vorlesung clausthal fernerkundung pdf1

111
1 Surface geothermal exploration Dr. Sandra Schumacher Leibniz Institute for Applied Geophysics, Hannover WS 2014/15

Upload: sidik

Post on 15-Jan-2016

24 views

Category:

Documents


0 download

DESCRIPTION

Vorlesung Clausthal Fernerkundung Pdf1

TRANSCRIPT

Page 1: Vorlesung Clausthal Fernerkundung Pdf1

1

Surface geothermal

exploration

Dr. Sandra Schumacher

Leibniz Institute for Applied Geophysics, Hannover

WS 2014/15

Page 2: Vorlesung Clausthal Fernerkundung Pdf1

Exploration

Remote Sensing

Geochemistry

Geophysics

Page 3: Vorlesung Clausthal Fernerkundung Pdf1

Remote Sensing

Temperature

Minerals

Tectonics

Page 4: Vorlesung Clausthal Fernerkundung Pdf1

Exploration

Remote Sensing

Geochemistry

Geophysics

Page 5: Vorlesung Clausthal Fernerkundung Pdf1

Geochemistry Geothermometer

Isotopes

CO2

Page 6: Vorlesung Clausthal Fernerkundung Pdf1

Exploration

Remote Sensing

Geochemistry

Geophysics

Page 7: Vorlesung Clausthal Fernerkundung Pdf1

Geophysics

TEM Seismics

Magnetotellurics

Magnetics

Gravimetry

Page 8: Vorlesung Clausthal Fernerkundung Pdf1

Exploration

Remote Sensing

Geochemistry

Geophysics

Page 9: Vorlesung Clausthal Fernerkundung Pdf1

How to characterise a

geothermal reservoir

Page 10: Vorlesung Clausthal Fernerkundung Pdf1

10

Surface exploration report

• Geological map

• Tectonic map

• Geothermal map

• Resistivity maps at different depths

• Bouguer gravity map

• Magnetic map

• Map showing lateral distribution of seismicity

• Heat flow and soil temperature maps

Page 11: Vorlesung Clausthal Fernerkundung Pdf1

11

Aims of report

• Likely temperature of the reservoir fluids

• Likely heat sources

• Likely flow pattern of reservoir fluids

• Likely geological structure of the reservoir rocks

• Likely volume of abnormally hot rocks

• Likely total natural heat loss

• A conceptual model of the geothermal system

Page 12: Vorlesung Clausthal Fernerkundung Pdf1

12

Aim

• To collect enough information to prevent expensive failures, e.g.:

– Drilling boreholes without sufficient yield

current conditions

– Investing in a plant, which after a few years loses output rapidly

prognosis

Page 13: Vorlesung Clausthal Fernerkundung Pdf1

13

What do we need?

Information about:

• Temperatures

• Reservoir depth

• Permeability / Transmissivity

• Rock type / rock strenght

• Stress field

• Geochemistry

Page 14: Vorlesung Clausthal Fernerkundung Pdf1

14

Where to start?

• Temperatures are fixed, permeability/transmissivity can be engineered (to a certain extent)

Temperatures are the most important factor (for Enhanced Geothermal Systems)

Page 15: Vorlesung Clausthal Fernerkundung Pdf1

15

Volcanic system and its indicators

(van der Meer et al., 2014)

Page 16: Vorlesung Clausthal Fernerkundung Pdf1

16

Direct indicators

• Surface features

– Caldera structures

– Hot springs

– Steaming ground

– Fumaroles

– Faults, lineaments

• Mineral assemblage

Page 17: Vorlesung Clausthal Fernerkundung Pdf1

17

Indirect indicators

• Surface temperature variations

– Heat sources

– Heat flux

• Surface deformation

• Microseismicity

• Changes in vegetation

Page 18: Vorlesung Clausthal Fernerkundung Pdf1

18

Remote

sensing

Page 19: Vorlesung Clausthal Fernerkundung Pdf1

19

Remote sensing

• Uses electromagnetic (EM) radiation

• Wavelengths: 0.4 μm to 1 m

• Sensors:

– Airborne: planes, helicopters, balloons, etc.

