Disease Laboratory

    CSIRO Livestock Industries

    Private Mail Bag 24

    Geelong

    Victoria 3220

    TN Bryant Medical Statistics and Computing

    University of SouthamptonSouthampton General Hospital

    Tremona Rd, Southampton SO16 6YD

    Hampshire, United Kingdom

    5

    SUMMARY

    The Vibrionaceae is a large and complex group of marine bacteria that can have asignificant impact on the health of aquatic animals. A range of pathogenicity is seen among

    the species but a consistent feature is the opportunistic basis of infection. Nearly all phases

    of farm production are affected from larval rearing to competent adult animals. Disease10outbreaks may occur in disparate animal groups including marine mammals, fin fish,crustacea, molluscs and zooxanthellae of coral. Some strains, however, can act as probionts

    and have proved effective as a means of controlling disease caused by other species of

    Vibrionaceae.

    Identification: Routine, high-volume identification is achieved by phenotyping using15standardised tests. To accommodate the large number of taxa and the phenotypic diversity

    that exists intra-species, identification is only practicable using computer-assistedprobabilistic methods. The use of molecular tools for identification remains limited but PCR

    for several species is useful as a means of rapid screening or confirmatory identification.

    Status of Australia and New Zealand: The range ofVibrionaceae associated with aquatic20animals in Australia is relatively small despite the diversity of habitats, geographic range

    and climatic variation. Major pathogens encountered are Photobacterium damselae ssp.

    damselae, Vibrio anguillarum and Vibrio harveyi. More unusual species isolated are Vibrioscophthalmi (Atlantic salmon), Vibrio penaeicida (southern rock lobster) and

    Photobacterium damselae ssp. piscicida (southern blue fin tuna). These species are rarely25encountered and appear to be incidental findings not associated with disease.

    30

  • 7/31/2019 Vibrios Is

    2/35

  • 7/31/2019 Vibrios Is

    3/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 3 of 35

    Development of an exhaustive list of Australian host species serves little purpose. More80

    importantly, cognisance of the range of host types is central to obtaining an understanding of

    the pathogenic versatility of the Vibrionaceae. In nearly every group of marine species,

    examples can be found of Vibrionaceae acting as pathogens. Major groups affected are:

    marine mammals, teleost fish, crustacea, molluscs, both univalve and bivalve, and plants

    represented by the zooxanthellae of coral.1785

    Species Enzootic in Australia

    Listing Vibrionaceae known to occur in Australia provides a guide to species that have beenfound associated with aquatic animals, Table 1. Not all the species listed were found as

    pathogens.

    90

    Table 1. Vibrionaceae enzootic in Australia

    Aliivibrio fischeriPhotobacterium damselae ssp. damselaePhotobacterium damselae ssp. piscicidaPhotobacterium iliopiscarium

    Vibrio alginolyticusVibrio anguillarum

    Vibrio chagasiiVibrio cholerae non-O1Vibrio cyclitrophicusVibrio diazotrophicusVibrio furnissiiVibrio fluvialisVibrio halioticoli

    Vibrio harveyiVibrio ichthyoenteriVibrio lentus

    Vibrio mediterraneiVibrio mimicusVibrio mytiliVibrio natriegens

    Vibrio navarrensisVibrio nereis

    Vibrio parahaemolyticusVibrio pelagiusVibrio penaeicidaVibrio proteolyticusVibrio scophthalmiVibrio splendidus biovar IVibrio tasmaniensis

    Vibrio tubiashiiVibrio vulnificus biovar I

    Species Exotic to AustraliaSeveral pathogens, as listed in Table 2, have not been detected in association with aquatic

    animals and are considered exotic.

    5

    Table 2. Vibrionaceae exotic to Australia

    Species Primary host

    Aliivibrio salmonicida salmonidsAliivibrio wodanis salmonids

    Moritella viscosa salmonids10Vibrio ordalii salmonids

    Vibrio pectenicida scallopsVibrio tapetis clams

    Vibrio vulnificus biovar II eels

    15

    Zoonotic Agents

    Some species ofVibrionaceae are the cause of zoonoses18

    , Table 3. Infection invariably isthe result of physical trauma arising from puncture wounds or the result of ingesting

    uncooked seafood. Life-threatening conditions have been reported occasionally in theimmunocompromised.20

  • 7/31/2019 Vibrios Is

    4/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 4 of 35

    Table 3. Zoonotic Vibrionaceae25

    Photobacterium damselae ssp. damselaeVibrio alginolyticus

    Vibrio cholerae non-O1Vibrio cincinnatiensisVibrio fluvialis30

    Vibrio furnissiiVibrio harveyi

    Vibrio mimicusVibrio parahaemolyticusVibrio vulnificus35

    Characteristics of the Vibrionaceae

    Sodium chloride is critical for the growth ofVibrionaceae. Many species have an obligate

    requirement for sodium ions and growth of nearly all species is stimulated by NaCl, eventhose that have a low requirement for NaCl, such as V cholerae.19 Species of the

    Vibrionaceae do not in general have fastidious growth requirements and can be readily40

    grown on peptone-based media as long as NaCl requirements are met. Growth ofAliivibrio

    salmonicida, A wodanis and M viscosa, is more reliable on media enriched with blood. In

    defined media some Vibrionaceae require supplementation with vitamins20, while most

    strains, even in complex media, respond well to the addition of low levels of yeast extract.21

    As the natural habitat of the Vibrionaceae is the marine environment, better growth is45obtained at a slightly alkaline pH in the range of 7.5-7.8. Many species and strains will form

    distinctive curved rods but this characteristic is not diagnostic of the Vibrionaceae. In tissue

    smears, rods can appear preternaturally large or pleomorphic but on culture will assume

    more typical form and proportions.Uniformly the Vibrionaceae are facultative anaerobes that ferment glucose. All species are50

    oxidase positive with the exception ofV metschnikovii, which is oxidase negative. Species

    are sensitive to the vibriostat 0/129, a pteridine derivative related to trimethoprim.22

    Some

    species however, such as V lentus, may appear resistant if inappropriate test media are used

    or if strains have acquired resistance to trimethoprim from the drfA1 gene in plasmid class I

    integrons.23 Most species of Vibrionaceae will grow at 25C except forA salmonicida,55A wodanis, M marina, M viscosa, Ph iliopiscarium and Ph phosphoreum, which grow at

    15C. All zoonotic species will grow at 35-37C.

  • 7/31/2019 Vibrios Is

    5/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 5 of 35

    Isolation Strategies

    For osmoregulators, cultures from internal sites should be made on media enriched with

    blood such as Blood Agar Base No. 2 (Oxoid) with 7% defibrinated sheep's blood as a non-60

    selective medium, and thiosulphate citrate bile sucrose (TCBS; Oxoid24) agar as a selective

    indicator medium forVibrionaceae. TCBS should be used only in conjunction with a non-

    selective medium as not all species will grow on TCBS. For external sites on osmoregulators

    or any site of an osmoconformer, samples should be plated on either ZoBell's 2216E25

    orJohnson's marine agar26 (see Appendix 1) as non-selective media and TCBS as the selective65medium. For salmonids, particularly during periods of low water temperatures, samples

    from external sites should be plated on blood agar supplemented with 1.5% NaCl.27 Plates

    should be incubated at 25C for 2-3 days or at 15C for up to 7 days for psychrophiles.

    Procedure for sampling should follow the ANZSDP guidelines for sample collection fromfinfish.2870

    PreservationCultures of Vibrionaceae can be held frozen at -80C or in liquid nitrogen. A

    cryopreservative (see Appendix 1) based on peptone and glycerol is suitable.29 Long-term

    storage based on freeze-drying is effective but the menstruum must be based on meso-

    inositol30 so as to regulate membrane phase transition temperature effects and protein75stabilisation31 during freeze-drying and rehydration. Some species, notably A salmonicida

    and M marina have proved refractory to freeze-drying and are best preserved frozen.

    Generally, cultures recover well from preservation. ZMA or JMA are suitable recovery

    media but for more fastidious species particularly A salmonicida, M marina and M viscosablood agar supplemented with 2% NaCl should be used. A prudent strategy for recovery80

    from freeze-drying is to use Vibrio Recovery Medium (Appendix 1), which contains sodiumpyruvate32,33, which has been found useful in repair of damaged cells.

    Identification StrategiesPhenotyping: Typically the Vibrionaceae exhibit a wide diversity of phenotype both

    between and within species. This heterogeneity in phenotype means that identification using85a small number of tests either with keys or tables is unreliable. A more dependable strategy

    is to use a simultaneous polythetic approach34 combined with computer-assisted

    probabilistic identification.35

    An identification matrix, VibEx7 (Appendix 3), has been developed for species of

    Vibrionaceae associated with a diversity of aquatic animals in Australia from both temperate90

    and tropical regions8. The matrix can identify 61 species and biovars and a further 25 as yet

    un-named protospecies ofVibrionaceae from aquatic animals. The panel of tests consists of

    39 biochemical and 5 antibiotic sensitivity tests; details of the tests and formulations are

    given in Appendix 2. The biochemical tests are in conventional tube or plate format.

    Alternatively, the panel of tests is available commercially in miniaturised format as95MicroSys V36 (DPIW, Launceston, Tasmania).

    Probabilistic identification is undertaken using an implementation of Bayes Theorem.35 An

    identification is reached if the Willcox probability value P0.99 and the modal likelihood

    score 0.001. The Willcox probability is a measure of the most likely identification, while

    the modal likelihood is a measure of the goodness-of-fit of the unknown to the nominated100

    species.36 Probabilistic identification is undertaken using PIBWin37, an intuitive software

    package, available freely from the University of Southampton, UK at:http://www.som.soton.ac.uk/staff/tnb/pib.htm

    Molecular: Identification of Vibrionaceae using molecular methods is controversial.

    Amplified fragment length polymorphism (AFLP) and multilocus sequence typing38

    have105proved important in establishing the taxonomic structure of the Vibrionaceae but theseprocedures are not as yet suitable for routine identification purposes. PCR amplification of

  • 7/31/2019 Vibrios Is

    6/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 6 of 35

    sequence motifs characteristic of species is a practical means of molecular identification but

    the scope of application is limited.39 The most widely described and conserved construct is

    the 16S rRNA gene but for the Vibrionaceae40

    sequence divergence is only 9% which110

    greatly limits the possibilities of identifying motifs that are species unique. Sequences other

    than 16S rRNA have been identified, typically virulence factors, but the constancy of these

    targets across strains of a species is unknown and their suitability as constructs for

    identification purposes is questionable.Recommended PCR primer sets relevant for Vibrionaceae of aquatic animals in Australia115are forPh damselae and V harveyi. Based on the 16S rRNA gene both primer sets are

    suitable for species identification. The PCR forPh damselae is in multiplex format41 with

    one primer pair specific forPh damselae sensu lato and a second primer pair for the urease

    gene ureC that is specific forPh damselae ssp. damselae. Evidence ofPh damselae ssp

    piscicida is inferred by the absence of a ureC amplicon. The primer pair forV harveyi42

    is120

    compromised to some extent by known cross-reaction with some, but not all, strains of V

    alginolyticus. For the primers to be truly discriminating, positive PCR reactions must be

    verified using at least one of the phenotypic tests listed in Table 4.

