where%we%stand%habitable%zone(s)%% in%the%solar%system%...

42
Where we stand Today we revisit Habitable Zones Standard (T eq ) Modified (greenhouse; albedo) Extended (tidal heating; subsurface abodes) This affects: •f s •n h

Upload: others

Post on 20-Oct-2020

1 views

Category:

Documents


0 download

TRANSCRIPT

  • Where  we  stand  Today we revisit Habitable Zones

    –  Standard (Teq) –  Modified (greenhouse; albedo) –  Extended (tidal heating; subsurface abodes)

    This affects: •  fs •  nh  

  • Where  we  stand  N = N* fs fp nh fl fREfi fc L/T

    This affects: •  fs •  nh  

  • The  Con/nuous  and  Galac/c  Habitable  Zones  

  • Habitable  Zone(s)    in  the  Solar  System  

    Loca/on  depends  on  assump/ons  about  atmospheric  composi/on  and  albedo  •  Inner  edge:                    0.84  –  0.95  au  

    •  Outer  edge:                    1.37  –  1.67  au  ____________    0.9  –  1.5  au    Kas/ng,  J.F.,  Whitmire,  D.P.,  &  Reynolds,  R.T.  Science,  101,  108  (1993)    

    Plus  the  icy  moons  

  • The  Con/nuously  Habitable  Zone  

  • The  Con/nuously  Habitable  Zone  

    The  faint  young  Sun  problem:  •  Stars  evolve  -‐  stars  brighten  with  /me  •  4.5  Gya,  the  Sun  was  70%  of  its  current  luminosity      

    •  In  5  Gyr,  the  Sun  will  brighten  by  a  factor  of  2  

  • The  Faint  Young  Sun  Problem  

  • The  Con/nuously  Habitable  Zone  

    The  faint  young  Sun  problem:  •  Stars  evolve  -‐  stars  brighten  with  /me  •  4.5  Gya,  the  Sun  was  70%  of  its  current  luminosity      

    •  In  5  Gyr,  the  Sun  will  brighten  by  a  factor  of  2  

    •  T  =  ((  [1-‐a]  L)/  (σπd2))¼  Temperature  increases  as  L¼  

  • The  Con/nuously  Habitable  Zone  

  • The  Con/nuously  Habitable  Zone  

    •  Details  depend  on  assumed  planetary  atmosphere,  and  its  evolu/on  

    •  Inner  edge  at  0.9  x  0.7¼  =  0.8  au  •  Width  es/mated  to  be  0.2  –  0.7  au  •  Earth  exits  CHZ  by  7  Gyr    

  • Conclusions  •  Earth  is  in  the  Habitable  Zone  •  Earth  is  in  the  Con/nuously  Habitable  Zone  

    •  Venus  is  too  close  to  the  Sun  –  suffered  a  runaway  greenhouse  

    •  Mars  could  be  in  the  habitable  zone  –  (but  it  lost  its  atmosphere)  

    Earth  is  just  right  –  for  now!  

  • Other  Stars  

  • Habitable  Zones  of  Other  Stars  

    Stellar  Luminosity  •  On  main  sequence,  Luminosity  ~  M3  •  On  lower  main  sequence,  L  ~  M4.5  •  T  =  ((  [1-‐a]  L)/  (σπd2))¼            Stellar  Life:me    •  τ  ~  M/L    

    –  τ ~  M-‐2  (upper  MS);  –  τ ~  M-‐3.5  (lower  MS)  

  • Other  Stars  •  All  stars  have  habitable  zones  •  Width  ~  √(L)  

    – More  massive  stars  have  wider  HZs  – Less  massive  stars  have  narrower  HZs  

    •  Implica/ons  for  probability  of  planets  in  HZ    

  • Width  of  the  Habitable  Zone  

  • Other  Stars  and  the  CHZ  

    •  Higher  mass  stars  –  Evolve  faster  than  the  Sun  –  For  a  planet  to  be  in  the  CHZ  for  4.6  Gyr,  m*

  • Tidal  Locking  

  • Planets  of  M  stars  

    •  Tidal  locking  affects  atmospheric  dynamics  –  Thick  atmosphere  è  uniform  T  (like  Venus)  – Atmospheric  collapse?  