– Space-bound: satellites, rockets, etc.

– Ground-based: hydraulic platforms and hand-held instruments (for ground truth)

Page 20: Vorlesung Clausthal Fernerkundung Pdf1

20

Basics

• Each object reflects, emits and absorbs EM radiation

• Using more than

one wavelenght

discrimination

possible

(Singhal & Gupta, 2010)

Page 21: Vorlesung Clausthal Fernerkundung Pdf1

21

Advantages

• Synoptic overview: regional features and trends

• Feasibility: also possible in remote areas

• Time saving: information about large area in short time

• Multidisciplinary applications: one measurement, many uses

Page 22: Vorlesung Clausthal Fernerkundung Pdf1

22

Limitations

• Low penetration depth: < 1 mm to several meters (in dry desert conditions)

• High cost of satellite data

– BUT: (e.g.: free data of Landsat TM and ETM)

• Expensive software

– BUT: free software (e.g.: ILWIS)

Page 23: Vorlesung Clausthal Fernerkundung Pdf1

23

Different wavelengths

(Singhal & Gupta, 2010)

Page 24: Vorlesung Clausthal Fernerkundung Pdf1

24

Techniques

• Active:

using radar (microwave)

• Passive: using

– Solar radiation (ultraviolet – visible – near-infrared)

– Earth-emitted radiation (3 – 20 μm region, called thermal infrared)

Page 25: Vorlesung Clausthal Fernerkundung Pdf1

25

Atmospheric interactions

• Raleigh scattering: haze and low-contrast pictures in UV-blue parts

• Absorption by e.g. H2O-vapour, CO2, O3, etc.: blocking of signals

• Region of less absorption: atmospheric windows

Page 26: Vorlesung Clausthal Fernerkundung Pdf1

26

Sensor systems

• Photographic systems

• Line scanning systems

• Digital cameras

• Imaging radar systems

Page 27: Vorlesung Clausthal Fernerkundung Pdf1

27

Photographic systems

• Good geometric accurancy

• High resolution

• Limited spectral range

• Colour infrared film (CIR) most important

• Standard: air-borne, vertical shots with overlap of 70 – 75 % for stereo viewing

• Scales: 1:20,000 – 1:50,000

Page 28: Vorlesung Clausthal Fernerkundung Pdf1

28

Line-Scanning Systems

• Give digital data on intensity

of ground radiance

• Radiance from each cell

collected, integrated by

system brightness

value/digital number per

pixel

• OM or CCD systems

(Singhal & Gupta, 2010)

Page 29: Vorlesung Clausthal Fernerkundung Pdf1

29

Opto-mechanical (OM) scanners

• Used air-borne or space-borne

• Visible to thermal infrared

• Moving plane mirror refelcts radiation onto filter and detector assembly

• Typical: MSS, TM and ETM+ on Landsats

Page 30: Vorlesung Clausthal Fernerkundung Pdf1

30

Charge-Coupled Device (CCD) scanners

• No moving parts

• Detectors: photoconductors

• Linear array of CCDs with > 1000 elements at focal plane of camera

• Array converts radiation into electrical signals

• One array per spectral band

• Satellite sensors e.g. SPOT-HRV, IRS-LISS

Page 31: Vorlesung Clausthal Fernerkundung Pdf1

31

Digital cameras

• Using CCDs or CMOSs instead of film

• Digital output, fast processing, higher sensitivity, better image radiometry, higher geometric fidelity, lower costs

• Limited usability from visible to near-IR

• Satellite sensors e.g. IKONOS,CARTOSAT

Page 32: Vorlesung Clausthal Fernerkundung Pdf1

32

Imaging Radar System

• Side-looking Airborne

Radar (SLAR)

• Radar transmits short

microwave pulses,

back-scatter from

ground recorded

• Night, fog, rain, snow

less problematic than

for photographic systems (Singhal & Gupta, 2010)

Page 33: Vorlesung Clausthal Fernerkundung Pdf1

33

Imaging Radar System

(© NASA)

