viirs aerosol optical depth algorithm and products

26
VIIRS Aerosol Optical Depth Algorithm and Products Istvan Laszlo NOAA VIIRS Aerosol Science and Operational Users Workshop November 21-22, 2013 National Center for Weather and Climate Prediction (NCWCP) College Park, MD

Upload: belle

Post on 23-Feb-2016

79 views

Category:

Documents


0 download

DESCRIPTION

VIIRS Aerosol Optical Depth Algorithm and Products. Istvan Laszlo NOAA VIIRS Aerosol Science and Operational Users Workshop November 21-22, 2013 National Center for Weather and Climate Prediction (NCWCP) College Park, MD. VIIRS Aerosol Cal/Val Team. Outline. VIIRS instrument - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Optical Depth Algorithm and Products

Istvan LaszloNOAA

VIIRS Aerosol Science and Operational Users Workshop November 21-22, 2013

National Center for Weather and Climate Prediction (NCWCP)

College Park, MD

Page 2: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 2

Name Organization Major TaskKurt F. Brueske IIS/Raytheon Code testing support within IDPS

Ashley N. Griffin PRAXIS, INC/NASA JAM

Brent Holben NASA/GSFC AERONET observations for validation work

Robert Holz UW/CIMSS Product validation and science team support

Nai-Yung C. Hsu NASA/GSFC Deep-blue algorithm development

Ho-Chun Huang UMD/CICS SM algorithm development and validation

Jingfeng Huang UMD/CICS AOT Algorithm development and product validation

Edward J. Hyer NRL Product validation, assimilation activities

John M. Jackson NGAS VIIRS cal/val activities, liaison to SDR team

Shobha Kondragunta NOAA/NESDIS Co-lead

Istvan Laszlo NOAA/NESDIS Co-lead

Hongqing Liu IMSG/NOAA Visualization, algorithm development, validation

Min M. Oo UW/CIMSS Cal/Val with collocated MODIS data

Lorraine A. Remer UMBC Algorithm development, ATBD, liason to VCM team

Andrew M. Sayer NASA/GESTAR Deep-blue algorithm developmentHai Zhang IMSG/NOAA Algorithm coding, validation within IDEA

VIIRS Aerosol Cal/Val Team

Page 3: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 3

Outline

• VIIRS instrument• Aerosol algorithm

– history– over-land algorithm– over-ocean algorithm

• VIIRS vs. MODIS algorithm• VIIRS aerosol products• Summary

Page 4: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 4

VIIRSVisible Infrared Imaging Radiometer

Suite (VIIRS)• cross-track scanning radiometer with

~3000 km swath – full daily sampling• 7 years lifetime• 22 channels (412-12,016 nm)

– 16 of these are M bands with 0.742 x 0.776 km nadir resolution

– aerosol retrieval is from M bands• high signal-to-noise ratio (SNR):

– M1-M7: ~200-400– M8-M11: ~10-300

• 2% absolute radiometric accuracy• single look• no polarization

Band name

Wavelength (nm)

Bandwidth (nm)

Use in algorithm

M1* 412 20 LM2* 445 14 LM3* 488 19 L, TL TOM4* 555 21 TOM5* 672 20 L, O, TOM6 746 15 O

M7* 865 39 O, TLM8 1,240 27 O, TL, TO M9 1,378 15 TL

M10 1,610 59 O, TL, TOM11 2,250 47 L, O, TL,

TOM12 3,700 191 TLM13 4,050 163 noneM14 8,550 323 noneM15 10,763 989 TL, TOM16 12,016 864 TT, TO

*dual gain, L: land, O: ocean; T: internal test

Page 5: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 5

VIIR

S (c

ont)

• Sensor Data Records (SDRs), converted from raw VIIRS data (RDR), are used in the VIIRS aerosol algorithm

• Processing is on a granule by granule basis– VIIRS granule typically consists of 768 x 3200 (along-track by cross-track) 0.75-

km pixels

Example VIIRS granule, 11/02/2013, 19:05 UTCRGB image

Page 6: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 6

Aerosol Retrieval – Physical Basis· The satellite-observed reflectance

(ρtoa) is the sum of atmospheric (ρatm) and surface components (ρsrf) .