    Table 4. Differential phenotypic tests forVibrio harveyi andVibrio alginolyticus for confirming a positive PCR125

    reaction for 16S rRNA V harveyi primers.

    Species PNPG* Aesculin

    Putrescine

    V alginolyticus 16% 10% 100%

    V harveyi bv I 95% 95% 2%

    V harveyi bv II 100% 100% 0%130*PNPG: 2-nitrophenyl -D-galactopyranoside;Aesculin hydrolysis;

    Utilisation of putrescine

    Identification by PCR should be limited to pure cultures and used as a means of confirming135the identity of strains with atypical phenotypes. Performance of the primers has not beenvalidated for the purpose of direct detection in tissues or environmental samples.

    A range of primer sets for other constructs in the Vibrionaceae have been described, of

    which some have been critically evaluated. Of these, primers for the cth

    cytolysin/haemolysin gene of V vulnificus43

    and the vah1 haemolysin gene of V140anguillarum44 appear robust. Use of these primers for identification in the absence of other

    species defining characteristics is not recommended since the frequency at which the targetsoccur intra-species is not known. The primers may have value however for screening

    purposes, particularly for strains where the target is known to occur or for establishing the

    presence of virulence factors.145Quality Control

    The most important factor determining success in identification is the use of standardised

    tests. Tests of different format should not be used unless extensive testing has been

    undertaken to verify test equivalence. It is important to recognise and identify sources of

    error that, if not well controlled, can result in unreliable identification outcomes.34

    Intrinsic150error is associated with some tests and some species that can result in variable test outcomes.

    A second form of error arises from procedural deficiencies, particularly interpretation ofweak positive tests. Regular use of quality control organisms (Table 5) is recommended,

    together with trend analysis to identify drift in performance. With practice, intra-laboratorytest error of 2% is achievable.8,45,46155

    Table 5. Vibrio Quality Control Strains

    Vibrio anguillarum ATCC 19264T

  • 7/31/2019 Vibrios Is

    7/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 7 of 35

    Vibrio fluvialis NCTC 11327T

    Vibrio mediterranei CIP 103203T

    Vibrio parahaemolyticus ATCC 17802T

    160

    Vibrio tubiashii NCIMB 1340T

    Limitations

    The identification matrix VibEx7 reflects the diversity of Vibrionaceae associated withaquatic animals in Australia. It does not however include all the validly published species of165Vibrionaceae as listed in Table 6 and these species will not be identified using the matrix.

    Data for new species as they occur can be readily added to the VibEx7 matrix. The ability todifferentiate the new species from those already in the matrix can be assessed using the

    IDSC tool in the PIBWin software.

    170

    Table 6. Species not in the VibEx7 matrix

    Species Host Species Host175

    Enterovibrio coralii PlantEnterovibrio norvegicus Animal

    Moritella abyssi Environment

    Moritella japonica EnvironmentMoritella profunda Environment180Moritella yayanosii EnvironmentPhotobacterium aplysiae Animal

    Photobacterium frigidiphilum EnvironmentPhotobacterium ganghwense Environment

    Photobacterium halotolerans Environment185

    Photobacterium indicum EnvironmentPhotobacterium lipolyticum Environment

    Photobacterium profundum EnvironmentPhotobacterium rosenbergii Plant

    Vibrio aerogenes Environment190Vibrio brasiliensis Animal

    Vibrio coralliilyticus Plant

    Vibrio crassostreae Animal

    Vibrio diabolicus EnvironmentVibrio ezurae Animal195

    Vibrio fortis Animal

    Vibrio gallicus AnimalVibrio gigantis AnimalVibrio hepatarius AnimalVibrio hispanicus Animal200

    Vibrio kanaloae AnimalVibrio neonatus Animal

    Vibrio neptunius Animal

    Vibrio pacinii EnvironmentVibrio pomeroyi Animal205

    Vibrio ponticus AnimalVibrio rotiferianus Animal

    Vibrio ruber EnvironmentVibrio superstes Animal

    Vibrio xuii Animal210

  • 7/31/2019 Vibrios Is

    8/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 8 of 35

    References

    1. Urakawa H, Rivera ING. Aquatic Environment. In: Thompson FL, Austin B, Swings J, editors. TheBiology of the Vibrios. ASM Press, Washington, DC, 2006:175-189

    2. Austin B, Stuckey LF, Robertson PAW, Effendi I, Griffith DRW. A probiotic strain of Vibrio215alginolyticus effective in reducing diseases caused by Aeromonas salmonicida, Vibrio anguillarum and

    Vibrio ordalii. J Fish Dis 1995;18:93-96

    3. Huys L, Dhert P, Robles Ret al. Search for beneficial bacterial strains for turbot (Scophthalmus maximusL) larviculture.Aquaculture 2001;193:25-37

    4. Austin B, Austin DA, Blanch ARet al. A comparison of methods for the typing of fish-pathogenic Vibrio220spp. Syst Appl Microbiol1997;20:89-101

    5. Thompson FL, Swings J. Taxonomy of the Vibrios. In: Thompson FL, Austin B, Swings J, editors. The

    Biology of the Vibrios. ASM Press, Washington, DC, 2006:29-43

    6. Thompson FL, Vandemeulebroecke K, Swings J. Genomic diversity amongst Vibrio isolates fromdifferent sources determined by fluorescent amplified fragment length polymorphism. Syst Appl Microbiol2252001;24:520-538

    7. Bryant TN, Lee JV, West PA Colwell RR. Numerical classification of species of Vibrio and relatedgenera.J Appl Bacteriol1986;61:437-467

    8. Carson J, Higgins MJ, Wilson T, Gudkovs N, Bryant TN. Vibrios of Aquatic Animals: Development of aNational Standard Diagnostic Technology. Fisheries Research and Development Corporation, Canberra,2302006:1-347

    9. Thompson FL, Iida T, Swings J. Biodiversity of Vibrios.Microbiol Mol Biol Rev 2004;68:403-431

    10. Vandenberghe J, Thompson FL, Gomez-Gil B, Swings J. Phenotypic diversity amongst Vibrio isolatesfrom marine aquaculture systems.Aquaculture 2003;219:9-20

    11. Goudie ED, Gow JA. The taxonomic significance of the growth response to Na+

    by strains ofVibrio. Can235J Microbiol1995;41:930-935

    12. Baumann P, Baumann L, Bang SS, Woolkalis MJ. Reevaluation of the taxonomy ofVibrio, Beneckea, andPhotobacterium: abolition of the genusBeneckea. Curr Microbiol1980;4:127-132

    13. Baumann P, Furniss A, Lee J. Genus I Vibrio Pacini 1854, 411AL

    . In: Krieg NR, editor. Bergey's Manualof Systematic Bacteriology, Vol 1. Williams & Wilkins, Baltimore, 1984:518-538240

    14. Allam B, Paillard C, Ford SE. Pathogenicity ofVibrio tapetis, the etiological agent of brown ring diseasein clams.Dis Aquat Organ 2002;48:221-231

    15. Liu P-C, Lee K-K. Cysteine protease is a major exotoxin of pathogenic luminous Vibrio harveyi in thetiger prawn,Penaeus monodon. Lett Appl Microbiol1999;28:428-430

    16. Zhang X-H, Austin B. Pathogenicity ofVibrio harveyi to salmonids.J Fish Dis 2000;23:93-102245

    17. Ben-Haim Y, Zicherman-Keren M, Rosenberg E. Temperature-regulated bleaching and lysis of the coralPocillopora damicornis by the novel pathogen Vibrio coralliilyticus. Appl Environ Microbiol

    2003;69:4236-4242

    18. Daniels NA, Shafaie AS. A review of pathogenic Vibrio infections for clinicians.Infect Med2000;17:665-685250

    19. Singleton FL, Attwell R, Jangi S, Colwell RR. Effects of temperature and salinity on Vibrio cholerae.

    Appl Environ Microbiol1982;44:1047-1058

    20. Baumann P, Baumann L, Mandel M. Taxonomy of marine bacteria: the genus Beneckea. J Bacteriol1971;107:268-294

    21. Smith SK, Sutton DC, Fuerst JA, Reichelt JL. Evaluation of the genus Listonella and reassignment of255Listonella damsela (Love et al) MacDonell and Colwell to the genusPhotobacterium asPhotobacteriumdamsela comb. nov. with an emended description.Int J Syst Bacteriol1991; 41:529-534

    22. Matsushita S, Kudoh Y, Ohashi M. Transferable resistance to vibriostatic agent 2,4-diamino 6,7-diisopropylpteridine (0/129) in Vibrio cholerae. Microbiol Immunol1984;28:1159-1162

  • 7/31/2019 Vibrios Is

    9/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 9 of 35

    23. Thungapathra M, Sinha KK, Chaudhuri SR et al. Occurrence of antibiotic resistance gene cassettes260aac(6')-Ib, dfrA5, dfraA12, and ereA2 in Class I integrons in non-O1, non-O139 Vibrio cholerae strains in

    India.Antimicrob Agents Chemother2002;46:2948-2955

    24. Nicholls KM, Lee JV, Donovan TJ. An evaluation of commercial thiosulphate citrate bile salt sucrose agar

    (TCBS).J Appl Bacteriol1976;41:265-269

    25. Oppenheimer CH, ZoBell CE. The growth and viability of sixty-three species of marine bacteria as265

    influenced by hydrostatic pressure.J Mar Res 1952;9:10-1826. Johnson PT. A new medium for maintenance of marine bacteria.J Invertebr Pathol1968;11:144

    27. Lunder T, Evensen , Holstad G, Hstein T. 'Winter ulcer' in the Atlantic salmon Salmo salarPathological and bacteriological investigations and transmission experiments. Dis Aquat Organ1995;23:39-49270

    28. Handlinger J. Collection and submission of samples for investigation of diseases of fin fish.NationalAquatic Animal Health Technical Working Group Advisory Document. pp 39

    29. Ward M, Watt P. The preservation of gonococci in liquid nitrogen.J Clin Pathol1971;24:122-123

    30. Redway KF, Lapage SP. Effect of carbohydrates and related compounds on the long-term preservation of

    freeze-dried bacteria. Cryobiology 1974;11:73-79275

    31. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. Trehalose and sucrose protect both membranesand proteins in intact bacteria during drying.Appl Environ Microbiol1995;61:3592-3597

