w. m. snow physics department indiana university npss, bar harbor

45
W. M. Snow Physics Department Indiana University NPSS, Bar Harbor Neutron Physics 5 lectures: 1. Physics/Technology of Cold and Ultracold Neutrons 2. Electroweak Standard Model Tests [neutron beta decay] 3. Nuclear physics/QCD [weak interaction between nucleons] 4. Physics Beyond the Standard Model [EDM/T violation]

Upload: ludwig

Post on 11-Feb-2016

27 views

Category:

Documents


0 download

DESCRIPTION

Neutron Physics. W. M. Snow Physics Department Indiana University NPSS, Bar Harbor. 5 lectures: 1. Physics/Technology of Cold and Ultracold Neutrons 2. Electroweak Standard Model Tests [neutron beta decay] 3. Nuclear physics/QCD [weak interaction between nucleons] - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

W. M. SnowPhysics DepartmentIndiana UniversityNPSS, Bar Harbor

Neutron Physics

5 lectures:

1. Physics/Technology of Cold and Ultracold Neutrons2. Electroweak Standard Model Tests [neutron beta decay]3. Nuclear physics/QCD [weak interaction between nucleons]4. Physics Beyond the Standard Model [EDM/T violation]5. Other interesting stuff that neutrons can do [NNN interaction, searches for extra dimensions,…]

Page 2: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

SM Tests with Neutron Decay

1. Some facts about the weak interaction2. Connection with Big Bang Theory3. Neutron Decay: description4. Lifetime and T-even correlation coefficients5. Searches for T-odd correlations

Thanks for slides to: K. Bodek (PSI), H. Abele (Heidelberg), Chen-Yu Liu (LANL), Paul Huffman (NC State), Takeyasu Ito (Tennessee/ORNL)

Page 3: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Neutron -decay

Clean extraction of fundamental parameters at the charged current sector of the electroweak theory.

Combine: Neutron lifetime + -asymmetry + lifetime GF, Vud, gA

Weak decay rate of K,B mesons Unitarity of CKM matrix

Page 4: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Why is neutron decay interesting forCosmology?

t~1 sec after Big Bang, neutrons and protons are free (no nuclei). Relative number~Boltzmann factor, kept in equilibrium by weak interactions.

Universe expands and cools. Weak reaction rates fall below expansion rate->neutrons start to decay, proton # goes up

t~few minutes, universe cool enough to bind the deuteron->neutrons are safe again

Nuclear reactions quickly guide almost all neutrons into 4He

Page 5: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

BBN Predictionsfor lightElements inEarly Universe(pre-WMAP)

Page 6: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

PredictionsFor 4Hewith differentneutino #Width due toneutronlifetime

Lopez/Turner 01

Page 7: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Neutron/Nuclear Beta Decay: What is it Good For?

Now gives the best/comparable constraints on certain forms of:

(1) new T-even V,A charged currents (from L-R symmetric, exotic fermion, leptoquark, R-parity-violating SUSY, and composite models(2) New T-odd V,A charged current interactions (from leptoquark models)

Can soon give the best/comparable constraints on:

new T-odd scalar charged current interactions (from extra Higgs, leptoquark, composite, and some SUSY models)

Can soon give the best measurement of Vud

P. Herczeg, Prog. Part. Nucl. Phys 46 (2001).

Page 8: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

The weak interaction: just like EM, except for a few details…

3 “weak photons” [W+, W-, Z0], can change quark type

e- e-

e- e-

one EM photon

e- e-

e-

Z0

e-

u d

u

W+-

d

V(r)=e2/r, m ‘V’(r)≈[e2/r]exp(-Mr) , MZ,W≈ 80-90 GeV

“Empty” space (vacuum) is a weak interaction superconductor |B|

vacuum superconductor

penetration depth

r

weak field

our “vacuum”

1/ MZ,W

r

Page 9: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

The weak interaction violates mirror symmetry and changes quark type

u e

W+-

d

Only the weak interaction breaks mirror symmetry: not understood

weakinteraction = eigenstates

[CKM] quark mass eigenstates

Vud in n decayMatrix must be unitary

r->-r in mirror, but s->+s

Page 10: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

The Quark Mixing CKM MatrixThe Quark Mixing CKM Matrix

Parametrization: 3 angles, and a phase

A, , are real

Page 11: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

The Quark Mixing CKM Matrix

bsd

Ubsd

CKM

VVVVVVVVV

tbtstd

cbcscd

ubusud

U CKMdWVud

e |Vud|2 + |Vus|2 + |Vub|2 = 1-

Vud from

•Nuclear beta decay Vud=0.9740(5), 2.3 sigma•Pi beta decay Vud=0.9717(56)•Neutron beta decay

Vus from

•Hyperon decays•K decays

ud

d

u ud

u u

Page 12: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

)1()1(8gT 522

2

5

2

fi ew

wduud mk

mkkg

V

Matrix element for d-u transition:

lhud

eduud

JJV

V

2G

)1()1(2

GT

F

55F

fi

nPp

TAp

nsp

MVp

kkigkm

kgkgiA

kkigkm

kgkgiV

])(2

)()([

])(2

)()([

52

5

2

52

22

2

vector- and axial vector currents:

V

Aud

F

enp

npp

Vint

ggaAVVG

km

GL

).)((22

1

)1()2

)1((22

155

v

Lagrange function for neutron decay:

Formalism

Page 13: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

CKM Unitarity/Standard Model Tests

Page 14: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Vud from Neutron and Nuclear beta decay

=GA/GV

Perkeo result:A0 = -0.1189(7) = -1.2739(19)

n = (885.7 0.7) sworld average

n = (878.5 0.7st 0.3syst) s“Gravitrap” result

Page 15: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Withc: Coulomb (isospin)

correctionR: nucleus-dependent

radiative correctionR: nucleus-independent

radiative correction

Superallowed -transitions

Ft0+0+=3072.3(9)s Vud=0.9740(5) Towner, Hardy 4 Sept 2002 PDG:Vud=0.9740(10

)

)1(2

)1)(1(

2200

00

RudF

Rc

VGkFt

ft

2.5 sigma deviation from unitarity !!Nucl-th/0209014

Page 16: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Pion -decay

x

ex ex

Br = 1.025(34) .10-8

=2.6033(50) .10-6s

)1()1(2)νeππ()2ln/(

21

02

RRF

eud fffG

BrKV

Vus=0.9670±0.0160Br ± 0.0009=0.967 ± 0.016

CKM Workshop, HD, September 2002:Br ~ 1.044 ± 0.007syst± 0.009systx 10-8 PIBETA : Vud = 0.9771(51) (Pocanic, Ritt)

Page 17: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Vus

Kaon semileptonic decays– K+0l+l

– K0L-l+l sul+l

= (2.12±0.08%), = -2.0% for K+ and 0.5% for K0

)1)(1()0(π192

21

253

2

RkusF IfCm

VG

Vus = 0.2196 ± 0.0017exp ± 0.0018th = 0.2196 ± 0.0026 (PDG 2002)

Page 18: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

70000 events

Page 19: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Vud from neutron -decay

)1()31( 221R

Rud fVC

)8(0240.0),15(71335.1

,101613.1)2/( 14322

RR

eF

f

smGC

)13(9717.0

)19(2739.1),7(7.885

udV

Wilkinson 1982, CKM Workshop September 2002:Marciano et Sirlin

Page 20: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Radiative CorrectionR

R = /(2)[4ln(mz/mp) + ln(mp/mA) + 2Cborn] + ...

R = (2.12 - 0.03 + 0.20 + 0.1)%= 2.40(9)%

Page 21: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Neutron -decay lifetime

Cold Neutron beam experiments:– Absolute measurements of the neutron number and the decay

particle flux. Bottled UCN:

– Ratio of the neutrons stored for different periods. It is a relative measurement.

– Material bottle -- Mampe (887.6 3 s)• Wall loss depends strongly on the UCN spectrum.• Systematically limited.

– Magnetic bottle -- hexapole bottle (876.7 10 s), NIST bottle.• Statistically limited.

N0 /Nd

N(T) N0e T / T

ln(N0 /N(T))

Page 22: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

The best results for neutron lifetime

N beam 889.2±4.8 (Sussex-ILL,

1995) 886.8±1.2±3.2 (NIST,

2004)

Particle data (2003 without PNPI-ILL,2003 & NIST,2004):

n = (885.70.8) s

UCN storage 878.5±0.7± 0.3 (PNPI-

ILL,2004)

885.4±0.9±0.4 (KI-ILL, 1997) 882.6±2.7 (KI-ILL, 1997) 888.4±3.1±1.1 (PNPI, 1992) 887.6±3.0 (ILL, 1989)

`

Page 23: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

In-Beam Neutron Lifetime Experiment

Page 24: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

In-Beam Lifetime Apparatus

Page 25: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Neutron Lifetime Using UCN Magnetic Trap in Superfluid 4He

Goal: 0.1 second precision, 1 order of magnitude improvement

Page 26: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Neutron lifetime usingmagnetictrapping

Huffmann et al., Nature

Page 27: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Expression for Neutron Decay Correlation Coefficients

)](1[

)( 20

ee

ee

e

e

ee

en

e

e

e

e

eeeeeee

EpR

EEppD

EpB

EpA

Emb

EEppa

dddEEEEpddWdE

11% -11% 97% SM: 0

correlation asymmet

rytriple

correlationasymmetry

Triplecorrelation

SM: 0

Page 28: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Neutron decay A Coefficient Neutron spin – electron momentum

angular correlation Sensitive to GA/GV= Important input for determining CKM

element Vud from neutron

Rn

VRF

VRF

Vud

fK

G

GGV

)31()1(1

)1(

22

2

22

Page 29: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

T-even Angular correlations for Polarized neutrons

Electron

Proton

Neutrino

Neutron SpinA

B

C Observables in neutron decay:

Lifetime SpinMomenta of decay particles

Page 30: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

A Correlation

Coefficient A and lifetime determine Vud and

Electron

Neutron SpinA

Electron Neutron SpinA

W()={1+v/cPAcos()}

231)1(

2

A

NNNNAexp

on flipper spin with spectrum electron

off flipper spin with spectrum electron

:N:N

)31(sec44908V 2

2ud

Page 31: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Principle of A-coefficient Measurement

B fieldDetector 1 Detector 2

Polarized neutron Decay electron

cos)()()()()(

21

21exp AP

ENENENENEA

(End point energy = 782 keV)

n

e

dW=[1+PAcos]d(E)

Page 32: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Decay Asymmetry Apparatus PERKEO (Abele et al)

Page 33: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

UCNA Experiment: Beta asymmetry

Goal: measure A to 0.2% or better with UCN.

R R0(1 v /c)PA (E)cos

-asymmetry = A(E) in angular distribution of decaying e-

from polarized neutrons

A 2 ( 1)1 32 0.11620.0013

gAgV

1.26700.0035

T. J. Bowles, A. R. Young, et al.

Page 34: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Neutron Polarization Using UCN Can obtain > 99.9% polarization using •B potential

wall for wrong spin UCN

A number of methods to measure “depolarization” — only modest accuracy is needed when the polarization is high

Polarization goal: >99.9%

B

n

Page 35: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Experiment DesignNeutron Absorber

Page 36: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Angular correlations in neutron decay with T Violation

Angular distribution with explicit dependence on electron spin contains 4 T-odd observables (lowest order):

D : T-odd P-evenR : T-odd P-oddV : T-odd P-oddL : T-odd P-evenN : T-even P-even

e

pep

Pp

Jn

nepeenepneenνe

eeeeeee

JσPσpJσPJσpJpp NEE

LE

VE

REE

D

dddEEEEpdddEW

eeee1

)( 20

T-invariance +neglect of FSE D, R, V, L = 0

Page 37: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Angular correlations in neutron decay with T Violation

D and R are sensitive to distinct aspects of T-violation:

2'2'2222'2'222

*''**''*

*''*2

'*''*'**

Im21

Im211

Im21

ATATGTVSVSF

TVTVASASGTF

AATGT

AVTSAVTSGTF

CCCCMCCCCM

RCCCCCCCCI

IMM

CCCCI

MR

DCCCCCCCCI

IMMD

T

FSI

FSI

D is primarily sensitive to the relative phase between V and A couplings.R is sensitive to the linear combination of imaginary parts of scalar and tensor couplings.

Page 38: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

The R-correlation for neutron decay

Transverse electron polarization component contained in the plane perpendicular to the parent polarization.

Not measured for the decay of free neutron yet !

A

TT

A

SS

CCCT

CCCS

''Im;Im

TSR 33.028.0

1,,,,26.1Re,1Re,3,1

'''

'

TTSSAAA

VVVGTF

CCCCCCCCCCMM

22

'*'**

32Im

AV

SSATTAV

CCCCCCCCCR

One obtains finally:

Page 39: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

T-violation in n -decay may arise from:– semileptonic interaction (due-e)– nonleptonic interactions

SM-contributions for D- and R-correlations:– Mixing phase CKM gives contribution which is 2nd order in weak

interactions: < 10-10

-term contributes through induced NN PVTV interactions:< 10-9

Candidate models for scalar contributions (at tree-level) are:– Charged Higgs exchange– Slepton exchange (R-parity violating super symmetric models)– Leptoquark exchange

The only candidate model for tree-level tensor contribution (in renormalizable gauge theories) is:– Spin-zero leptoquark exchange.

Where could it come from?

Page 40: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

R-correlation measurements in Nuclei

Page 41: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

1st order “Final State Effect” contribution

In the SM:

A = -0.1173(13)

= 0 :

Page 42: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Anticipated accuracy: R (neutron) 510-3

Page 43: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Needed:– Intense source of highly polarized, free neutrons– Efficient polarimetry for low energy electrons (200-800 keV)

Best combination:– Polarized cold neutron beam: Ndecay 2 cm-3s-1

– SMott 0.4 0.5

Experiment

Difficulties:o Weak decay source in presence of high background due to

neutron capture.o Depolarization of electrons due to multiple Coulomb scattering in

detectors and Mott target.

Page 44: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Principle of measurement Tracking of electrons in

low-mass, low-Z MWPCs

Identification of Mott- scattering vertex.

R-correlation: asymmetry for events in the plane parallel ( = 0) to the neutron polarization. Frequent neutron spin

flipping. „Foil-in” and „foil-out”

measurements.

Page 45: W. M. Snow Physics Department Indiana University NPSS, Bar Harbor

Current Situation in Neutron Decay

Lots of experimental activity to measure Vud in n decay, Vus in K decay with higher accuracy to test CKMunitarity

Many correlation coefficients are accessible experimentally,can be used to search for beyond SM physics

New experimental techniques/sources are available