· The components are the result of reflection, scattering by molecules and aerosols and absorption by aerosols and gases.

· The aerosol portion of the atmospheric component (aerosol reflectance) carries information about aerosol.

· The aerosol reflectance is determined by the amount and type (size, shape and chemical composition) of aerosol.

atm

srf

srfatmtoa

Page 7: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 7

VIIRS Aerosol Algorithm (1)• Separate algorithms used over land and ocean• Algorithm heritages

– over land: MODIS atmospheric correction– over ocean: MODIS aerosol retrieval

• The VIIRS aerosol algorithm is similar but NOT identical to the above MODIS algorithms

• Many years of development work:– Initial science version is by Raytheon– Updates and modifications by NGAS– Current Cal/Val Team is to maintain, evaluate and improve the

algorithm

Page 8: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 8

VIIRS Aerosol Algorithm (2)• AOT and aerosol model is

simultaneously retrieved using reflected solar radiation in multiple VIIRS bands and ancillary data.

• Optimal solution is searched for that best matches theoretical and observed reflectances.– iteration through increasing

values of AOT and candidate aerosol models

• Must account for all important radiative processes– molecular scattering, aerosol

scattering and absorption, gas absorption, and surface reflection.

• Approach in the vector RT Second Simulation of the Satellite Signal in the Solar Spectrum (6S-V1.1) [Kotchenova and Vermote, 2007] is adopted.

terms) Lambertian-(non

surfAR

surfvAARsAAR

OHOH

ROHOHAA

OogAtoa STT

UTg

PUTg

TgTg

1),(),(

)(

)()2()(

)(22

22

3

• ρR+A, TR+A, SR+A are pre-calculated by 6S and stored in LUT; Tgs are parameterized.

(1)

Page 9: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 9

Ove

r Lan

d Re

trie

val

• Atmospheric correction of reflectances [Vermote and Kotchenova, 2008]– AOT and aerosol model are by-products of surface

reflectance retrieval• Basis: aerosols change the ratios of spectral

reflectances (spectral contrast) from those of the surface values.

• AOT and aerosol model are the ones that provide the best match between ratios of surface reflectances retrieved in multiple channels and their expected values.– Expected ratios are derived empirically by

atmospherically correcting VIIRS TOA M-band reflectances using AERONET AOT (99 sites, ~60,000 matchups).

• Eq. (1) is solved for ρsurf assuming Lambertian reflection.

• 5 aerosol models [Dubovik et al. 2002]:– dust – smoke (high and low absorption)– urban (clean & polluted)– bimodal lognormal size distribution, function of

AOT, spherical particles

Page 10: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 10

Ove

r Lan

d Re

trie

val (

2)

0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

0.4

0.5

0.6

Ref

lect

ance

Wavelength (m)

=0.0 =0.1 =0.2 =0.5 =1.0 =2.0

TOA reflectance vs. AOT ()

M1M2M3

M5

M11

0.0 0.5 1.0 1.5 2.00.2

0.4

0.6

0.8

1.0

1.2

1.4

surfa

ce+a

eros

ol re

flect

ance

ratio

AOT

M1/M5 M2/M5 M3/M5 M11/M5

0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

0.4

0.5

0.6

TOA

refle

ctan

ce

Wavelength (m)

s+a (=0.4) s+a+m s+a+m+g

M1M2M3

M5

M11

• Surface + aerosol reflectance changes with increasing AOT.– Surface: green vegetation– Atmosphere:

• aerosol: urban clean• Rayleigh: no• Gas absorption: no

– SZA=0°, VZA=30°, RAZ=20°• Normalized spectral reflectance

(“spectral shape”) also changes with increasing AOT.

Page 11: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 11

Over Land Retrieval (3)• AOT is retrieved by marching

through AOTs in LUT until the retrieved M3 surface reflectance is close to the one expected from the retrieved M5 value.