    •  Tidal  locking  è  Loss  of  magne/c  fields  –  Stellar  wind  stripping  of  atmosphere  

    •  Slow  stellar  evolu:on:  –  Enhanced  ionizing  flux  for  long  periods  

    •  Enhanced  radia/on/mutagenic  effects  –  Enhanced  stellar  winds  for  long  periods  

    •  Efficient  atmospheric  stripping  

  • Planets  of  M  stars  

     •  In  the  Habitable  Zone?  Yes  •  Habitable?  Maybe  •  Earth-‐like?  No  

  • Consequences  for  Drake’s  Equa/on  

    •  fs:  M  dwarfs  (75%  of  all  stars),  may  be  unsuitable  

    •  nH:  may  be  larger  for  more  massive  stars  – But  are  in  CHZ  for  less  /me  

    Time  in  the  CHZ  is  important  if  complex  life  takes  /me  to  evolve  

  • The  Galac/c  Habitable  Zone  

    Reference:  Lineweaver,  C.H.,  Fenner,  Y.  &  Gibson,  B.K  Science,  303,  59  (2004)    

  • Shape of the Galaxy

    Near-‐IR  composite:  COBE/DIRBE  1.25,  2.2  3.5  µm    

  • Shape of the Galaxy

  • You are here

    •  About 28,000 light years from the Center of the Galaxy.

    •  Our orbital velocity is about 220 km/s. •  The Galactic Year is about 220 million

    years long. •  The Sun is about 21 galactic years old.

  • You are here

    Monty  Python:  Galaxy  Song  

  • Mass of the Galaxy

    The mass of the Galaxy is 2 x 1044 g, or 1011 solar masses. If the typical star is 1/4 solar masses, there are 4 x 1011 stars in the Galaxy

  • The Center of the Galaxy

  • The central object Sgr A*

    •  Orbits è Mass ~ 2.5 x 106 M¤ •  Orbits è radius < 1 au •  Density > 0.4 g/cm3 •  Unseen at any wavelength

    A black hole

  • Constituents of the Galaxy ~4 x 1011 stars (90% of the visible mass) •  Disk population (population I)

    –  Younger stars –  Higher metallicity –  Orbits in plane of Galaxy

    •  Spheroidal population (population II) –  Older stars –  Lower metallicity –  Randomly-directed orbits –  Globular Clusters

  • 5  Million  Years  of  Stellar  Mo/ons  

  • The Neighborhood

  • My God, it’s full of stars…

  • Galac/c  Considera/ons    

    •  The  range  of  metallicity  – Are  metal-‐poor  environments  conducive  to  rocky  planets?  

    •  Proximity  to  supernovae  and  ionizing  radia/on  – Cosmic  effects  can  affect  life  

  • I:  Metals  

  • Metals  

  • II:  Danger  

  • The  Habitable  Zone  

  • The  Habitable  Zone  for  Complex  Life  

  • Considera/ons  •  Metal  abundance  increases  with  /me  •  Metal  abundance  decreases  with  galacto-‐centric  radius  

    •  Danger  decreases  with  galacto-‐centric  radius  

    Earth  is  in  the  right  place  at  the  right  :me!  

  • Consequences  for  Drake’s  Equa/on  

    Let’s  add  another  term  fGHZ:  •  About  10%  of  stars  are  solar  metalicity  or  greater  •  About  2%  of  stars  are  far  enough  out  to  be  “safe”  

    fGHZ  ~  0.002    N = N* fs fGHZ fp nh  fl fJ    f  fEu  fm  fi  fc  L/T  

  • Consequences  for  Drake’s  Equa/on  

    Let’s  add  another  term  fGHZ:  •  About  10%  of  stars  are  solar  metalicity  or  greater  •  About  2%  of  stars  are  far  enough  out  to  be  “safe”  

    fGHZ  ~  0.002    N = N* fs fGHZ fp nh  fl fJ    f  fEu  fm  fi  fc  L/T  N  =  32,000