    32. Brewer DG, Martin SE, Ordal ZJ. Beneficial effects of catalase or pyruvate in a most-probable-number

    technique for the detection ofStaphylococcus aureus. Appl Environ Microbiol1977;34:797-800

    33. Mizunoe Y, Wai SN, Ishikawa T, Takade A, Yoshida S-I. Resuscitation of viable but unculturable cells of280Vibrio parahaemolyticus induced at low temperature under starvation. FEMS Microbiol Lett2000;186:115-120

    34. Sneath PHA. Test reproducibility in relation to identification.Int J Syst Bacteriol1974;24:508-523

    35. Willcox WR, Lapage SP, Bascomb S, Curtis MA. Identification of bacteria by computer: theory andprogramming.J Gen Microbiol1973;77:317-330285

    36. Gyllenberg HG, Nieml TK. New approaches to automatic identification of micro-organisms. In:Pankhurst RJ, editor.Biological Identification with Computers. Academic Press, London, 1975:121-136

    37. Bryant TN. PIBWin software for probabilistic identification.J Appl Microbiol2004;97:1326-1327

    38. Thompson FL, Gevers D, Thompson CC et al. Phylogeny and molecular identification of vibrios on the

    basis of multilocus sequence analysis.Int J Syst Evol Micriobiol2005;71:5107-5115290

    39. Nishibuchi M. Molecular Identification. In: Thompson FL, Austin B, Swings J, editors. The Biology of theVibrios. ASM Press, Washington, DC, 2006:44-64

    40. Ruimy R, Breittmayer V, Elbaze P et al. Phylogenetic analysis and assessment of the genera Vibrio,Photobacterium, Aeromonas and Plesiomonas deduced from small sub-unit rRNA sequences.Int J SystBacteriol1994;44:416-426295

    41. Osorio CR, Toranzo AE, Romalde JL, Barja JL. Multiplex PCR assay for ureC and 16S rRNA genes

    clearly discriminates between both subspecies of Photobacterium damselae. Dis Aquat Organ2000;40:177-183

    42. Oakey HJ, Levy N, Bourne DG, Cullen B, Thomas A. The use of PCR to aid in the rapid identification of

    Vibrio harveyi isolates.J Appl Microbiol2003;95:1293-1303300

    43. Brasher CW, DePaola A, Jones DD, Bej AK. Detection of microbial pathogens in shellfish with multiplex

    PCR. Curr Microbiol1998;37:101-107

    44. Hirono I, Masuda T, Aoki T. Cloning and detection of the hemolysin gene ofVibrio anguillarum. MicrobPathog1996;21:173-182

    45. Lapage SP, Bascomb S, Willcox WR, Curtis MA. Identification of bacteria by computer: general aspects305and perspectives.J Gen Microbiol1973;77:273-290

    46. Sneath PHA, Johnson R. The influence on numerical taxonomic similarities of errors in microbiologicaltests.J Gen Microbiol1972;72:377-392

  • 7/31/2019 Vibrios Is

    10/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 10 of 35

    47. Bascombe S, Lapage SP, Curtis MA, Willcox WR. Identification of bacteria by computer: identification ofreference strains.J Gen Microbiol1973;77:291-315310

    48. Taniguchi H, Hirano H, Kubomura S, Higashi K Mizuguchi Y. Comparison of the nucleotide sequencesof the genes for the thermostable direct hemolysin and the thermolabile hemolysin from Vibrioparahaemolyticus. Microb Pathog1986;1:425-432

    49. Furniss AL, Lee JV, Donovan TJ. The Vibrios, Monograph Series 11, Public Health Laboratory Service.

    HMSO, London, 1978:1-58315

    50. Thornley MJ. The differentiation ofPseudomonas from other Gram-negative bacteria on the basis of

    arginine metabolism.J Appl Bacteriol1960;23:37-52

    51. West PA, Colwell RR. Identification and Classification ofVibrionaceae - An Overview. In: Colwell RR.editor. Vibrios in the Environment. John Wiley, New York, 1984:285-363

    52. Atlas R, Parks L. Bromcresol Purple Broth. In:Handbook of Microbiological Media. CRC Press, Boca320Raton, 1993:158

    53. Hansen GH, Srheim R. Improved method for phenotypical characterization of marine bacteria. JMicrobiol Methods 1991;13:231-241

    54. Lowe GH. The rapid detection of lactose fermentation in Paracolon organisms by the demonstration of-D-galactosidase.J Med Lab Technol1962;19:21-25325

    55. Cowan ST. In: Manual for the identification of medical bacteria. 2nd edn. Cambridge University Press,Cambridge, 1974:1-238

    56. Mller V. Simplified tests for some amino acid decarboxylases and the arginine dihydrolase system.Acta

    Pathol Microbiol Scand1955;36:158-172

    57. Smibert RM, Krieg NR. Phenotypic characterization. In: Gerhardt P. editor. Methods for General and330Molecular Bacteriology. American Society for Microbiology, Washington, DC, 1994:607-654

    58. Maslen LGC. Routine use of liquid urea medium for identifying Salmonella and Shigella organisms.BrMed J1952;2(4783):545-546

    59. Pitt T, Dey D. A method for the detection of gelatinase production by bacteria. J Appl Bacteriol1970;33:687-691335

    60. Lam J, Mutharia L. Antigen-antibody reactions. In: Gerhardt P. editor.Methods for General Bacteriology.

    American Society for Microbiology, Washington, DC, 1994:104-132

    61. MacFaddin JF. Biochemical tests for Identification of Medical Bacteria. 2nd edn. Williams & Wilkins,

    Baltimore, 1980:1-912

    62. Hendrickson D. Reagents and Stains. In: Lennette EH. editor.Manual of Clinical Microbiology. 4th edn.340

    American Society for Microbiology, Washington DC, 1985:1093-1107

    63. Barrow GI, Feltham RKA. Cowan and Steel's Manual for the Identification of Medical Bacteria. 3rd

    edn.Cambridge University Press, Cambridge, 1993:1-331

  • 7/31/2019 Vibrios Is

    11/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 11 of 35

    Part 2 Test Methods345

    Identification by Phenotype

    PrincipleIdentification ofVibrionaceae is made using the entire panel of tests listed in Table 7 using

    the standardised test formulations given in Appendix 2. An identification is made by350

    matching the phenotype of an unknown against the probability data matrix VibEx7 anddetermining the most likely identification using the computer software package PIBWin.

    Table 7. Panel of tests for the identification ofVibrionaceae

    Arginine dihydrolase

    Lysine decarboxylase355

    Ornithine decarboxylase

    Acid (fermentation)

    Arbutin

    Mannitol

    Salicin360

    SucroseGentiobiose

    Growth

    7% NaCl10% NaCl365

    Acetoin

    Indole

    Alkaline phosphatase, pH 8.0

    Oxidase

    Hydrolysis370

    2-nitrophenyl -D-galactopyranoside

    L-glutamic acid 5-(4-nitroanilide)

    4-nitrophenyl sulfate

    AesculinAgar375

    GelatinStarch

    Sole carbon utilisation:-ketoglutarate

    Acetate380D-alanine

    CitrateL-citrulline

    D-galactose

    D-gluconate385

    D-glucosamine

    D-glucose

    D-glucuronate

    Glycerol

    L-histidine390DL-3-hydroxybutyrate

    trans-4-hydroxy-L-proline

    DL-lactateD-lactosePropionate395

  • 7/31/2019 Vibrios Is

    12/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 12 of 35

    Table 7. Panel of tests for the identification ofVibrionaceae (cont.)

    Putrescine

    Succinate

    Sucrose

    Resistance:400

    0/129 10 g

    0/129 150 gAmpicillin 10 g

    Carbenicillin 100 g

    Novobiocin 5 g405

    Sample Requirements

    Pure cultures less than 48 hours old should be used for the inoculum. Cultures recoveredfrom preservation by freezing or drying must be subcultured at least twice before

    commencing identification.410

    Test Procedures

    Perform an oxidase test by a preferred method. Observe agarolytic activity as pitting ofcolonies on maintenance agar such as JMA or ZMA.

    Inocula: Prepare two inocula in 3 mL volumes of 2% saline: one to a density equal to

    McFarland 0.5, the other to McFarland 2.415

    Inoculation of media: Inoculate the decarboxylase test media with 100 L of McFarland 2density cell suspension. Inoculate the remaining liquid media with 100 L of McFarland 0.5

    density cell suspension. For the acetoin and arginine dihydrolase tests, inoculate the semi-solid media with a straight wire.

    Sole carbon source media are spot inoculated with 2 L of McFarland 0.5 suspension or420with a multipoint inoculator. Maximum number of inocula on a plate should not exceed 30.

    Gelatin and starch plates are spot inoculated with 2 L of McFarland 0.5 suspension or witha multipoint inoculator. Maximum number of inocula on a plate should not exceed 6, well

    separated inoculum points.

    Tests for arginine dihydrolase and decarboxylases are overlayed with 20-25 mm of sterile425

    liquid paraffin.

    Sensitivity tests are undertaken on Mueller-Hinton agar supplemented with 2% w/v NaCl.

    The medium is inoculated with the McFarland 0.5 suspension.

    Incubation: Tests are incubated at 25C for 48 hours. Observe tests daily and record

    changes. Sensitivity tests are incubated for 24 hours and the diameter of the zone of430

    inhibition measured. Psychrophilic species are tested at 15C for 8 days; sensitivity tests for3-4 days. Known psychrophiles are listed in Table 8.

    Table 8. Species requiring incubation at 15C

    Aliivibrio logei435

    Aliivibrio wodanis

    Aliivibrio salmonicida

    Moritella marina

    Moritella viscosa

    Photobacterium iliopiscarium440Photobacterium phosphoreum

  • 7/31/2019 Vibrios Is

    13/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 13 of 35

    Test Interpretation

    Arginine dihydrolase: A positive reaction is a pink/red colour; yellow to orange is

    negative. See Figure 1.445

    Figure 1. Arginine dihydrolase. A: negative; B: positive

    Decarboxylase tests: The negative control should be yellow for the test to be valid; a450positive test for ornithine or lysine decarboxylase is purple, See Figure 2.

    Figure 2. Decarboxylase test. A: positive ornithine; B: positive lysine; C: negative control

    455

    Acid from carbohydrates: A dirty yellow to bright yellow colour is positive; pale purple to

    deep purple is negative. See Figure 3. Protein deamination may occur with prolonged

    incubation and may cause positive tests to appear negative due to alkaline pH shifts; ignore

    reversions.

    460

    Figure 3. Fermentation test. A: positive; B: negative

    A B

    A B C

    A B

  • 7/31/2019 Vibrios Is

    14/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 14 of 35

    NaCl tolerance tests: Any signs of growth is a positive reaction.