Page 34: Vorlesung Clausthal Fernerkundung Pdf1

34

Synthetic aperture radar (SAR)

• Can be used by night (active system)

• Advanced data processing algorithms

higher spatial resolution

• Resolution: 5 - 30 m

• Serious geometric distortions due to oblique viewing

• Strong shadows and look-direction effects

• Satellites e.g. ENVISAT-1

Page 35: Vorlesung Clausthal Fernerkundung Pdf1

35

SAR

• One small antenna

with many pictures

instead of one large

with one picture

• Example: in 10 km

1 m resolution:

big antenna: 300 m

small antenna: 2 m (© Dantor)

Page 36: Vorlesung Clausthal Fernerkundung Pdf1

36

Radar return

• Backscattered signal

• Affected by:

– Radar wavelength

– EM beam polarization

– Local incidence angle

– Target surface roughness

– Complex dielectric constants

Signal interpretation not trivial!

Page 37: Vorlesung Clausthal Fernerkundung Pdf1

37

Satellite programs

• LANDSAT (OM)

• TERRA-ASTER

• SPOT (CCD)

• IRS (CCD)

• FUYO (CCD)

• DAICHI

Page 38: Vorlesung Clausthal Fernerkundung Pdf1

38

Resolution

(Singhal & Gupta, 2010)

Page 39: Vorlesung Clausthal Fernerkundung Pdf1

39

Interpretation principles

• > 1 parameter used for interpretation

• All parameters are interpreted together

(multispectra, stereo, etc.)

• Remote sensing data are indexed clearly

(location, scale, orientation, etc.)

• Ground truth is obtained

Page 40: Vorlesung Clausthal Fernerkundung Pdf1

40

Ground truth

• Rock/soil type

• Geological structures

• Soil moisture

• Vegetation type and density

• Land use

• Groundwater level

Page 41: Vorlesung Clausthal Fernerkundung Pdf1

41

Photo-interpretation elements

• Tone (relative brightness)

• Colour

• Texture

• Pattern (arrangement of e.g. vegetation)

• Shadow

• Shape

• Size

• Site/association

Page 42: Vorlesung Clausthal Fernerkundung Pdf1

42

Geotechnical elements

• Landform

• Drainage

• Soil

• Vegetation

Page 43: Vorlesung Clausthal Fernerkundung Pdf1

43

Panchromatic Sensors

• Broad-band

• Visible range (0.4 – 0.7 μm)

• Higher resolution than multispectral

• Image in shades of gray

Page 44: Vorlesung Clausthal Fernerkundung Pdf1

44

Multispectral data

• Total absorption: black colour

• Each channel separately: shades of gray

• Clouds appear bright in all channels

(Singhal & Gupta, 2010)

Page 45: Vorlesung Clausthal Fernerkundung Pdf1

45

False colour composite (FCC)

• Three channels are combined/overlain

• Standard:

– Green response in blue

– Red response in green

– NIR response in red

True colour FCC (Landsat 7 (Landsat 7 ETM + Bands 3,2,1) ETM + Bands 4,3,2)

(© NASA)

Page 46: Vorlesung Clausthal Fernerkundung Pdf1

46

Thermal IR data

• 3 – 25 µm, most important: 8 – 14 µm

• Thermal radiative properties of materials:

– Surface temperature

• Thermal inertia

– Emissivity

• Typically: a pre-dawn and a day pass

• Topography shows strongly at day but not night

Page 47: Vorlesung Clausthal Fernerkundung Pdf1

47

TIR

(Singhal & Gupta, 2010)

Page 48: Vorlesung Clausthal Fernerkundung Pdf1

48

TIR

• Detection of faults or folds by:

– Evaporative cooling

– Spatial differences in thermal properties

• Aerial: 2- 6 m; space: e.g. 90 m for ASTER

(Singhal & Gupta, 2010)

Page 49: Vorlesung Clausthal Fernerkundung Pdf1

49

SAR

• Shades of gray; higher backscatter brighter

• Strong radar return by metallic objects and corner reflections

• Little return by smooth surfaces

• Important for interpretation:

– Terrain ruggedness

– Orientation of object to look direction

– Soil moisture (dielectric constant)

Page 50: Vorlesung Clausthal Fernerkundung Pdf1

50

SAR

(Singhal & Gupta, 2010)

Page 51: Vorlesung Clausthal Fernerkundung Pdf1

51

SAR

• Minor details are suppressed regional

landform studies structural lineations

• Penetration depth depends on:

– Wavelength (the longer, the better)

– Moisture content (less is better)

• < 0.5 m for C-band

• < 2.0 m for L-band

(Singhal & Gupta, 2010)

(Courtesy: ESA)

Page 52: Vorlesung Clausthal Fernerkundung Pdf1

52

Groundwater indicators

• 1. order:

– Recharge zones

– Discharge zones

– Soil moisture and vegetation

• 2. order

– Rock/soil type

– Structures e.g. rock fractures

– Landform

– Drainage characteristic

Page 53: Vorlesung Clausthal Fernerkundung Pdf1

53

Image selection

• Small-scale images for regional setting of landforms and structures

• Large-scale images for locating actual borehole sites

• Using the right spectral bands

• Considering temporal conditions (rainfall,

snow cover, vegetation, soil moisture, etc.)

Page 54: Vorlesung Clausthal Fernerkundung Pdf1

54

Temporal variations

Post-monsoon Pre-monsoon

(Singhal & Gupta, 2010)

Widespread vegetation Landforms (valley fills, lineaments)

are clearer

Page 55: Vorlesung Clausthal Fernerkundung Pdf1

55

DEM accuracy

• Shuttle radar topographic mapping (SRTM): ~ 90 m, sometimes 30 m

• Digital photogrammetry (SPOT, ASTER, etc.): 15-40 m (ASTER), ~ 1-2 m (HR-Stereo systems: Cartosat, Quick-Bird, IKONOS)

• GoogleEarth: up to 1 m in flat areas

• LIDAR surveys: 10-30 cm vertical (problems due to vegetation)

Page 56: Vorlesung Clausthal Fernerkundung Pdf1

(© McElhanney)

LIDAR

Page 57: Vorlesung Clausthal Fernerkundung Pdf1

57

Digital image processing

Page 58: Vorlesung Clausthal Fernerkundung Pdf1

58

Basics

• Used for:

– Image data correction

– Superimposing digital image data

– Enhancement

– Classification

Page 59: Vorlesung Clausthal Fernerkundung Pdf1

59

Processing sequence

• Image correction

• Registration

– Superimposing images, maps, etc. with geometric congruence

• Enhancement

– To make an image easier to interpret

• Visual interactive interpretation

• Output

Page 60: Vorlesung Clausthal Fernerkundung Pdf1

60

Possible errors to be corrected

• Radiometric errors and anomalies

– Stripping

– Bad line data

– Atmospheric scattering effects

• Geometric distortions

– Caused e.g. by Earth‘s rotation

Page 61: Vorlesung Clausthal Fernerkundung Pdf1

61

Enhancement I

• Contrast enhancement: rescaling gray levels

– Linear stretch: expansion to fill the complete range of display

– Histogram equalized stretch (ramp stretch): assigning new image values based on the frequency of their occurence very high image contrast

– Logarithmic stretch: useful for lower DN-range

– Exponential stretch: useful for upper DN-range

Page 62: Vorlesung Clausthal Fernerkundung Pdf1

62

Histogram equalized stretch

(© Phillip Capper)

(© Jarekt)

Unequaliz

ed

E

qualiz

ed

Page 63: Vorlesung Clausthal Fernerkundung Pdf1

63

Enhancement II

• Edge enhancement: Object borders get enhanced

– Sharper image

– Enhancing fractures, etc. overall or in a preferred direction

• Addition and subtraction: combine multi-image data pixel-wise

– Addition: high contrast, general study

– Subtraction: reduced contrast, change detection

Page 64: Vorlesung Clausthal Fernerkundung Pdf1

64

Enhancement III

• Ratio image: dividing pixel value in one band by pixel value in other band

– Smaller effects of illumination/topography

– Enhanced spectral information

– Very useful for vegetation density

• Colour enhancement:

– Pseudo-colour: enhancing differences in a single gray image

– RGB coding: used for set of 3 images

Page 65: Vorlesung Clausthal Fernerkundung Pdf1

65

Color enhancement

(NASA/JPL)

Page 66: Vorlesung Clausthal Fernerkundung Pdf1

66

Pseudo-colour

Seismic data

Page 67: Vorlesung Clausthal Fernerkundung Pdf1

67

Geothermally relevant

observations

Page 68: Vorlesung Clausthal Fernerkundung Pdf1

68

Possible observation themes

• Surface deformation

• Gaseous emissions

• Structural analysis

• Mineral mapping

• Surface temperature mapping

• Heat flux mapping

• Geobotany

Page 69: Vorlesung Clausthal Fernerkundung Pdf1

69

Indicators for geothermal activity

• Hot springs, fumaroles

• Siliceous sinter, travertine or tufa deposits

• Hydrothermally altered rocks

• Borate or sulfate crusts at playas

• Changes in vegetation:

more at fault-controlled springs, less near faults leaking high concentrations of gasses such as SO2, H2S or CO2

Page 70: Vorlesung Clausthal Fernerkundung Pdf1

70

Temperatures

Page 71: Vorlesung Clausthal Fernerkundung Pdf1

71

Systems

(Haselwimmer et al., 2011)

Page 72: Vorlesung Clausthal Fernerkundung Pdf1

72

Types of geothermal manifestions

• Spring-dominated

– Low energy (T < 90 °C)

• Vapour-dominated

– Medium energy (90 °C < T < 150 °C)

– High energy (T > 150 °C)

Page 73: Vorlesung Clausthal Fernerkundung Pdf1

73

Vapour-dominated Craters of the Moon, NZ

Page 74: Vorlesung Clausthal Fernerkundung Pdf1

74

Vapour-dominated Te Puia, NZ

Page 75: Vorlesung Clausthal Fernerkundung Pdf1

75

Thermal Infrared (TIR)

• Rapid mapping and quantifying

• Monitoring of trends

• Estimates of surface heat loss (input for models)

Page 76: Vorlesung Clausthal Fernerkundung Pdf1

76

TIR

• Satellite thermal sensors

– Resolution: 60 – 90 m per pixel

– Landsat or ASTER

• Airborne thermal imagery

– Broadband or multispectral

– Wavelengths: mid (3 – 5 µm), long (8 -14 µm)

– High-resolution: pixel < 5 m

• Ground-based

Page 77: Vorlesung Clausthal Fernerkundung Pdf1

77

SEBASS

• Spatially Enhanced Broadband Array Spectrograph System

• hyperspectral airborne TIR pushbroom sensor

• 128 channels at 2.5–5.2 μm and 7.5–13.5 μm

• ~ 1 m/pixel spatial resolution with a swath width of 128 m at 915 m above ground level (AGL)

Page 78: Vorlesung Clausthal Fernerkundung Pdf1

78

MAGI

• Mineral and Gas Identifier

• new airborne TIR sensor

• 32 channel between 7.8 and 12.0 μm

• spatial resolution of 2 m/pixel at an altitude of 3657 m AGL

• up to 2800 pixels in the cross track

• up to 5600 m swath width

Page 79: Vorlesung Clausthal Fernerkundung Pdf1

79

Aim: Black-body radiance

1

5 2

( )

1

c

B Tc

expT

• Bλ(T): spectral black-body radiance [W/m2/μm/sr] • c1: first radiation constant for spectral radiance = 1.191×10−16 (Wm2/sr) • c2: second radiation constant = 1.438×10−2 (m*K) • λ: wavelength (μm)

Page 80: Vorlesung Clausthal Fernerkundung Pdf1

80

Black-body radiance

(Wikipedia)

Page 81: Vorlesung Clausthal Fernerkundung Pdf1

81

Thermal Infrared

(Haselwimmer et al., 2011)

Winter 2011 Fall 2010

Page 82: Vorlesung Clausthal Fernerkundung Pdf1

82

Steamboat Springs

(Coolbaugh et al., 2007)

Page 83: Vorlesung Clausthal Fernerkundung Pdf1

83

Albedo

• reflection coefficient

• albedo = reflected radiation/ incident radiation

• wavelength-dependent

• trees: 0.08 - 0.18

• green grass: 0.25

• new concrete: 0.55

• fresh snow: 0.8 - 0.9

Page 84: Vorlesung Clausthal Fernerkundung Pdf1

84

Sinter terrace, Te Puia, NZ

Page 85: Vorlesung Clausthal Fernerkundung Pdf1

85

Bradys Hot Springs

(Coolbaugh et al., 2007)

Page 86: Vorlesung Clausthal Fernerkundung Pdf1

86

ASTER

• Advanced Spaceborne Thermal Emission and Reflection Radiometer

• Channels:

– 3 VNIR

– 6 SWIR

– 5 TIR

• TIR used for emissivity and surface temperature imagery

Page 87: Vorlesung Clausthal Fernerkundung Pdf1

87

Bradys Hot Springs

• ASTER data:

– Corrected for atmospheric absorption

– Preprocessed data:

• AST07: surface reflectance

• AST08: surface kinetic temperature:

radiance temperature converted to kinetic temperature

• AST07 useful for albedo corrections to AST08

• AST08 available for day and night images, AST07 not

Page 88: Vorlesung Clausthal Fernerkundung Pdf1

88

Kinetic temperature

P: pressure

V: volume

n: amount of gas (number of moles)

R: gas constant

T: temperature

N: Boltzmann constant

m: mass

v: velocity

22 1[ ]

3 2PV nRT N mv

Page 89: Vorlesung Clausthal Fernerkundung Pdf1

89

Land surface energy balance

Q*: net radiation

H: sensible heat flux (convection + conduction)

λE: latent heat flux (evaporation)

G0: soil heat flux

Integrating this equation over time can give ground surface temperatures

Modeled temperatures compared to measured temperatures anomalies!

*

00 Q H E G

Page 90: Vorlesung Clausthal Fernerkundung Pdf1

90

Things to correct for

• Emissivity

• Thermal inertia

• Albedo

• Topographic slope

Page 91: Vorlesung Clausthal Fernerkundung Pdf1

91

Bradys Hot Springs

• Day/night images of the same date

diurnal effects can be corrected

• Albedo correction via visible and infrared bands

• Topography correction via Digital Elevation Model (DEM)

Page 92: Vorlesung Clausthal Fernerkundung Pdf1

92

Emissivity

• Low emissivities reduce radiant temperature which is measured

surfaces appear cooler

• 5 thermal bands measured

wavelength-dependent variations

true kinetic temperatures

• Surface temperature measurements at two sites to check AST08

Page 93: Vorlesung Clausthal Fernerkundung Pdf1

93

Area image

(Coolbaugh et al., 2007)

Page 94: Vorlesung Clausthal Fernerkundung Pdf1

94

Thermal inertia

I: Thermal inertia

k: thermal conductivity

ρ: density

c: heat capacity

24-h mean temperatures needed to correct for thermal inertia

I k c

Page 95: Vorlesung Clausthal Fernerkundung Pdf1

95

Thermal inertia

(Coolbaugh et al., 2007)

Page 96: Vorlesung Clausthal Fernerkundung Pdf1

96

Thermal inertia

• Images at minimum and maximum temperatures

• Surface measurements used for calibration, weighting factors for measured temperatures at flyover times to get mean temperature (1. approach)

• Using weighting factors for images taken to minimize the variance of combined day/night image (2. approach)

Page 97: Vorlesung Clausthal Fernerkundung Pdf1

97

Albedo / topographic slope

Q*: net surface heat flux

FSn: absorbed solar flux

FAn: absorbed sky radiation

FGn: re-emitted ground radiation

Difficult to solve, with several assumptions (cloud free day, etc.), only slope matters

*

n n nQ FS FA FG

Page 98: Vorlesung Clausthal Fernerkundung Pdf1

98

Albedo / topographic slope

• Slope calculated from Digital Elevation Model (DEM)

• AST07 ≈ albedo for flat terrain and normal

atmosphere

• Image brightness

affected by slope

• Correction using

DEM (Wikipedia)

Page 99: Vorlesung Clausthal Fernerkundung Pdf1

99

Correction for albedo effects

(Coolbaugh et al., 2007)

VNIR

Night

Day

Final

Page 100: Vorlesung Clausthal Fernerkundung Pdf1

100

Correction for albedo / slope / inertia

(Coolbaugh et al., 2007)

Page 101: Vorlesung Clausthal Fernerkundung Pdf1

101

Correction for thermal inertia

(Coolbaugh et al., 2007)

Corrected

for albedo

+ slope

Corrected

for albedo

+ slope

Page 102: Vorlesung Clausthal Fernerkundung Pdf1

102

Final result

(Coolbaugh et al., 2007)

Page 103: Vorlesung Clausthal Fernerkundung Pdf1

103

Yellowstone

(Seielstad and Queen, 2009)

Page 104: Vorlesung Clausthal Fernerkundung Pdf1

Elevation effects on temperature

Page 105: Vorlesung Clausthal Fernerkundung Pdf1

105

Elevation effects

• The higher the terrain, the lower the air and surface temperature; even more so at night

• ≈ -6.5 °C/km (environmental lapse rate)

• During day, big T-contrast between shaded and sunlit areas

• Correction for elevation after albedo and topographic slope effetcs removed

Page 106: Vorlesung Clausthal Fernerkundung Pdf1

106

Nighttime image

(Eneva &

Coolbaugh, 2009)

Page 107: Vorlesung Clausthal Fernerkundung Pdf1

107

Daytime image

(Eneva &

Coolbaugh, 2009)

Page 108: Vorlesung Clausthal Fernerkundung Pdf1

108

Nighttime temperature inversions

(Eneva &

Coolbaugh, 2009)

Page 109: Vorlesung Clausthal Fernerkundung Pdf1

109

Literature

Page 110: Vorlesung Clausthal Fernerkundung Pdf1

110

Literature used (1)

• Coolbaugh, M.F., C. Kratt, A. Fallacaro, W.M. Calvin, J.V. Taranik; Detection of geothermal anomalies using Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) thermal infrared images at Bradys Hot Springs, Nevada, USA; Remote Sensing of Environment, 106, 350-359, 2007

• Eneva, M., M. Coolbaugh; Importance of Elevation and Temperature Inversions for the Interpretation of Thermal Infrared Satellite Images Used in Geothermal Exploration; GRC Transactions, Vol. 33, 2009

• Glassley, W.E.; Geothermal Energy; CRC Press, 2010

• Haselwimmer, C., A. Prakash; Thermal Infrared Remote Sensing of Geothermal Systems, in: Kuenzer, C., Dech, S. (Eds.), Thermal Infrared Remote Sensing, vol. 17, Spinger, Dordrecht, 453–473, 2013

• Singhal, B.B.S., R.P. Gupta; Applied Hydrolgeology of Fractured Rocks; Springer, 2010

Page 111: Vorlesung Clausthal Fernerkundung Pdf1

111

Literature used (2)

• Van der Meer, F., C. Heckera, F. van Ruitenbeek, H. van der Werff, C. de Wijkerslooth, C. Wechsler; Geologic remote sensing for geothermal exploration: A review; International Journal of Applied Earth Observation and Geoinformation, 33, 255–269, 2014

• Vaughan, R. G., L. P. Keszthelyi, A. G. Davies, D. J. Schneider, C. Jaworowski, Henry Heasler; Exploring the limits of identifying sub-pixel thermal features using ASTER TIR data; Journal of Volcanology and Geothermal Research, 189, 225–237, 2010