what causes landslides to occur?...stability of a slope, done using a factor of safety. • soil...

62
What causes landslides to occur?

Upload: others

Post on 21-Sep-2020

5 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What causes landslides to occur

Learning Objectives

bull Identify key factors that drive landslidesbull Identify factors that contribute to shear strengthbull Identify factors that contribute shear stress

What Drives Landslides to Occurbull Geologic (ie weak materials joints water etc)bull Morphological (ie erosion tectonic uplift etc)bull Physical (ie rainfall rapid snow melt etc)bull Anthropogenic (ie excavation etc)

bull Some processes increase shear stressesbull Others decrease shear strengthbull Generally FS is defined as ratio of shear strength to

shear stress

Some of the Typical Culpritshellipbull Geologybull Soil Conditionsbull Excavation and Loading (oversteepeningoverloading)bull FreezeThawbull Moisture Cyclingbull Seismicitybull Waterbull Waterbull Water

Why does water cause landslides

bull Letrsquos take an example that we all remember from childhood air hockey

bull When the air is off the puck doesnrsquot slide as wellbull The reaction force N is equal to the weight of the puckbull Friction is N multiplied by a friction coefficient

Weight W

N Normal Reaction ForceF Friction

Why does water cause landslides

bull If we turn on air on the table the reaction force is no longer equal to the weight

bull The normal decreases the by uplift force from air bull Thus friction decreases and the puck slides easilybull This is conceptually the same as ldquobuoyancyrdquo

Weight W

N Normal Reaction ForceF Friction

U Uplift from Air U Uplift from Air

What about soil and rockbull The same concepts hold ndash except the puck is a mass of rocksoil at a

slope and instead of air water is internally causing buoyancybull Many slopes are held in place by frictional shear strength An increase in

water levels causes reduced mobilization of frictional strengthbull This can induce failure Tension Crack

WU

m

s

TN

U

s

b

b

Simplified GWTPossible

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 2: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Learning Objectives

bull Identify key factors that drive landslidesbull Identify factors that contribute to shear strengthbull Identify factors that contribute shear stress

What Drives Landslides to Occurbull Geologic (ie weak materials joints water etc)bull Morphological (ie erosion tectonic uplift etc)bull Physical (ie rainfall rapid snow melt etc)bull Anthropogenic (ie excavation etc)

bull Some processes increase shear stressesbull Others decrease shear strengthbull Generally FS is defined as ratio of shear strength to

shear stress

Some of the Typical Culpritshellipbull Geologybull Soil Conditionsbull Excavation and Loading (oversteepeningoverloading)bull FreezeThawbull Moisture Cyclingbull Seismicitybull Waterbull Waterbull Water

Why does water cause landslides

bull Letrsquos take an example that we all remember from childhood air hockey

bull When the air is off the puck doesnrsquot slide as wellbull The reaction force N is equal to the weight of the puckbull Friction is N multiplied by a friction coefficient

Weight W

N Normal Reaction ForceF Friction

Why does water cause landslides

bull If we turn on air on the table the reaction force is no longer equal to the weight

bull The normal decreases the by uplift force from air bull Thus friction decreases and the puck slides easilybull This is conceptually the same as ldquobuoyancyrdquo

Weight W

N Normal Reaction ForceF Friction

U Uplift from Air U Uplift from Air

What about soil and rockbull The same concepts hold ndash except the puck is a mass of rocksoil at a

slope and instead of air water is internally causing buoyancybull Many slopes are held in place by frictional shear strength An increase in

water levels causes reduced mobilization of frictional strengthbull This can induce failure Tension Crack

WU

m

s

TN

U

s

b

b

Simplified GWTPossible

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 3: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What Drives Landslides to Occurbull Geologic (ie weak materials joints water etc)bull Morphological (ie erosion tectonic uplift etc)bull Physical (ie rainfall rapid snow melt etc)bull Anthropogenic (ie excavation etc)

bull Some processes increase shear stressesbull Others decrease shear strengthbull Generally FS is defined as ratio of shear strength to

shear stress

Some of the Typical Culpritshellipbull Geologybull Soil Conditionsbull Excavation and Loading (oversteepeningoverloading)bull FreezeThawbull Moisture Cyclingbull Seismicitybull Waterbull Waterbull Water

Why does water cause landslides

bull Letrsquos take an example that we all remember from childhood air hockey

bull When the air is off the puck doesnrsquot slide as wellbull The reaction force N is equal to the weight of the puckbull Friction is N multiplied by a friction coefficient

Weight W

N Normal Reaction ForceF Friction

Why does water cause landslides

bull If we turn on air on the table the reaction force is no longer equal to the weight

bull The normal decreases the by uplift force from air bull Thus friction decreases and the puck slides easilybull This is conceptually the same as ldquobuoyancyrdquo

Weight W

N Normal Reaction ForceF Friction

U Uplift from Air U Uplift from Air

What about soil and rockbull The same concepts hold ndash except the puck is a mass of rocksoil at a

slope and instead of air water is internally causing buoyancybull Many slopes are held in place by frictional shear strength An increase in

water levels causes reduced mobilization of frictional strengthbull This can induce failure Tension Crack

WU

m

s

TN

U

s

b

b

Simplified GWTPossible

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 4: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Some of the Typical Culpritshellipbull Geologybull Soil Conditionsbull Excavation and Loading (oversteepeningoverloading)bull FreezeThawbull Moisture Cyclingbull Seismicitybull Waterbull Waterbull Water

Why does water cause landslides

bull Letrsquos take an example that we all remember from childhood air hockey

bull When the air is off the puck doesnrsquot slide as wellbull The reaction force N is equal to the weight of the puckbull Friction is N multiplied by a friction coefficient

Weight W

N Normal Reaction ForceF Friction

Why does water cause landslides

bull If we turn on air on the table the reaction force is no longer equal to the weight

bull The normal decreases the by uplift force from air bull Thus friction decreases and the puck slides easilybull This is conceptually the same as ldquobuoyancyrdquo

Weight W

N Normal Reaction ForceF Friction

U Uplift from Air U Uplift from Air

What about soil and rockbull The same concepts hold ndash except the puck is a mass of rocksoil at a

slope and instead of air water is internally causing buoyancybull Many slopes are held in place by frictional shear strength An increase in

water levels causes reduced mobilization of frictional strengthbull This can induce failure Tension Crack

WU

m

s

TN

U

s

b

b

Simplified GWTPossible

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 5: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Why does water cause landslides

bull Letrsquos take an example that we all remember from childhood air hockey

bull When the air is off the puck doesnrsquot slide as wellbull The reaction force N is equal to the weight of the puckbull Friction is N multiplied by a friction coefficient

Weight W

N Normal Reaction ForceF Friction

Why does water cause landslides

bull If we turn on air on the table the reaction force is no longer equal to the weight

bull The normal decreases the by uplift force from air bull Thus friction decreases and the puck slides easilybull This is conceptually the same as ldquobuoyancyrdquo

Weight W

N Normal Reaction ForceF Friction

U Uplift from Air U Uplift from Air

What about soil and rockbull The same concepts hold ndash except the puck is a mass of rocksoil at a

slope and instead of air water is internally causing buoyancybull Many slopes are held in place by frictional shear strength An increase in

water levels causes reduced mobilization of frictional strengthbull This can induce failure Tension Crack

WU

m

s

TN

U

s

b

b

Simplified GWTPossible

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 6: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Why does water cause landslides

bull If we turn on air on the table the reaction force is no longer equal to the weight

bull The normal decreases the by uplift force from air bull Thus friction decreases and the puck slides easilybull This is conceptually the same as ldquobuoyancyrdquo

Weight W

N Normal Reaction ForceF Friction

U Uplift from Air U Uplift from Air

What about soil and rockbull The same concepts hold ndash except the puck is a mass of rocksoil at a

slope and instead of air water is internally causing buoyancybull Many slopes are held in place by frictional shear strength An increase in

water levels causes reduced mobilization of frictional strengthbull This can induce failure Tension Crack

WU

m

s

TN

U

s

b

b

Simplified GWTPossible

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 7: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What about soil and rockbull The same concepts hold ndash except the puck is a mass of rocksoil at a

slope and instead of air water is internally causing buoyancybull Many slopes are held in place by frictional shear strength An increase in

water levels causes reduced mobilization of frictional strengthbull This can induce failure Tension Crack

WU

m

s

TN

U

s

b

b

Simplified GWTPossible

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 8: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

1 Letrsquos list the factors that affect the performance of soil slopes and

embankments

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 9: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What processes increase the shear stress in the ground

bull Removal of Support

bull Increase in Vertical Stress (Overloading)

bull Erosionbull Falls Slides Etcbull Human Activity

bull Snowbull Lower groundwaterbull Material from Slidesbull Construction Fillbull Waves

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 10: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Construction ndash Removal of Supportbull Common for cutslopesbull Toe is arguably the most critical

component of slope for stability (buttressing effect)

bull Shear stresses increase in rest of slide plane from removal of support

bull Can stem from erosionundercutting as well

bull Need to consider short term stability for cuts and construction

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 11: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

ScourErosion

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 12: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Erosion Rillingand Ravel

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 13: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What processes increase the shear stress in the ground

bull Increase in Lateral Pressure

bull Rise in the groundwater table

bull Water in Cracksbull Freezing of Water in

Cracksbull Expansive Soilsbull Earthquakes

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 14: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Alteration of Hydrology and Water

bull More water = deeper failure more runout

bull Less water = shallow failure less runout

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 15: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Earthquakes

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 16: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What processes reduce the shear strength in the ground

Weathering

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 17: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What processes reduce the shear strength in the ground

bull Pore Pressure Increase

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 18: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Seismic Liquefaction

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 19: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

What processes reduce the shear strength in the ground Post-peak creep

Stress

Def

orm

atio

n

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 20: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Geologic Considerations

bull Groundwaterbull Soil Properties and Depositional Processesbull Weathering Processes

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 21: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Soil Deposition ndash Alluvial

bull Alluvial Deposits - transported by running water

bull No distinct horizontal strata unconsolidated favorable conditions for embankmentslope instability and landslides

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 22: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Soil Deposition ndash Aeolianbull Aeolian Deposits - transported by wind

bull Loess - angular silt size particles

bull Engineering properties - low density high strength prior to wetting

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 23: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Soil Deposition - Glacialbull Glacial Drift - rock debrisbull Till - unsorted unstratified materialbull Glaciofluvial deposit - advanced

outwash and recessional outwash

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 24: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Soil Deposition - Marinebull Marine Deposits - sands silts and clays stratified

bull Marine Clays - flocculatedbull Glacio-Marine Clays - from leaching of the salt out of deposit

become highly sensitive

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 25: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sensitive Clay Failure

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 26: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Slickensidesbull Typical to clays especially marine claysbull Historical shear zones from prior slope failuresbull Predisposed to failure

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 27: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

FaultsJointsbull Typical to rocks extremely

overconsolidated claysbull Macropores tend to store and

transport fine materialsbull Prime suspect in

rockfallstopplesrockslides

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 28: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Soil Deposition - Residual

bull Residual Deposits

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 29: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Soil Deposition ndash Colluvial

bull Colluvial Deposits - transported downslope by gravity

Old Slip Scar Residual Soil

ColluviumTalus

Alluvium

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 30: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Standard Approach to Slope Stability

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 31: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Learning Objectives

bull Identify the process for which slope stability analysis is performed

bull Understand the influence of soil properties on slope stabilitybull Understand the influence of slope geometry on slope stability

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 32: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Concepts of Slope Stabilitybull Slope stability is the primary means of quantitatively assessing the level of

stability of a slope done using a Factor of Safetybull Soil tends to fail in shear these concepts directly govern slope failuresbull Soil has shear strength conventionally defined as friction and cohesion bull At a given shear surface there is shear stress induced by

bull The gravitational mass of the soilbull Water pressuresbull Overloading seismicity etc

bull Generally slope stability is a comparison of available shear strength to shear stress

Factor of Safety = 119865119865119865119865 = 119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119878119878119878119860119860119860119860119878119878 119878119878119878119878119878119878119860119860119878119878119878119878

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 33: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

1 Identify the kinematics of the problem

bull Kinematics ndash the study of the geometry of motion without regard for what caused it

bull For slope stability the question isbull What is the likely initial geometry of motion that

a potential slope failure would exhibitbull We may want to consider more than one

possible failure

39

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 34: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Translational Rotational

Combination

40

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 35: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

2 Construct a free body diagram of the rigid body of concern

bull Isolate the Slide Massbull Indentify and show all external forcesbull Include body forces (weight and if an

earthquake force is to be included inertia)

41

Wt

NT

L

Assumed

SurfaceFailure

Example Free Body Diagram of a sliding wedge

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 36: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

3Evaluate the forces on the free body diagrambull Be Careful ndash some forces cannot be evaluated directly

bull Weight of the body ndash in 2-dimensions this will be the area times the appropriate unit weight

bull Boundary Neutral Forces ndash only present if a portion of the body is below the local GWT

bull Compute the boundary pore pressure distribution

bull Integrate the distribution to obtain a resultant force

bull Solve for other forces using equilibrium equations

bull Usually requires simplifying assumptions

bull Usually requires solution of simultaneous equations

42

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 37: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

4 Incorporate a Factor of Safety to address cases where the slide mass is not in a state of limit equilibrium with soil strength fully mobilized

119865119865119865119865 =119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860119860 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878119878119878119878119872119872119872119872119860119860119860119860119860119860119860119860119872119872119860119860119872119872 119865119865119878119860119860119860119860119878119878 119865119865119878119878119878119878119860119860119878119878119878119878

119865119865119865119865 =119865119865119872119872119878119878119865119865119860119860119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119865119865119872119872119878119878119865119865119860119860119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

119865119865119865119865 =119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119877119877119860119860119878119878119860119860119878119878119878119878119860119860119878119878119878119878119872119872119872119872119872119872119860119860119878119878119878119878119878119878 119863119863119878119878119860119860119860119860119860119860119878119878119878119878

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 38: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

5 Analyze other similar free bodies in order to determine the worst case situationbull If failure surface is absolutely known this will not be

requiredbull Failure surface is rarely ldquoabsolutely knownrdquobull The exception is for existing landslides (forensics)bull To find the failure geometry of an existing

landslide we need to perform a field investigation and monitoring

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 39: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS

1 Identify when total stress or effective stress should be used in a slope stability analysis

2 Define the factor of safety in limit equilibrium analysis

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 40: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Process Responsible for Slope Failures

bull External effects Driving forces increase while shearing resistance is unaltered

bull Internal effects Failure occurs without any change in external conditions or earthquake

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 41: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Recall Examples of causes of instability

Steepening or heightening of slope by man-made excavation river erosion

bull Internal effectsIncrease in PWP within the slope

bull External effects

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 42: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Implications to Engineered Slopes

To increase stabilitybull Reduce driving forces (eg use lightweight fill flatter

slopes)

bull Increase shear resistance (eg reinforce fill material preload soft foundation)

bull Provide adequate long-term drainage to minimize potential decrease in shear strength

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 43: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Angle of Slopevs Safety Factor

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

0

05

1

15

2

25

3

10 15 20 25 30 35 40

FS

Excavation Angle (degree)

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 44: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart1

Excavation Angle (degree)
FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 45: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 46: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 47: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet1

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
Page 48: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet2

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 49: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet3

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 50: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Slopes vs Gained ROW

0

5

10

15

20

25

10 15 20 25 30 35 40

ROW

(m)

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 51: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 52: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (Degrees)
Volume
Slope Vs Volume
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 53: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 54: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet1

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
Page 55: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet2

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 56: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet3

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 57: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Angle of Slopevs Excavation Volume

0

20

40

60

80

100

120

140

10 15 20 25 30 35 40

Volu

me (

m3 )

Excavation Angle (degree)

φ= 35deg

β = 15deg

θβ10m

15deg lt θ lt 35deg

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 58: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart1

Excavation Angle
FS
Slope vs FS
26132101182
24419138913
22902756679
21550172203
20335503558
19238044062
18241030063
17330744775
16495855899
15726918842
15015999151
14356382086
13742346733
13168988507
12632078395
12127950337
11653410405
11205663018
10782250561
10381003663
1

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 59: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart2

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
Volume (m3)
0
122318180146
230599091313
32718363063
413919959188
492286687231
56348086365
62848196842
688099211427
743007006667
793771932707
840873471569
884720139052
925662158621
964001513187
999999986603
1033885648807
1065858125087
1096092907352
1124744904678
1151951385261

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 60: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Chart3

1 2 3 4 5 6 7 8 9 10 11 12 13 14
Excavation Angle (degree)
ROW (m)
0
24463636029
46119818263
65436726126
82783991838
98457337446
11269617273
125696393684
137619842285
148601401333
158754386541
168174694314
17694402781
185132431724
192800302637
199999997321
206777129762
213171625017
21921858147
224948980936
230390277052

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
Page 61: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet1

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Chart No 1 Phi 35
Beta 15
Thelta FS Volume per m
1 10000036732
2
3
4
5
6
7
8
9
10
11
12
13
14
15 26132101182 0 0
16 24419138913 122318180146 24463636029
17 22902756679 230599091313 46119818263
18 21550172203 32718363063 65436726126
19 20335503558 413919959188 82783991838
20 19238044062 492286687231 98457337446
21 18241030063 56348086365 11269617273
22 17330744775 62848196842 125696393684
23 16495855899 688099211427 137619842285
24 15726918842 743007006667 148601401333
25 15015999151 793771932707 158754386541
26 14356382086 840873471569 168174694314
27 13742346733 884720139052 17694402781
28 13168988507 925662158621 185132431724
29 12632078395 964001513187 192800302637
30 12127950337 999999986603 199999997321
31 11653410405 1033885648807 206777129762
32 11205663018 1065858125087 213171625017
33 10782250561 1096092907352 21921858147
34 10381003663 1124744904678 224948980936
35 1 1151951385261 230390277052
36
37
38
39
40
41
Page 62: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet2

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 63: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sheet3

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 64: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Tips and Intuition When Running Slope Stability Analysis

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 65: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Slide in Homogeneous Soil

r1

r2

Slope failures in homogenous material tends be circular

1 Slide wholly on slope

2 Surface of rupture intersects toe of slope when steep

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 66: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Slide Controlled by Dipping Seams

r2

r1

Soft Clay

Firm Shale

Slope failure in non-homogenous material Surface of rupture follows dipping weak bed

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 67: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Deepseated Failure Limited by Bedrock

r

Firm Base

Clay

Base failure in homogenous clay Slip circle tangent to firm base center on vertical bisector of slope

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 68: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Deepseated Failure Partially Controlled by Berm

r

Failure of embankment Gravel counterweight on left side prevents slide

Gravel or slug counterweight

Soft Silty Clay

Fill

Bedrock

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 69: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Composite Failure Controlled by Soft Seam of Clay

r

Firm Clay

Very Soft Clay

Base failure in non-homogenous material Surface of rupture follows bed of very soft clay

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 70: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Slide Along Interface of Fill and Sloping Natural Soil

Slide beneath side hill fill Slip controlled by weak soil on which fill was placed

Coal

Fill

Soil

Clay

Shale

Sandstone

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 71: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Slide within Fill in a Cut and Fill Operation

r

Failure within a side hill fill Cut

Original ground line

Fill

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 72: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Retrogressive Failure of Fill from Bottom Up

Firm

Soft Zone

Firm

Soft

Stable

Fill

Slide in a fill involving under thrusting of firm surface material down slope

Fill

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 73: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Sliding Geometry Tipsbull If changes in strength of soil layers is gradual

circular failure is likely

bull Large changes in strength of soil layers tend to cause composite or non-circular failure surfaces (eg bedrock strong strata)

bull Identification of potential failure mechanisms requires careful evaluation

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions
Page 74: What causes landslides to occur?...stability of a slope, done using a Factor of Safety. • Soil tends to fail in shear, these concepts directly govern slope failures. • Soil has

Questions

  • What causes landslides to occur
  • Learning Objectives
  • What Drives Landslides to Occur
  • Some of the Typical Culpritshellip
  • Why does water cause landslides
  • Why does water cause landslides
  • What about soil and rock
  • Slide Number 8
  • What processes increase the shear stress in the ground
  • Construction ndash Removal of Support
  • Slide Number 11
  • Erosion Rilling and Ravel
  • What processes increase the shear stress in the ground
  • Alteration of Hydrology and Water
  • Slide Number 15
  • Slide Number 16
  • Slide Number 17
  • Slide Number 18
  • Slide Number 19
  • Slide Number 20
  • What processes reduce the shear strength in the ground
  • What processes reduce the shear strength in the ground
  • Seismic Liquefaction
  • What processes reduce the shear strength in the ground Post-peak creep
  • Geologic Considerations
  • Soil Deposition ndash Alluvial
  • Soil Deposition ndash Aeolian
  • Slide Number 28
  • Soil Deposition - Glacial
  • Slide Number 30
  • Sensitive Clay Failure
  • Slickensides
  • FaultsJoints
  • Soil Deposition - Residual
  • Soil Deposition ndash Colluvial
  • Standard Approach to Slope Stability
  • Learning Objectives
  • Concepts of Slope Stability
  • 1 Identify the kinematics of the problem
  • Slide Number 40
  • 2 Construct a free body diagram of the rigid body of concern
  • Slide Number 42
  • Slide Number 43
  • Slide Number 44
  • BASIC CONCEPTS OF SLOPE STABILITY ANALYSIS
  • Process Responsible for Slope Failures
  • Recall Examples of causes of instability
  • Implications to Engineered Slopes
  • Angle of Slopevs Safety Factor
  • Slopes vs Gained ROW
  • Angle of Slopevs Excavation Volume
  • Tips and Intuition When Running Slope Stability Analysis
  • Slide in Homogeneous Soil
  • Slide Controlled by Dipping Seams
  • Deepseated Failure Limited by Bedrock
  • Deepseated Failure Partially Controlled by Berm
  • Composite Failure Controlled by Soft Seam of Clay
  • Slide Along Interface of Fill and Sloping Natural Soil
  • Slide within Fill in a Cut and Fill Operation
  • Retrogressive Failure of Fill from Bottom Up
  • Sliding Geometry Tips
  • Questions