0.0 0.1 0.2 0.3 0.40.03

0.04

0.05

0.06

0.07

Sur

face

refle

ctan

ce

AOT @550 nm

M5 retrieved M3 retrieved M3 expected

0.038

0.36

0.5 1.0 1.5 2.0 2.5

0.0

0.1

0.2

0.3

0.4

M1M2

M3 M4

M5

M6

M7M8

M9

M10

M11

Obs

erve

d re

flect

ance

Wavelength (m)

Location: UMBC (76.71W, 39.26N); Date: 5/17/2013

Aerosol model: urban-polluted

Page 12: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 12

0.0 0.1 0.2 0.3 0.4 0.5 0.6

-0.004

0.000

0.004

0.008

0.012

0.016

0.020

model 4

(ret

rieve

d-ex

pect

ed) M

3 su

rface

refle

ctan

ce

AOT @550 nm

model 0 model 1 model 2 model 3 model 4

0.5 1.0 1.5 2.0 2.50.02

0.04

0.06

0.08

0.10

0.12

M1M2M3

M5

M11

2

expecteds

retrievedsresidual

Sur

face

refle

ctan

ce,

Wavelength (m)

retrieved expected

model 4

M1

0.56

0.36

0.26

0.320.36

1.05

E-0

2

1.43

E-0

4

1.29

E-0

4

1.56

E-0

4

1.26

E-0

4

0 1 2 3 40.0

0.1

0.2

0.3

0.4

0.5

0.6

AOT @550 nm residual

model

AO

T @

550

nm

10-5

10-4

10-3

10-2

Res

idua

l

0.5 1.0 1.5 2.0 2.50.0

0.1

0.2

0.3

0.4

0.5

0.6 M1

M2

M3

M4

M5M6

M7

M8 M10 M11

Location: UMBC (76.71W, 39.26N); Date: 5/17/2013

AO

T @

550n

m

Wavelength (m)Ove

r Lan

d Re

trie

val (

4)

0=dust; 1=smoke-high abs.; 2=smoke-low abs.;3=urban-clean; 4=urban polluted

Page 13: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 13

Ove

r Oce

an R

etrie

val

• Close adaptation of the MODIS approach [Tanré et al., 1997]– search for AOT and aerosol model that

most closely reproduces the VIIRS-measured TOA reflectance in multiple bands.

– wind-dependent (speed and direction) ocean surface reflectance is calculated analytically.

• Accounts for water-leaving radiance (Lambertian, fixed pigment concentration), whitecap (Lambertian, wind-speed dependent) and specular reflection (dependent on wind speed and direction).

– Combines 5 fine mode and 4 coarse mode models with 0.01 increments in fine mode fraction (2020 models)

– TOA reflectances in selected M bands are calculated from Eq. 1 and compared to observed ones to retrieve AOT and aerosol model simultaneously.

Page 14: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 14

Over Ocean Retrieval• AOT for a given aerosol model is

from matching calculated and observed M7 TOA reflectances.

• Retrieved AOT is used to calculate TOA reflectances in other channels.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

TOA

refle

ctan

ce

AOT@550nm

M7M7

calculated observed calculated @ retrieved AOT550

M5

M6

M8M10M11

0.5 1.0 1.5 2.0 2.5

0.00

0.05

0.10

0.15

0.20

0.25

0.30M1

M2

M3

M4

M5M6

M7M8

M9M10 M11

Obs

erve

d re

flect

ance

Wavelength (m)

Location: Arica (70.31W, 18.47S); Date: 5/4/2013

Page 15: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 15Ove

r Oce

an R

etrie

val (

2)

0.5 1.0 1.5 2.0 2.5

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45M1

M2

M3

M4

M5M6

M7M8 M10 M11

Location: Arica (70.31W, 18.47S); Date: 5/4/2013

AO

T @

550n

m

Wavelength (m)

200 400 600 800 1000120014001600180020000

2x10-4

4x10-4

6x10-4

8x10-4

1x10-3

1x10-3

residual = 2.3x10-5

AOT @550nm = 0.259fine mode model = 0coarse mode model = 2fine mode fraction = 0.6