    465

    Acetoin: Overlay semi-solid medium with 200L of -naphthol followed by 100L of

    KOH/creatine. Leave at room temperature for up to 30 minutes. Pale pink to red layer is

    positive; yellow to tan is negat ive. See Figure 4.

    Figure 4. Acetoin (Voges-Proskauer) test. A: positive; B: negative470

    Indole: In a microtitre tray well add 100 L of Kovcs' indole reagent to an equal volume of

    culture. Mix the contents of the well by careful aspiration with a pipette. If a pink/red colour

    is visible record as positive. See Figure 5. If in doubt, remove contents with a glass Pasteur

    pipette and allow the phases to separate in the pipette body; record the reaction based on the

    top phase only.475

    Figure 5. Indole test. Wells 1-5 are a range of positive reactions; well 6 is negative.

    Gelatin hydrolysis: Flood plate with saturated ammonium sulphate. Any zone of clearingaround inocula is positive.480

    Starch hydrolysis: Flood plate with Gram's iodine. Zones of yellow to light tan colour

    around inocula is positive; black to dark blue is negative.

    Urease: A pink/red colour is positive; yellow is negative. See Figure 6.485

    Figure 6. Urease test. A: positive; B: negative

    A B

    1 2 3 4 5 6

    A B

  • 7/31/2019 Vibrios Is

    15/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 15 of 35

    Chromogens:

    Indoxyl alkaline phosphatase: Any blue/black colour is positive; no colour is negative. See490

    Figure 7.

    Figure 7. Indoxyl phosphate for alkaline phosphatase test, pH 8.0. A: negative; B: positive.

    Nitrophenol & nitroaniline chromogens: Any yellow colour is positive; no colour is495negative. See Figure 8.

    Figure 8. Nitrophenol and nitroanilide chromogen test. Substrate: 2-nitrophenyl -D-galactopyranoside (PNPG). A: positive; B: negative.

    500

    Aesculin: A brown to black colour is positive for hydrolysis; a very light tan to colourless is

    negative. See Figure 9.

    Figure 9. Aesculin test. A: negative; B: positive

    505

    Sole carbon source tests: Examine the negative control plate; some strains and some

    species may show very slight growth even when using purified agar. See Figure 10.

    A B

    A B

    A B

  • 7/31/2019 Vibrios Is

    16/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 16 of 35

    Figure 10. Sole carbon source test. A: negative control; B: glucose. Test organism Vibrio fluvialis510

    NCTC 11327T. Differentiation between positive and negative tests.

    With reference to the control plate, examine growth on the remaining test plates. Growth inexcess of the negative control is read as positive. If there is no growth with glucose the

    strain may be nutritionally fastidious. Retest with sole carbon source media containing5150.015g/L Casamino acids.

    Antibiotic sensitivity test: The diameter of the zone of inhibition is interpreted using the

    data in Table 9; disc size is 6mm.

    Table 9. Zone size interpretation for diagnostic antibiotics

    Test Resistant Sensitive520

    0/129 10 g 15 mm 16 mm

    0/129 150 g No zone Any zoneAmpicillin 10 g 13 mm 14 mm

    Novobiocin 5 g 16 mm 17 mm

    Carbenicillin 100 g 22 mm 23 mm525

    Probabilistic identificationAn identification is obtained using the software PIBWin and the probability matrix VibEx7.

    An identification is accepted if the Willcox probability score P is 0.99 and the modal

    likelihood score (MLS) is 0.001.8

    IfPis 0.99 but the MLS is

  • 7/31/2019 Vibrios Is

    17/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 17 of 35

    Identification by PCR

    IntroductionThe primer sets have been evaluated and optimised for the purpose of culture identification.

    The protocols represent optimal conditions but minor refinements may be required to550account for variation in the characteristics of different thermal cyclers.

    Extraction of DNAReference DNA: Extract and purify DNA from control strains using a QIAamp DNA mini-

    kit (cat. no. 51304, QIAGEN). Purified control DNA is used at a concentration of 50pg L -1.

    Sample DNA: To 100 L of PCR grade 18M water in a 1.5 mL microfuge tube, suspend555

    sufficient cells to a density equivalent to McFarland 1. Hold the tube at 100C in a dry-heat

    block for 10 minutes and then cool rapidly in a cool block for 5 minutes. Pellet the cells at

    10,000 rcf for 5 minutes and collect the supernatant containing liberated DNA. The

    extracted DNA is suitable for amplification without purification.

    PCR reaction volume560

    All PCR reactions are as 25 L volumes in 200 L thin-walled tubes.

    Standard PCR reagents

    Standard reagents for the PCR primer sets are listed in Table 10.

    Table 10. Standard PCR reagents

    PCR grade water, 18M565

    50mM magnesium chloride

    10x Invitrogen Platinum Taq buffer16mM dNTP stock (4mM each dNTP)

    Invitrogen Platinum

    Taq DNA polymerase

    Primers (20M stock)570

    Electrophoresis of amplicon

    Amplicon is visualised by electrophoresis using 2% agarose gel containing 0.5 g mL-1

    ethidium bromide and 1xTBE buffer, Table 11. Use a 100bp ladder as a comparative index

    of amplicon size. Gels should be run at 7 volts cm-1 constant voltage.575

    Table 11. 10x Tris-Boric-EDTA buffer

    Tris (base) 108.0 g

    Boric acid 55.0 gEDTA 8.3 gpH 8.0580

    Photobacterium damselae

    41

    Targets16S rRNA gene for species identification and ureC gene for subspecies identification.

    Primers

    Primer Sequence 5' 3'

    Car1 gcttgaagagattcgagtCar2 cacctcgcggtcttgctg

    Ure-5' tccggaataggtaaagcgggUre-3' cttgaatatccatctcatctgc

    DNA controls585

    Ph damselae ssp damselae NCIMB 2184T

    Ph damselae ssp piscicida NCIMB 2058T

    Ph iliopiscarium ATCC 51760T

  • 7/31/2019 Vibrios Is

    18/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 18 of 35

    Master mix

    Component Volume

    Water 11.15 L50mM MgCl2 1 L10x reaction buffer 2.5 L

    16mM dNTPs 1.25 L20M Car1 2 L

    20M Car2 2 L20M Ure-5' 2 L20M Ure-3' 2 L5U L

    -1Taq polymerase 0.1 L

    Template DNA 1 L

    Volume 25 L

    590

    Cycle parametersCycle parameters

    95C 4min.30 cycles

    95C 1min.

    60C 1min.

    72C 40sec.

    72C 5min final extension

    Interpretation

    Ph damselae ssp damselae. Species specific amplicon at 267bp for 16S rDNA with an

    additional amplicon at 448bp for the ureC gene that is diagnostic for the subspecies595

    damselae.

    Ph damselae ssp piscicida. A single amplicon at 267bp for 16S rDNA. Absence of an

    amplicon forureC is diagnostic for the subspeciespiscicida.

    Limitations

    A single band of 267bp is diagnostic ofPh. damselae sensu lato. An identification ofPh600damselae ssppiscicida is inferred if only this band is present but some caution needs to be

    used where an identification is reached on the basis of absence. Corroborating phenotypicevidence and complete 16S rRNA gene sequence should be obtained if the identification

    represents a new finding for a region or host not previously associated with Ph damselae ssp

    piscicida.605

    Vibrio harveyi42

    Target

    16S rRNA gene

    Primers

    Primer Sequence 5' 3'

    VH-1 AACgAgTTATCTgAACCTTC

    VH-2 gCAgCTATTAACTACACTACC

    DNA controls610

    V harveyi ATCC 14126T

    V alginolyticus ATCC 17749T

  • 7/31/2019 Vibrios Is

    19/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 19 of 35

    Master mix

    Component Volume

    Water 18.15 L50mM MgCl2 1.5 L10x reaction buffer 2.5 L

    16mM dNTPs 1.25 L20M VH-1 0.25 L

    20M VH-2 0.25 L5U L

    -1Taq polymerase 0.1 L

    Template DNA 1 LVolume 25 L

    Cycle parameters

    Cycle parameters

    94C 2min.

    40 cycles

    94C 1min.

    65C 1min.

    72C 2min.72C 5min. final extension

    Interpretation615

    A single band of 413bp is characteristic ofV harveyi.

    Limitations

    On the basis of testing undertaken, the primers are specific for strains of both V harveyibiovar I and II associated with blister disease in abalone. Some strains ofV alginolyticus are

    known to cross-react because of sequence similarity with the primer regions. A positive620finding must be corroborated by phenotype using the tests given in Table 4.

    Vibrio vulnificus43

    Target

    cth cytolysin/haemolysin gene.

    Primers625

    Primer Sequence 5' 3'

    L-CTH ttccaacttcaaaccgaactatgac

    R-CTH gctactttctagcattttctctgc

    DNA controls

    V vulnificus ATCC 27562T

    V parahaemolyticus ATCC 17802T

    Master mixComponent Volume

    Water 16.375 L50mM MgCl2 1.25 L10x reaction buffer 2.5 L16mM dNTPs 1.25 L20M L-CTH 1.25 L

    20M R-CTH 1.25 L5U L-1 Taq polymerase 0.125 L

    Template DNA 1 LVolume 25 L

  • 7/31/2019 Vibrios Is

    20/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 20 of 35

    Cycle parameters630

    Cycle parameters

    94C 3min.30 cycles

    94C 1min.

    57C 1min.

    72C 3min.72C 5min. final extension

    Interpretation

    A single band of 205bp is characteristic of the cytolysin/haemolysin gene in V vulnificus.

    Limitations

    An identification ofV vulnificus is inferred by the presence of the cth gene which appears tobe specific forV vulnificus. It is noteworthy that the forward primer L-CTH is unique to V635

    vulnificus while R-CTH is homologous with the thermolabile haemolysin gene of Vparahaemolyticus.48 Based on limited testing the primers appear specific for V vulnificus,

    however the frequency with which the gene occurs within the species is not known and may

    not be sufficiently reliable for the purpose of identification in the absence of a prioriinformation.640

    Vibrio anguillarum44

    Target

    vah1 haemolysin gene.

    Primers645

    Primer Sequence 5' 3'

    VaH1-P1 accgatgccatcgctcaaga

    VaH1-P2 ggatattgaccgaagagtca

    DNA controlsV anguillarum ATCC 19264T

    V parahaemolyticus ATCC 17802T

    Master mix

    Component Volume

    Water 14.4 L50mM MgCl2 0.75 L

    10x reaction buffer 2.5 L16mM dNTPs 1.25 L20M VaH1-P1 2.5 L

    20M VaH1-P2 2.5 L5U l-1 Taq polymerase 0.1 LTemplate DNA 1 LVolume 25 L

    Cycle parameters650Cycle parameters

    94C 4min.30 cycles

    94C 30sec.

    55C 30sec.

    72C 60sec.

    72C 5min. final extension

  • 7/31/2019 Vibrios Is

    21/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 21 of 35

    Interpretation

    A single band of 490bp is characteristic of the haemolysin gene ofV anguillarum.

    Limitations

    The vah1 gene appears to be specific to V anguillarum despite having a common ancestrywith haemolysins from other species of Vibrionaceae. From limited testing however it655

    appears that not all strains ofV anguillarum possess the vah1 gene and its use as a primary

    means of identification is limited. Primers for the vah1 gene should be limited todetermining the presence of the haemolysin gene in strains or as a supporting test.

    APPENDICES660

    Appendix 1

    Maintenance Media

    Johnson's Marine Agar26

    Peptone (Oxoid LP0037) 5.0 g

    Yeast extract 1.0 g665

    Ferrous (II) sulphate (FeSO47H2O) 0.2 g

    Sodium thiosulphate (Na2S2O35H2O) 0.3 g

    Agar 12.0 gAged seawater 900 mL

    Distilled water 100 mL670pH 7.5-7.6

    Autoclave at 121C for 15 minutes

    Sheep Blood Agar +2% NaCl

    Blood agar base no.2 (Oxoid CM0271) 40.0 g675

    NaCl 15.0 gDistilled water 1000 mL

    pH 7.40.2

    Autoclave at 121C for 15 minutes and cool to 50C; aseptically add 70 mL of sterile

    defibrinated sheep's blood, mix gently and pour as plates.680

    Vibrio Recovery Medium8

    Peptone (Oxoid LP0037) 5.0 g

    Yeast extract 1.0 g

    Ferrous sulphate (FeSO47H2O) 0.2 g685

    Sodium thiosulphate (Na2S2O35H2O) 0.3 g

    Sodium pyruvate 1.0 gBacteriological charcoal 2.0 gAged seawater 900 mL

    Distilled water 100 mL690pH 7.5-7.6

    Autoclave at 121C for 15 minutes

  • 7/31/2019 Vibrios Is

    22/35

  • 7/31/2019 Vibrios Is

    23/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 23 of 35

    Fermentation Test Medium52

    Peptone (Oxoid LP0037) 10.0 g

    Yeast extract (Oxoid LP0021) 1.0 g

    Lab Lemco (Oxoid LP0029) 3.0 g

    NaCl 15.0 g740

    Bromocresol purple 0.5%* 8 mL

    Distilled water 900 mLpH 7.2

    *0.5 g bromocresol purple in 100 mL 50:50 v/v ethanol/distilled water

    Dissolve the ingredients, check and adjust pH and dispense as 90 mL volumes in745

    screw cap bottles. Sterilise by autoclaving at 121C for 15 minutes.

    Prepare filter sterilised stocks of the following sugars as 10% stocks in distilled water:

    arbutin, mannitol, salicin, sucrose and -gentiobiose.

    To 90 mL of sterile base add 10 mL of 10% sugar stock to give a final concentration

    of 1%. Dispense medium as 3 mL volumes in 12 x 90 mm diameter sterile tubes.750

    Tolerance to NaCl51

    7% NaCl

    Tryptone (Oxoid L0042) 1.0 gYeast extract (Oxoid LP0021) 0.1 g755

    NaCl 7.0 gDistilled water 100 mL

    pH 7.2

    10% NaCl

    Tryptone (Oxoid L0042) 1.0 g760

    Yeast extract (Oxoid LP0021) 0.1 gNaCl 10.0 g

    Distilled water 100 mL

    pH 7.2

    Autoclave at 121C for 15 min as 100 mL volumes in sealed bottles to prevent765

    evaporation. Dispense as 3mL volumes in 12x90 mm sterile tubes.

    Amylase51

    Nutrient broth No. 2 (Oxoid CM0067) 2.5 g

    NaCl 1.0 g770Soluble starch 0.1 g

    Agar 1.5 gDistilled water 100 mL

    pH 7.5

    Dissolve all the ingredients except for the agar. Warm to assist solution of the starch if775

    required. Add the agar. Autoclave at 121C for 10 minutes. Pour as plates.

  • 7/31/2019 Vibrios Is

    24/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 24 of 35

    Acetoin (Voges-Proskauer) Test49

    Tryptone (Oxoid LP0042) 0.7 g

    Soya peptone (Oxoid LP0044) 0.5 g780

    Yeast extract (Oxoid LP0021) 0.1 g

    Glucose 1.0 g

    NaCl 1.5 g

    Agar 0.3 gDistilled water 100 mL785

    pH 7.0

    Dissolve all the ingredients including the agar. Dispense as 3 mL volumes in 12x90

    mm tubes. Autoclave at 115C for 10 min. Cool as butts.

    Gelatin51

    790

    Nutrient broth No. 2 (Oxoid CM0067) 2.5 g

    NaCl 1.0 g

    Gelatin 0.5 g

    Agar 1.5 g

    Distilled water 100 mL795pH 7.5

    Dissolve all the ingredients except for the agar. Warm to assist solution of the gelatin.

    Add the agar.

    Autoclave at 115C for 20 min. Pour as plates.

    800

    Indole51,53

    Tryptone (Oxoid LP0042) 1.0 g

    Yeast extract (Oxoid LP0021) 0.1 g

    NaCl 1.5 g

    L-tryptophan 0.04 g805Distilled water 100 mL

    pH 7.5

    Dissolve ingredients. Dispense as 3 ml volumes in 12x90 mm tubes. Autoclave at

    121C for 15min.

    810

    Chromogen Tests8,54

    Nutrient Base

    Tryptone (Oxoid LP0042) 4.0 g

    Yeast extract (Oxoid LP0021) 0.4 g

    NaCl 6.0 g815Distilled water 300 mL

    pH 7.5

    Dissolve ingredients and dispense as four volumes of 75 mL. Autoclave at 121C for

    15 min.

    Phosphate buffer: 0.01M, pH 7.5820

    Stock 0.1M bufferNaH2PO42H2O 0.245 g

    Na2HPO412H2O 3.022 gDistilled water, made up to 100 mL

    pH 7.5825

  • 7/31/2019 Vibrios Is

    25/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 25 of 35

    Prepare a stock of 0.01M buffer, pH 8.0

    0.1M phosphate buffer 10 mL

    Distilled water 90 mL

    Phosphate buffer: 0.01M, pH 8Prepare a x10 stock of 0.1M buffer830

    NaH2PO42H2O 0.083 g

    Na2HPO412H2O 3.395 gDistilled water, made up to 100 mL

    pH 8.0

    Prepare a stock of 0.01M buffer, pH 88350.1M phosphate buffer 10 mL

    Distilled water 90 mL

    Chromogen stocks

    IXP medium

    3-indoxyl phosphate 0.08 g840

    0.01M phosphate buffer, pH 8 25 mL

    Filter to sterilise. Aseptically add to 75 mL of nutrient base. Aseptically dispense

    as 2 mL volumes in 12x90 mm sterile tubes.

    PNPG medium

    4-nitrophenyl -D-galactopyranoside 0.06 g8450.01M phosphate buffer, pH 7.5 25 mL

    Filter to sterilise. Aseptically add to 75 mL of nutrient base. Aseptically dispenseas 2 mL volumes in 12x90 mm sterile tubes.

    LGN medium

    L-Glutamic acid 5-(4-nitroanilide) 0.06 g850

    0.01M phosphate buffer, pH 7.5 25 mL

    Filter to sterilise. Aseptically add to 75 mL of nutrient base. Aseptically dispense

    as 2 mL volumes in 12x90 mm sterile tubes.

    NPS medium

    4-nitrophenyl sulphate 0.04 g8550.01M phosphate buffer, pH 7.5 25 mL

    Filter to sterilise. Aseptically add to 75 mL of nutrient base. Aseptically dispense

    as 2 mL volumes in 12x90 mm sterile tubes.

    Protect media from light.

    860

    Aesculin Hydrolysis55

    Tryptone (Oxoid LP0042) 1.0 g

    Yeast extract (Oxoid LP0021) 0.1 g

    NaCl 1.5 g

    Aesculin 0.1 g865Ferric citrate 0.05 g

    Distilled water 100 mL

    pH 7.5

    Dissolve ingredients and dispense as 3 mL volumes in 12x90 mm tubes. Autoclave at

    115C for 10min. Protect medium from light.870

  • 7/31/2019 Vibrios Is

    26/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 26 of 35

    Carbon Source Utilisation Tests13

    Inorganic nitrogenous base

    Buffer base

    TRIS (basic) 6.1 g875Distilled water 500 mL

    pH 7.5

    Adjust pH with concentrated HCl

    Salts solution

    NH4Cl 1.0 g880

    K2HPO43H2O 0.075 g

    FeSO47H2O 0.028 g

    NaCl 11.7 g

    MgSO47H2O 12.3 g

    KCl 0.75 g885Yeast extract (Oxoid LP0021) 0.015 g

    CaCl2H2O 1.45 g

    Distilled water 400 mL

    Weight out all the salts and combine except for the calcium chloride. Add

    the distilled water; once the salts are fully dissolved add the calcium890

    chloride.

    Combine the buffer base and salts solution.

    Divide the medium into 10 x 90 mL volumes. To each volume add 1.2 g of

    purifiedagar (Oxoid LP0028) and autoclave at 121C for 15 min; cool to 55C.

    Carbon sources895Prepare 2% w/v or v/v concentrations in distilled water, of the carbon substrates

    listed; filter to sterilise.

    -ketoglutarate L-histidine

    Acetate DL-3-hydroxybutyrateD-alanine trans-4-hydroxy-L-proline

    Citrate DL-lactateL-citrulline D-lactose

    D-galactose PropionateD-gluconate Putrescine

    D-glucosamine Succinate

    D-glucose Sucrose

    D-glucuronate Water (control)Glycerol

    Complete mediumTo a 90 mL volume of cooled molten inorganic nitrogenous base, add 10 mL of carbon

    source. Mix well and pour as plates.900

    Supplement for nutritionally fastidious strains

    To the nitrogenous base add 0.015 g/L Casamino Acids (Difco, 0230-15).

    Decarboxylase Test51,56,57

    Difco Decarboxylase broth base (Mller) 300 mL905

    Yeast extract (Oxoid LP0021) 0.3 gNaCl 4.5 g

    pH 6.5

  • 7/31/2019 Vibrios Is

    27/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 27 of 35

    Divide the base into three volumes of 100 mL each. To one volume add 1.0 g of L-

    lysine and to the second volume 1.0 g of L-ornithine; the third volume is a control.910Check and adjust the pH to 6.5 if required. Autoclave at 121C for 10 min. Check the

    pH of the media and, if required, adjust aseptically with 1N NaOH or HCl. Aseptically

    dispense the media as 3 mL volumes into 12x90 mm sterile tubes.

    Urease58

    Broth base915Peptone (Oxoid LP0037) 0.1 gGlucose 0.1 g

    Sodium chloride 1.5 g

    Na2HPO4 (anhydrous) 0.12 g

    KH2PO4 (anhydrous) 0.08 g920Phenol red (0.01%) 4 mL

    Distilled water 95 mL

    pH 6.8

    Dissolve the ingredients and autoclave as a single volume at 115C for 20 min.

    Urea stock (40% w/v)925

    Urea 8 g

    Distilled water 20 mL

    Dissolve the urea and filter to sterilise.

    Complete medium

    To the cool sterile base add 5 mL of sterile urea stock; mix. Dispense aseptically930as 2 mL volumes in 12x90 mm sterile tubes.

    Shelf Life of Media

    Agar plates have a shelf life of 4 weeks and liquid media have a shelf life of 8 weekswhen stored at 2-8C.935

    Saturated Ammonium Sulphate (Gelatin test)59,60

    Ammonium sulphate 10 gDistilled water 10 mL

    Store at room temperature.940

    Coblentz Reagents (Acetoin test)61

    Reagent 1

    -naphthol 0.5 g

    Ethanol 10 mL945Store refrigerated in a dark bottle.

    Reagent 2

    Creatine 0.03 g

    KOH 4.0 g

    Distilled water 10 mL950Store refrigerated.

    Iodine (Starch test)62

    Grams Iodine

    Iodine 1.0 g955Potassium iodide 2.0 gDistilled water 300 mL

  • 7/31/2019 Vibrios Is

    28/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 28 of 35

    Dissolve the potassium iodide in 20 mL of water and then add the iodine. Once

    dissolved, make up to 300 mL with water.

    Store at room temperature in a dark bottle.960

    Kovcs' Reagent (Indole test)63

    p-dimethylaminobenzaldehyde 2 g

    pentan-1-ol (n amyl alcohol) 30 mLConcentrated HCl 10 mL965

    Dissolve the aldehyde in the alcohol by gently warming at 50-55C. Cool and slowly

    add the acid. Protect from light and store at 4C.

    Note: iso amyl alcohol is not the same as n amyl alcohol. The iso- form of pentanol

    cannot be used for Kovcs' reagent.

    970

  • 7/31/2019 Vibrios Is

    29/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 29 of 35

    Appendix 3: VibEx7 probability matrix for the identification ofVibrionaceae

    Data as % strains positive Aeromonas.sobriaHG7

    G.hollisae

    M.marina

    M.viscosa

    A.fischeribiovarI

    A.fischeribiovarII

    A.logei

    A.salmonicida

    A.wodanis

    Ph.angustum

    Ph.damselaessp.damselaebiovarI

    Ph.damselaessp.damselaebiovarII

    Ph.damselaessp.piscicid

    a

    Ph.iliopiscarium

    Ph.leiognathi

    Ph.phosphoreum

    Test No. strains 7 4 1 8 5 10 2 1 1 1 29 7 5 3 4 1

    Arginine dihydrolase 86 1 1 57 1 1 1 1 1 1 99 99 99 99 75 99

    Acid: Arbutin 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    Mannitol 99 1 1 1 40 87 99 99 1 99 1 1 1 33 1 1

    Salicin 14 1 1 1 40 40 1 1 1 1 1 1 1 1 1 1

    Sucrose 57 1 1 1 20 1 1 1 99 1 1 1 1 33 50 1

    Gentiobiose 14 1 1 1 60 90 1 1 1 99 1 1 1 1 1 1

    Growth: 7% NaCl 1 99 99 1 1 70 1 99 1 99 86 99 1 99 50 99

    10% NaCl 1 25 99 1 1 1 1 1 1 1 1 1 1 1 1 1

    Amylase 99 1 1 99 40 55 1 1 99 1 27 14 20 99 1 1

    Voges Proskauer (Acetoin) 86 1 1 1 1 1 1 1 1 1 99 99 99 99 99 99

    Gelatinase 71 1 1 99 20 1 1 1 1 1 24 33 20 1 25 1

    Indole 86 75 1 1 20 1 1 1 99 1 3 1 1 1 1 1

    IXP alkaline phosphatase 86 50 1 13 80 99 99 1 1 99 99 85 20 33 25 99

    PNPG -D-galactosidase 29 1 99 1 1 20 1 1 1 1 3 1 20 1 1 99LGN -glutamyl transpeptidase 71 1 99 99 1 50 99 1 1 1 48 14 20 1 75 1

    NPS sulphatase 14 1 99 1 60 99 99 1 1 99 1 1 1 1 25 1

    Aesculin hydrolysis 71 1 1 20 80 99 99 1 1 50 31 1 1 1 25 1

    Utilisation: -ketoglutarate 14 50 99 1 1 1 99 1 1 99 3 1 20 1 1 99

    Acetate 29 99 99 88 80 1 50 99 99 99 93 1 60 99 50 1

    Alanine 1 99 99 25 20 1 1 1 1 1 10 1 99 1 1 1

    Citrate 43 99 1 1 1 60 99 99 99 99 1 1 1 99 1 1

    Citrulline 1 1 1 38 1 1 1 1 1 1 1 1 1 1 1 1

    Galactose 57 99 1 1 40 99 99 99 1 99 93 28 60 99 25 99

    Gluconate 99 75 99 1 1 20 99 99 1 1 3 14 20 99 99 1

    Glucosamine 99 25 1 50 20 99 99 1 1 99 99 42 60 99 99 99

    Glucuronate 1 1 1 1 1 1 1 1 1 1 1 1 1 33 1 1Glycerol 99 75 99 99 40 90 99 99 99 99 99 42 60 99 75 99

    Histidine 29 50 1 88 1 1 1 1 1 1 1 1 1 1 1 1

    DL-3-hydroxybutyrate 1 1 1 1 40 1 1 99 1 1 1 1 1 1 25 1

    Hydroxyproline 1 1 1 1 1 1 1 1 1 99 1 1 1 1 1 1

    DL-lactate 14 99 99 99 1 1 1 1 1 1 79 1 1 1 99 99

    Lactose 1 1 1 1 1 1 1 1 1 1 1 1 20 1 1 99

    Propionate 14 99 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    Putrescine 14 1 1 1 1 1 1 99 1 1 1 1 1 99 1 1

    Succinate 86 75 99 99 40 90 99 99 99 99 89 42 40 99 75 99

    Sucrose 57 1 1 1 60 1 1 99 99 1 1 1 1 33 50 1

    Oxidase 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 1

    Agarolysis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    Resistance: 0/129 10 g 99 1 99 38 1 1 1 1 1 1 1 14 1 1 1 1

    0/129 150 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

  • 7/31/2019 Vibrios Is

    30/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 30 of 35

    Data as % strains positive Aeromonas.sobria

    HG7

    G.hollisae

    M.marina

    M.viscosa

    A.fischeribiovarI

    A.fischeribiovarII

    A.logei

    A.salmonicida

    A.wodanis

    Ph.angustum

    Ph.damselaessp.d

    amselaebiovarI

    Ph.damselaessp.d

    amselaebiovarII

    Ph.damselaessp.p

    iscicida

    Ph.iliopiscarium

    Ph.leiognathi

    Ph.phosphoreum

    Test No. strains 7 4 1 8 5 10 2 1 1 1 29 7 5 3 4 1

    Ampicillin 10 g 57 1 1 1 60 80 99 99 1 99 65 14 20 1 75 1

    Novobiocin 5 g 86 25 1 1 1 10 1 1 1 50 27 14 20 33 50 1

    Carbenicillin 100 g 17 1 1 1 99 80 99 99 1 99 89 42 20 33 75 1

    Lysine decarboxylase 99 1 1 38 20 55 99 1 1 99 62 57 1 99 1 1

    Ornithine decarboxylase 29 1 1 1 20 33 99 1 1 1 1 1 1 1 1 1

    Urease 14 1 1 1 99 99 1 1 1 99 99 99 1 1 25 1

    Data as % strains positive V.aestuarianus

    V.agar

    ivorans

    V.algin

    olyticus

    V.angu

    illarum

    V.calviensis

    V.campbellii

    V.chag

    asii

    V.cholerae

    V.cincinnatiensis

    V.cyclitrophicus

    V.diazotrophicus

    V.fluvialis

    V.furnissii

    V.gazo

    genes

    V.halioticoli

    V.harv

    eyibiovarI

    Test No. strains 3 7 30 60 4 4 21 12 3 7 4 9 10 3 3 62

    Arginine dihydrolase 99 1 3 96 99 1 95 1 1 99 99 99 99 1 1 15

    Acid: Arbutin 1 14 3 1 67 1 1 1 66 1 99 99 1 99 1 29

    Mannitol 99 99 99 98 50 50 99 99 99 85 99 99 99 33 99 94

    Salicin 1 57 20 1 75 75 5 1 66 1 99 99 1 99 1 79

    Sucrose 99 1 99 98 75 1 43 99 66 99 99 99 99 99 67 65

    Gentiobiose 1 99 1 1 75 50 1 1 33 14 1 11 1 1 1 95

    Growth: 7% NaCl 67 29 99 93 25 99 95 58 99 99 99 99 99 99 67 99

    10% NaCl 1 1 99 3 1 1 10 1 66 1 50 56 90 66 33 5

    Amylase 99 43 99 96 99 75 99 75 66 99 25 99 70 99 1 99

    Voges Proskauer (Acetoin) 1 14 99 94 1 1 5 58 33 1 1 11 1 99 1 2

    Gelatinase 67 1 99 77 50 99 99 67 33 99 25 44 30 99 33 97

    Indole 99 1 99 93 99 99 95 99 1 85 99 99 99 1 33 97

    IXP alkaline phosphatase 99 43 99 88 50 99 99 92 99 85 99 99 99 50 33 99

    PNPG -D-galactosidase 99 99 16 53 99 1 76 75 99 99 99 33 44 99 99 95

    LGN -glutamyl transpeptidase 1 29 96 15 50 99 86 99 1 71 99 99 99 1 1 94

    NPS sulphatase 1 14 40 1 1 1 99 8 1 71 25 11 1 1 1 60

    Aesculin hydrolysis 33 99 10 63 99 99 99 22 99 99 99 88 10 99 33 95

    Utilisation: -ketoglutarate 67 1 99 36 25 99 99 99 1 99 1 99 99 1 1 97

    Acetate 67 43 96 51 99 25 99 99 33 99 99 99 90 99 33 89

    Alanine 99 14 99 76 99 50 99 67 1 99 99 99 99 33 1 99Citrate 99 1 96 95 99 99 95 92 99 99 99 99 99 66 1 95

    Citrulline 1 1 20 16 99 25 62 1 1 85 1 56 10 1 1 6

  • 7/31/2019 Vibrios Is

    31/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 31 of 35

    Data as % strains positiveV.aestuarianus

    V.agarivorans

    V.algino

    lyticus

    V.anguillarum

    V.calviensis

    V.campbellii

    V.chaga

    sii

    V.cholerae

    V.cincin

    natiensis

    V.cyclitr

    ophicus

    V.diazotrophicus

    V.fluvialis

    V.furnis

    sii

    V.gazogenes

    V.halioticoli

    V.harveyibiovarI

    Test No. strains 3 7 30 60 4 4 21 12 3 7 4 9 10 3 3 62

    Galactose 99 71 13 71 99 1 99 83 66 85 99 99 99 1 99 73

    Gluconate 99 14 99 96 75 1 67 99 66 99 99 99 99 33 1 99

    Glucosamine 99 86 99 95 99 1 99 99 99 99 75 99 99 33 99 84

    Glucuronate 1 1 1 1 1 1 14 25 1 1 25 78 10 99 1 61

    Glycerol 99 1 99 95 99 99 99 99 99 99 1 99 99 99 1 85

    Histidine 1 1 99 93 50 1 10 67 1 71 99 89 99 1 1 8

    DL-3-hydroxybutyrate 1 1 1 1 99 1 1 1 1 14 1 78 80 1 1 1

    Hydroxyproline 1 1 99 1 75 1 10 1 1 71 1 11 1 1 1 50DL-lactate 99 29 99 91 99 75 99 99 66 99 99 99 99 66 99 99

    Lactose 1 1 1 1 1 1 1 1 1 28 50 1 1 1 1 1

    Propionate 67 1 99 6 99 1 95 58 1 99 75 99 99 66 1 94

    Putrescine 1 1 99 1 50 1 5 1 1 1 99 33 90 1 1 2

    Succinate 99 29 99 93 75 99 99 75 99 99 75 99 90 99 1 97

    Sucrose 99 1 99 96 75 1 43 99 66 99 99 89 99 99 67 65

    Oxidase 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

    Agarolysis 1 99 1 1 1 1 1 1 33 1 1 1 1 1 1 1

    Resistance: 0/129 10 g 1 1 70 3 1 25 19 8 66 28 25 44 60 99 1 82

    0/129 150 g 1 1 1 1 1 1 1 1 1 1 1 1 10 1 1 1

    Ampicillin 10 g 1 1 99 91 1 99 99 25 1 1 1 33 80 1 33 97

    Novobiocin 5 g 67 14 90 11 1 99 19 17 50 71 75 99 99 99 33 94

    Carbenicillin 100 g 33 1 99 90 1 99 99 33 1 1 1 11 80 1 33 95

    Lysine decarboxylase 1 1 99 1 25 50 5 99 1 28 1 1 1 1 1 98

    Ornithine decarboxylase 1 1 66 1 1 1 1 99 1 28 1 11 1 1 1 99

    Urease 1 1 1 1 1 1 10 1 1 1 1 1 1 1 1 63

    Data as % strains positive V.harveyibiovarII

    V.ichthyoenteribiovarI

    V.ichthyoenteribiovar

    V.lentus

    V.mediterran

    ei

    V.metschnikovii

    V.mimicus

    V.mytili

    V.natriegens

    V.navarrensis

    V.nereis

    V.nigripulchritudo

    V.ordalii

    V.orientalis

    V.parahaemolyticus

    V.pectenicida

    Test No. strains 23 6 3 9 19 5 7 5 12 4 6 3 6 6 18 2

    Arginine dihydrolase 1 1 1 99 84 99 1 99 1 1 99 1 1 99 6 99

    Acid: Arbutin 1 1 1 1 1 1 1 25 83 75 1 1 1 1 1 1

    Mannitol 83 60 99 75 99 99 86 99 99 99 67 1 1 99 99 1

    Salicin 4 1 1 1 80 1 1 99 92 50 1 99 1 17 18 1

    Sucrose 1 66 99 13 95 99 1 99 99 99 99 1 99 99 11 1

    Gentiobiose 9 1 1 1 21 1 1 99 99 25 1 50 1 1 1 1

    Growth: 7% NaCl 99 33 67 38 74 80 86 99 99 99 99 1 1 67 99 1

    10% NaCl 4 16 1 1 5 40 14 99 75 1 67 1 1 1 89 1

    Amylase 99 1 1 38 84 99 1 99 92 99 67 67 50 99 99 99

  • 7/31/2019 Vibrios Is

    32/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 32 of 35

    Data as % strains positiveV.harveyibiovarII

    V.ich

    thyoenteribiovarI

    V.ich

    thyoenteribiovar

    V.len

    tus

    V.mediterranei

    V.metschnikovii

    V.mimicus

    V.mytili

    V.natriegens

    V.navarrensis

    V.nereis

    V.nig

    ripulchritudo

    V.ord

    alii

    V.orientalis

    V.parahaemolyticus

    V.pec

    tenicida

    Test No. strains 23 6 3 9 19 5 7 5 12 4 6 3 6 6 18 2

    Voges Proskauer (Acetoin) 75 1 1 1 1 99 1 1 1 1 17 1 1 1 1 1

    Gelatinase 83 16 1 63 32 60 71 1 42 75 17 99 99 67 99 1

    Indole 99 1 1 63 95 60 99 1 27 99 83 67 1 99 99 1

    IXP alkaline phosphatase 99 99 99 75 89 40 86 99 75 99 67 67 40 83 99 99

    PNPG -D-galactosidase 99 1 1 50 99 99 43 75 75 1 1 99 1 67 17 1

    LGN -glutamyl transpeptidase 87 1 1 38 99 1 99 60 67 50 99 67 99 83 99 1

    NPS sulphatase 61 16 33 25 79 1 33 1 58 1 1 1 1 1 56 1

    Aesculin hydrolysis 99 66 1 71 95 99 1 99 99 75 1 50 1 20 11 1

    Utilisation: -ketoglutarate 1 1 1 50 37 1 99 20 67 99 99 99 17 1 89 1Acetate 99 83 99 88 99 60 99 99 92 75 99 67 1 67 99 1

    Alanine 99 33 1 75 99 60 99 99 99 75 99 99 67 99 99 99

    Citrate 99 16 1 13 99 40 99 99 92 99 99 99 99 99 94 1

    Citrulline 1 1 1 1 11 1 1 20 83 1 83 1 1 1 17 1

    Galactose 74 1 1 25 99 40 86 80 83 1 33 99 1 67 89 1

    Gluconate 99 99 1 25 5 99 99 99 92 99 99 33 1 99 99 1

    Glucosamine 96 99 99 13 99 20 99 99 99 99 99 99 50 83 99 50

    Glucuronate 13 99 1 1 58 1 86 1 33 25 1 33 1 1 17 1

    Glycerol 83 1 1 38 99 99 99 99 92 99 99 99 33 83 99 99

    Histidine 1 1 1 1 89 1 99 99 99 99 99 99 33 17 99 1

    DL-3-hydroxybutyrate 1 1 1 1 16 1 1 1 83 1 99 99 1 50 6 1

    Hydroxyproline 1 1 1 1 1 1 1 1 25 1 1 1 1 83 83 1

    DL-lactate 99 66 99 63 99 40 99 99 99 99 99 99 17 99 99 99

    Lactose 1 1 1 1 99 40 1 20 8 1 1 99 1 1 1 1

    Propionate 78 16 1 13 99 1 50 99 92 99 99 67 1 67 89 1

    Putrescine 1 1 1 13 99 1 1 1 83 1 83 1 1 83 89 1

    Succinate 99 1 99 50 95 60 99 80 99 99 83 99 1 99 89 50

    Sucrose 4 66 99 1 99 99 1 99 99 99 99 1 83 99 11 1

    Oxidase 99 99 99 99 99 1 99 80 99 99 99 99 99 99 99 99

    Agarolysis 1 1 1 1 5 1 1 1 8 1 1 1 1 1 1 1

    Resistance: 0/129 10 g 91 16 67 99 1 1 1 99 99 25 33 1 1 1 61 1

    0/129 150 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 6 1

    Ampicillin 10 g 1 33 1 13 1 40 14 1 8 50 1 1 50 1 94 50Novobiocin 5 g 74 66 1 1 11 40 57 60 99 75 80 1 1 17 94 1

    Carbenicillin 100 g 1 33 1 25 42 40 43 1 8 75 1 1 17 1 94 99

    Lysine decarboxylase 99 1 1 1 22 60 99 1 1 1 1 1 1 1 99 1

    Ornithine decarboxylase 1 1 1 13 1 1 99 1 1 1 1 1 1 1 99 1

    Urease 1 1 1 1 1 1 1 1 1 1 1 1 1 1 17 1

  • 7/31/2019 Vibrios Is

    33/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 33 of 35

    Data as % strains positiveV.pe

    lagiusbiovarI

    V.pe

    lagiusbiovarII

    V.pe

    naeicida

    V.pr

    oteolyticus

    V.ru

    moiensis

    V.scophthalmi

    V.sp

    lendidusbiovarI

    V.sp

    lendidusbiovarII

    V.tapetis

    V.tasmaniensis

    V.tubiashii

    V.vu

    lnificusbiovarI

    V.vu

    lnificusbiovarII

    Phenon

    6

    Phenon

    8

    Phen

    on

    10

    Test No. strains 10 5 4 12 3 11 37 3 1 8 7 7 5 7 7 6

    Arginine dihydrolase 1 1 1 99 99 9 99 99 1 99 99 1 1 99 99 17

    Acid: Arbutin 1 1 1 1 1 1 1 1 1 1 1 71 99 99 1 1

    Mannitol 99 99 1 99 33 10 97 99 1 71 99 71 1 99 99 99

    Salicin 1 1 1 1 1 1 8 1 1 25 99 57 99 99 1 33

    Sucrose 99 80 1 1 99 99 8 1 1 25 99 1 1 86 99 83

    Gentiobiose 1 40 1 1 1 1 1 1 1 1 99 28 40 40 1 1

    Growth: 7% NaCl 80 80 1 99 67 36 71 33 1 75 57 85 20 99 99 99

    10% NaCl 1 1 1 99 33 1 11 1 1 1 1 1 1 99 99 83

    Amylase20 80

    33 99 67 1 84 99 99 13 99 99 99 99 7183

    Voges Proskauer (Acetoin) 1 1 1 99 1 1 1 1 1 1 1 1 1 14 1 67

    Gelatinase 20 80 1 99 67 1 89 99 1 13 99 99 80 14 99 99

    Indole 1 99 1 75 1 1 95 66 1 63 99 99 1 99 86 83

    IXP alkaline phosphatase 99 99 50 92 99 82 92 99 1 99 86 85 99 99 99 99

    PNPG -D-galactosidase 99 99 99 1 67 9 92 1 1 1 99 99 80 14 29 50

    LGN -glutamyl transpeptidase 80 99 1 75 99 18 50 99 1 13 99 1 1 99 86 67

    NPS sulphatase 70 60 1 1 1 1 79 1 1 99 1 1 1 86 86 50

    Aesculin hydrolysis 99 99 1 1 33 99 97 99 1 99 99 42 25 99 1 83

    Utilisation: -ketoglutarate 20 20 99 99 67 9 99 99 99 38 1 99 80 99 99 99

    Acetate 90 80 99 99 67 45 76 99 1 99 86 85 99 99 99 99

    Alanine 99 99 99 99 99 1 97 99 1 99 99 99 99 99 99 99

    Citrate 80 99 99 99 99 91 97 99 99 99 99 99 99 99 99 99Citrulline 60 99 1 25 1 1 24 1 1 1 99 1 1 71 14 17

    Galactose 99 99 99 1 99 36 92 1 1 1 99 99 99 1 43 67

    Gluconate 99 99 99 99 67 82 84 1 1 99 99 99 99 99 99 99

    Glucosamine 70 99 99 99 99 99 89 66 99 99 99 99 80 99 86 99

    Glucuronate 1 1 25 1 1 64 21 1 1 1 86 85 80 1 1 17

    Glycerol 99 99 99 99 99 1 99 99 99 99 99 85 99 99 99 99

    Histidine 80 1 99 99 33 1 3 1 1 1 99 28 1 86 99 83

    DL-3-hydroxybutyrate 20 1 25 1 1 18 1 1 1 1 99 1 1 99 1 1

    Hydroxyproline 1 1 1 99 1 1 1 1 1 1 86 1 1 1 1 99

    DL-lactate 99 99 99 99 67 99 97 66 99 99 99 99 99 99 99 99

    Lactose 10 20 99 1 33 1 21 1 1 1 99 1 1 1 1 1

    Propionate 60 80 75 99 33 18 39 33 1 13 86 99 80 99 86 99

    Putrescine 99 99 1 99 1 1 5 1 1 1 29 1 1 99 14 17

    Succinate 99 99 99 99 99 91 99 99 99 99 86 99 99 99 86 99

    Sucrose 99 80 1 8 99 99 3 33 1 25 99 1 1 86 99 83

    Oxidase 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

    Agarolysis 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    Resistance: 0/129 10g 60 1 25 67 1 9 29 99 1 63 14 1 1 1 57 99

    0/129 150g 1 1 1 1 1 1 3 1 1 1 1 1 1 1 1 1

    Ampicillin 10g 10 1 1 58 1 1 3 99 1 1 1 1 1 1 57 99

    Novobiocin 5g 70 80 1 99 1 27 3 33 1 1 57 57 20 99 57 99

    Carbenicillin 100g 20 1 1 1 33 1 18 99 1 1 1 1 1 1 71 99

    Lysine decarboxylase 1 1 1 8 33 1 1 1 1 1 1 99 60 29 1 83Ornithine decarboxylase 1 1 1 1 1 1 1 1 1 1 1 99 1 29 1 99

    Urease 1 1 1 1 33 1 1 1 1 1 1 1 1 14 1 1

  • 7/31/2019 Vibrios Is

    34/35

    Vibrionaceae

    Australia and New Zealand Standard Diagnostic Procedure Jan 2009 34 of 35

    Data as % strains positive

    Phenon

    52

    Phenon

    15

    Phenon

    19

    Phenon

    20

    Phenon

    21

    Phenon

    24

    Phenon

    25

    Phenon

    26

    Phenon

    27

    Phenon

    29

    Phenon

    36

    Phenon

    41

    Phenon

    42

    Phenon

    43

    Phenon

    45

    Phenon

    46

    Test No. strains 3 8 4 6 8 4 14 16 17 17 6 6 4 11 4 6

    Arginine dihydrolase 33 99 99 83 88 99 99 99 99 99 50 99 99 99 99 99

    Acid: Arbutin 1 99 1 83 99 1 21 1 1 1 1 1 1 9 1 1

    Mannitol 1 99 99 67 99 99 77 99 99 88 50 1 50 91 25 99

    Salicin 1 1 1 99 99 1 57 1 1 99 1 1 1 27 1 1

    Sucrose 1 99 99 99 99 99 99 99 99 12 1 99 99 82 25 1

    Gentiobiose 1 86 1 83 99 25 57 1 1 1 1 1 1 9 1 1

    Growth: 7% NaCl 99 63 25 83 99 99 43 99 88 88 50 83 75 91 25 99

    10% NaCl 67 1 1 1 1 1 1 31 1 1 17 1 1 55 1 1

    Amylase 67 63 99 99 99 99 99 93 94 99 67 99 99 73 50 99

    Voges Proskauer (Acetoin) 67 25 1 1 1 1 1 1 1 1 1 17 99 9 1 1

    Gelatinase 99 13 1 99 99 75 99 99 99 94 1 67 50 55 25 99Indole 1 99 99 99 88 1 93 99 99 99 50 33 1 91 25 99

    IXP alkaline phosphatase 67 99 25 83 99 99 99 99 99 99 1 83 99 99 99 99

    PNPG -D-galactosidase 33 99 99 17 99 99 99 99 88 99 99 99 1 1 1 1

    LGN -glutamyl transpeptidase 1 50 99 50 99 1 14 99 82 94 67 99 99 55 25 17

    NPS sulphatase 1 88 1 17 88 99 93 99 99 99 1 1 1 55 50 50

    Aesculin hydrolysis 99 99 99 67 99 1 99 99 99 99 40 50 1 99 1 99

    Utilisation: -ketoglutarate 1 38 1 99 99 25 99 99 69 99 99 1 1 9 25 99

    Acetate 67 38 75 99 88 99 57 99 88 99 99 99 50 73 99 99

    Alanine 33 13 99 83 99 50 99 99 94 99 83 99 99 99 99 1

    Citrate 33 88 99 83 99 50 99 99 99 94 99 67 75 91 99 1

    Citrulline 1 1 25 40 88 1 1 99 1 99 50 67 25 55 1 1

    Galactose 1 99 99 83 99 99 99 99 88 99 99 99 1 9 50 99

    Gluconate 33 50 1 83 99 99 79 99 94 99 33 83 25 99 75 99

    Glucosamine 67 99 99 99 99 99 99 99 94 99 99 1 99 99 99 99

    Glucuronate 1 13 1 1 1 99 1 6 53 99 17 1 1 1 1 1

    Glycerol 67 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

    Histidine 99 1 1 33 13 1 1 18 12 1 67 17 1 9 1 1

    DL-3-hydroxybutyrate 33 1 75 67 1 1 1 1 6 6 33 1 1 1 1 1

    Hydroxyproline 33 1 1 99 1 1 1 1 1 1 1 83 1 18 1 1

    DL-lactate 33 99 99 99 99 25 99 99 94 99 99 99 99 99 75 99

    Lactose 1 1 25 1 1 1 1 1 6 6 1 1 1 1 1 1

    Propionate 67 1 99 67 99 1 7 68 88 94 83 99 99 91 75 1

    Putrescine 1 99 1 17 1 1 1 6 1 1 33 1 1 9 1 1Succinate 1 99 99 83 99 99 93 99 99 99 99 99 99 91 99 99

    Sucrose 99 99 99 99 99 99 99 99 99 18 17 99 99 82 25 1

    Oxidase 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99 99

    Agarolysis 1 13 1 1 1 1 1 1 1 6 1 1 1 9 1 1

    Resistance: 0/129 10 g 67 1 1 1 1 1 14 1 12 1 1 1 1 1 1 33

    0/129 150 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

    Ampicillin 10 g 33 1 1 1 1 1 1 1 1 1 1 99 75 9 25 1

    Novobiocin 5 g 99 1 50 17 1 1 1 18 1 1 1 67 99 18 1 1

    Carbenicillin 100 g 1 1 1 1 13 1 21 6 1 65 1 99 99 9 25 1

    Lysine decarboxylase 1 25 1 1 1 1 1 1 1 1 1 1 1 9 1 1

    Ornithine decarboxylase 1 1 1 1 1 1 1 1 1 1 1 1 1 9 1 1

    Urease 1 1 1 50 1 1 1 6 1 1 1 1 1 1 1 1

  • 7/31/2019 Vibrios Is

    35/35

    Vibrionaceae

    Data as % strains positive Phenon

    53

    Phenon

    57

    Phenon

    58

    Phenon

    59

    Phenon

    69

    Phenon

    83

    Test No. strains 9 4 4 14 5 6

    Arginine dihydrolase 11 99 25 1 80 99

    Acid: Arbutin 1 1 1 1 1 1

    Mannitol 99 99 99 1 99 1

    Salicin 13 1 1 7 20 1

    Sucrose 99 1 1 14 99 1

    Gentiobiose 1 25 1 93 1 1

    Growth: 7% NaCl 89 75 25 21 20 1

    10% NaCl 11 1 1 1 1 1

    Amylase 1 99 1 1 80 99

    Voges Proskauer (Acetoin) 1 1 1 1 99 1

    Gelatinase 11 75 1 21 1 99

    Indole 99 75 1 7 99 1

    IXP alkaline phosphatase 99 99 99 93 1 33PNPG -D-galactosidase 1 99 99 99 80 99

    LGN -glutamyl transpeptidase 33 1 1 1 1 66

    NPS sulphatase 44 99 50 99 20 16

    Aesculin hydrolysis 56 50 1 93 1 1

    Utilisation: -ketoglutarate 1 25 1 1 80 33

    Acetate 99 50 50 7 99 99

    Alanine 1 99 1 1 80 1

    Citrate 89 75 99 99 99 50

    Citrulline 1 1 1 1 1 1

    Galactose 1 99 99 99 60 83

    Gluconate 1 75 25 7 99 1

    Glucosamine 99 99 99 99 20 99Glucuronate 44 75 1 1 1 1

    Glycerol 44 99 99 99 99 99

    Histidine 1 1 1 1 60 50

    DL-3-hydroxybutyrate 89 1 1 1 60 1

    Hydroxyproline 11 1 1 1 1 1

    DL-lactate 99 75 1 1 60 99

    Lactose 1 75 99 99 20 1

    Propionate 99 1 1 1 40 1

    Putrescine 1 1 1 1 99 1

    Succinate 78 99 99 93 99 99

    Sucrose 99 1 1 7 80 1

    Oxidase 99 99 99 99 99 99

    Agarolysis 1 1 1 1 1 1

    Resistance: 0/129 10 g 89 1 1 1 40 1

    0/129 150 g 1 1 1 1 1 1

    Ampicillin 10 g 11 75 50 14 1 1

    Novobiocin 5 g 89 1 1 1 50 1

    Carbenicillin 100 g 11 99 99 71 1 1

    Lysine decarboxylase 1 99 99 93 1 1

    Ornithine decarboxylase 1 1 1 1 1 1

    Urease 1 75 99 99 80 1