Res

idua

l

Model

0 20 40 60 80 1000

2x10-4

4x10-4

6x10-4

8x10-4

1x10-3

1x10-3

Res

idua

l

Fine mode fraction (x100)

fine mode model index = 0coarse mode model index = 2

residual = 2.3x10-5

AOT @550nm = 0.259fine mode fraction = 0.6

0.5 1.0 1.5 2.0 2.50.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

M5

M6

M7

M8

M10 M11

2

obsTOA

calTOAresidual

fine mode model index = 0coarse mode model index = 2fine mode fraction (x100) = 60

TOA

refle

ctan

ce

Wavelength (m)

calculated observed

Page 16: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 16

Pixe

l Sel

ectio

n &

Qua

lity

Flag

s Condition Quality Flag Applies to Detected byNot

ProducedExcluded Degraded Land Ocean VCM Internal

TestsInvalid SDR data X X X X

Cloud Contamination X X X XSun Glint X X X X XSnow/Ice X X X X X

Fire X X X XBright Surface X X X

Coastal or Inland Water X XTurbid Water X X X

Ephemeral Water X X XSolZA ≥ 80° X X X X

Out of Spec Range X X X XCloud Adjacency X X X X

Cloud Shadow X X X XCirrus X X X X X

Soil Dominated X X X65° ≤ SolZA < 80° X X X X

Large Retrieval Residual X X X X

Page 17: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 17

Planned Enhancements

• Replace current fixed surface reflectance relationships with NDVI-dependent relationships.

• Extend AOT reporting range from 2 to 5.• Update ocean aerosol models with those from MODIS

algorithm.• Improve cloud/heavy-aerosol discrimination, snow/ice

detection; add spatial variability internal test.• Add Deep-Blue module (Hsu & Sayer) to extend

retrievals over bright surfaces.

Page 18: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 18

VIIR

S vs

. MO

DIS

VIIRS MODISAlgorithm (general)

Main source of data screening External VCM Internal testsAggregation on Outputs InputsResidual calculated as Absolute difference Relative difference

Over-ocean algorithm

Channel used 0.67, 0.74, 0.86, 1.24, 1.61, 2.25 µm

0.55, 0.66, 0.86, 1.24, 1.61, 2.12 µm

Surface reflection Non-lambertian, function of wind speed and direction

Lambertian, independent on wind (will change in C6)

Aerosol model Combination of fine and coarse modes

Combination of fine and coarse modes

Match to TOA reflectances TOA reflectancesRetrieval over inland water No Yes

Over-land algorithmChannel used 0.41, 0.44, 0.48, 0.67, 2.25 µm 0.47, 0.66, 2.12 µmAerosol model Select one from five pre-defined

modelsMix two assigned fine and coarse mode dominated models

Spectral surface reflectance Constant ratios of 0.41, 0.44, 0.48, 2.25 µm over 0.67 µm(will depend on NDVI)

Linear relationship between 0.66 and 2.12 µm as a function of NDVI and scattering angle; constant linear relationship between 0.47 and 0.66 µm

Match to Surface reflectances TOA reflectances

Page 19: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 19

VIIR

S vs

. MO

DIS

(con

t)VIIRS MODIS

ProductsNominal spatial resolution 0.75 km (IP)

6 km (EDR)10 km (C5)3 km (C6)

Granule size 86 seconds 5 minutesAOT range [0, 2] (will change) [-0.05, 5]Main product land Spectral AOT Spectral AOTMain product ocean Spectral AOT

Ångström exponentSpectral AOTFine mode fraction

Orbit

Orbit altitude 824 km 690 km

Equator crossing time 13:30 UTC 13:30 UTC (Aqua)

Swath width 3000 km 2300 kmPixel resolution (nadir) 0.75 km 0.5 kmPixel resolution (swath edge) 1.5 km 2 km

Page 20: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 20

Sensor and Other Inputs• VIIRS M-band SDRs (reflectances)

– M1-M12, M15, M16, and quality flags• Solar and view geometry

– zenith and azimuth angles• VIIRS Cloud Mask (VCM)

– pixel cloud flag (clear/cloudy, probably clear/cloudy), cloud shadow, land/water, snow/ice, fire, sunglint, heavy aerosol, volcanic ash

• NCEP GFS data (backup:FNMOC/NAVGEM)– Water vapor, ozone, surface pressure, winds (speed and direction)

• Navy Aerosol Analysis and Prediction System (NAAPS) aerosol data– used for filling in missing VIIRS IP retrievals

Page 21: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 21

VIIRS Aerosol Products (1)• Aerosol Optical Thickness (AOT)

– for 11 wavelengths (10 M bands + 550 nm)• APSP (Aerosol Particle Size Parameter)

– Ångström Exponent derived from AOTs at M2 (445 nm) and M5 (672 nm) over land, and M7 (865 nm) and M10 (1610 nm) over ocean

– qualitative measure of particle size– over-land product is not recommended!

• Suspended Matter (SM)– classification of aerosol type (dust, smoke, sea salt, volcanic ash) and

smoke concentration– currently, derived from VIIRS Cloud Mask (volcanic ash) and aerosol model

identified by the aerosol algorithm • Only day time and over dark land and non-sunglint ocean

Page 22: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 22

VIIR

S Ae

roso

l Pro

duct

s (2)

At NOAA Comprehensive Large Array-data Stewardship System (CLASS):

• Intermediate Product (IP)– 0.75-km pixel

• AOT• APSP• AMI (Aerosol Model Information)

– land: single aerosol model– ocean: indexes of fine and coarse modes and

fine mode fraction• quality flags

• Environmental Data Record (EDR)– 6 km aggregated from 8x8 IPs filtered by

quality flags• granule with 96 x 400 EDR cells• AOT• APSP• quality flags

– 0.75 km• SM

At NOAA/NESDIS/STAR– Gridded 550-nm AOT EDR

• regular equal angle grid: 0.25°x0.25° (~28x28 km)

• only high quality AOT EDR is used

Page 23: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 23

Summary• Algorithm documents

– Jackson, J., H. Liu, I. Laszlo, S. Kondragunta, L. A. Remer, J. Huang, H-C. Huang, 2013: Suomi-NPP VIIRS Aerosol Algorithms and Data Products, J. Geophys. Res. doi: 10.1002/2013JD020449

– ATBD (Draft)– OAD

• Product documents– User’s Guide– Readme files

• VIIRS Aerosol Calibration and Validation website http://www.star.nesdis.noaa.gov/smcd/emb/viirs_aerosol/index.php

Page 24: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 24

Summary (cont.)• Product quality:

– Liu, H., L. A. Remer, J. Huang, H-C. Huang, S. Kondragunta, I. Laszlo, M. Oo, J. M. Jackson, 2013: Preliminary Evaluation of Suomi-NPP VIIRS Aerosol Optical Thickness, J. Geophys. Res. (in review)

– Hongqing Liu: VIIRS Aerosol Products, Data Quality, and Visualization Tools (VIIRS Aerosol Science and Operational Users Workshop , November 21-22, 2013, College Park, MD)

• Link to CLASS:– http://www.class.ncdc.noaa.gov/saa/products/welcome

• Link to gridded data:– http://www.star.nesdis.noaa.gov/smcd/emb/viirs_aerosol/produc

ts_gridded.php

Page 25: VIIRS Aerosol Optical Depth Algorithm and Products

VIIRS Aerosol Science and Operational Users Workshop, Nov 21-22, 2013, NCWCP, College Park, MD 25

Backup

Page 26: VIIRS Aerosol Optical Depth Algorithm and Products

26

AOT Product Timeline

Initial instrument check out;

Tuning cloud mask parameters

Beta status Error Beta status

Provisional status

26

28 Oct 2011 2 May 2012 15 Oct 201228 Nov 2012

23 Jan 2013

Red period: Product is not available to public, or product should not be used.

Blue period: (Beta)

Product is available to public, but it should be used with caution, known problems, frequent changes.

Green period:(Provisional)

Product is available to public; users are encouraged to evaluate.

Products go trough various levels of maturity: