wika_twc_ptc19_3_2010_v1_1

16
Klingenberg, nov-05-2010 Disclaimer: WIKA has made every reasonable attempt to validate the calculation procedure contained in this spread sheet, however, responsibility for validation rests solely with the user. This spread sheet is intended to assist the experienced designer of thermowells and should not be considered a replacement for professional engineering. End user is responsible that the calculation is compatible to the process conditions. signifcant differences in frequency calculation to former code, induced by new corrections regarding mounted sensor, medium and mounting compliance. The new calculation gives four main results: the frequency ratio with limit, the fatigue stress from resonances, the bending stress from steady flow and the max. allowable pressure. Also new are the calculation of stepped shape Thermowells, influence of shielding and other improvements, you can read in the actual standard release. In the input rows you can choose different units (metric or imperial), input options (flow rate), materials, TW shapes (Fig.) and weld options (look on separate tabs for infos). There are cells with red triangles containing short notes for the input options you have. But be careful because the unit decisions are valid for the whole row. For the material decision you can choose materials from the added material worksheet tabs. There are several name options listed in light blue cells (UNS or DIN_EN). Normally you will first calculate a whole project of several lines. The calculation runs down to first gap in the left TAG row (or stops at lines with input error). At the rigth side you can see a short evaluation for the four significant results with on error red marked positions. There may also be a suggestion for reducing L. So you can get an quick overview for the whole entire project and the critical TAG's with special requirements for technical clarifications or modifications. If you need a single output for this or for documentation you have to activate the TAG line of regard and then push button for "line calculation". Be aware: both PrintOut tabs are only actuated, after the "line calculation" is run. Special notes - The filled in values on data entry are only calculation examples. Delete them and replace them with your own datas (line 9 downwards) - The program runs only under it's origin name. So copy it in a separate directory, but don't rename it. Otherwise the macros are locked. - If the calculation suddenly stop at a specific line, there will be an input error. Quit the message, check your datas and restart the solver. - You have to check the number format on PrintOut tabs. Because of the unit conversation it is unlocked and should be adjusted individual. - Please refer to the Operation Manual for additional information. Thermowell calculation ASME PTC 19.3 TW - 2010 --- short instruction (WIKA_TWC_PTC19_3_2010_v1_1) The standard is an update based on an former one from 1974, now incorporating the so called effect of inline resonance and many other improvements. So you will find The max. frequency ratio now differs between 0.8 and the new value 0.4, depending on the scruton number Nsc<>2.5 (dampening) and the fatigue stress at inline resonance. To start this new calculation procedure you have to switch to worksheet tab "data entry". There is a header for common informations and rows for inputs and results. In the header you can choose the limiting frequency ratio (common rmax=0.8) and the magnification factor (common FMx=1000 ~ 1/(2*dampening zeta=0.0005)) The values of the listed materials are based on original datas from ASME BPVC Sec.II Part D (allways lowest values). Other materials will be added in later releases. After the input of TAG lines required you can start calculation with the two start buttons in the head line ("line calculation"or "full calculation"). This will calculate only the TAG in the selected row (and switch to a PrintOut tab, either PrintOut_SI or PrintOut_Imp, depending on the choosen temperatur unit). On the PrintOut tab you get a more detailed view of the TAG with a self instructing picture for the choosen thermowell shape (ordered in fig's 2x-4x 1) similar to the standard).

Upload: pit

Post on 23-Nov-2014

561 views

Category:

Documents


19 download

TRANSCRIPT

Page 1: WIKA_TWC_PTC19_3_2010_v1_1

Klingenberg, nov-05-2010

Disclaimer:

WIKA has made every reasonable attempt to validate the calculation procedure contained in this spread sheet, however, responsibility for validation rests solely with the user.

This spread sheet is intended to assist the experienced designer of thermowells and should not be considered a replacement for professional engineering.

End user is responsible that the calculation is compatible to the process conditions.

signifcant differences in frequency calculation to former code, induced by new corrections regarding mounted sensor, medium and mounting compliance. The new

calculation gives four main results: the frequency ratio with limit, the fatigue stress from resonances, the bending stress from steady flow and the max. allowable pressure.

Also new are the calculation of stepped shape Thermowells, influence of shielding and other improvements, you can read in the actual standard release.

In the input rows you can choose different units (metric or imperial), input options (flow rate), materials, TW shapes (Fig.) and weld options (look on separate tabs for infos).

There are cells with red triangles containing short notes for the input options you have. But be careful because the unit decisions are valid for the whole row.

For the material decision you can choose materials from the added material worksheet tabs. There are several name options listed in light blue cells (UNS or DIN_EN).

Normally you will first calculate a whole project of several lines. The calculation runs down to first gap in the left TAG row (or stops at lines with input error).

At the rigth side you can see a short evaluation for the four significant results with on error red marked positions. There may also be a suggestion for reducing L.

So you can get an quick overview for the whole entire project and the critical TAG's with special requirements for technical clarifications or modifications.

If you need a single output for this or for documentation you have to activate the TAG line of regard and then push button for "line calculation".

Be aware: both PrintOut tabs are only actuated, after the "line calculation" is run.

Special notes

- The filled in values on data entry are only calculation examples. Delete them and replace them with your own datas (line 9 downwards)

- The program runs only under it's origin name. So copy it in a separate directory, but don't rename it. Otherwise the macros are locked.

- If the calculation suddenly stop at a specific line, there will be an input error. Quit the message, check your datas and restart the solver.

- You have to check the number format on PrintOut tabs. Because of the unit conversation it is unlocked and should be adjusted individual.

- Please refer to the Operation Manual for additional information.

Thermowell calculation ASME PTC 19.3 TW - 2010 --- short instruction (WIKA_TWC_PTC19_3_2010_v1_1)

The standard is an update based on an former one from 1974, now incorporating the so called effect of inline resonance and many other improvements. So you will find

The max. frequency ratio now differs between 0.8 and the new value 0.4, depending on the scruton number Nsc<>2.5 (dampening) and the fatigue stress at inline resonance.

To start this new calculation procedure you have to switch to worksheet tab "data entry". There is a header for common informations and rows for inputs and results.

In the header you can choose the limiting frequency ratio (common rmax=0.8) and the magnification factor (common FMx=1000 ~ 1/(2*dampening zeta=0.0005))

The values of the listed materials are based on original datas from ASME BPVC Sec.II Part D (allways lowest values). Other materials will be added in later releases.

After the input of TAG lines required you can start calculation with the two start buttons in the head line ("line calculation"or "full calculation").

This will calculate only the TAG in the selected row (and switch to a PrintOut tab, either PrintOut_SI or PrintOut_Imp, depending on the choosen temperatur unit).

On the PrintOut tab you get a more detailed view of the TAG with a self instructing picture for the choosen thermowell shape (ordered in fig's 2x-4x 1) similar to the standard).

Page 2: WIKA_TWC_PTC19_3_2010_v1_1
Page 3: WIKA_TWC_PTC19_3_2010_v1_1
Page 4: WIKA_TWC_PTC19_3_2010_v1_1
Page 5: WIKA_TWC_PTC19_3_2010_v1_1

document.xls data entry 04/08/2023

name, date Name, Date

=SUMME(B9:s65536)*wika(1) x

Project: Name of project Ref.- No.: Reference Customer: Name of customer 0.8 FMx = 1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29te

mp

erat

ure

pro

c. p

ress

ure

max

.vel

oci

ty

inn

er d

iam

eter

med

.den

sity

dyn

.vis

cosi

ty

TW

ske

tch

inse

rtio

n le

ng

th

shie

lded

len

gth

(ste

pp

ed le

ng

th)

bo

re d

iam

eter

roo

t d

iam

eter

tip

dia

met

er

tip

th

ickn

ess

roo

t ra

diu

s at

A

(ste

p r

adiu

s at

B)

wel

ded

?

TW

mat

eria

l

freq

uen

cy r

atio

rati

o li

mit

fw

/fn

c

fati

gu

e st

ress

safe

ty f

atig

ue

stea

dy

stre

ss

safe

ty b

end

ing

pre

ssu

re li

mit

safe

ty p

ress

ure

go

od

?

Lre

d (

rmax

)

TAG-No T P v Di rho eta Fig. L Lo Ls db A B Tt rA rB weld? mat r rmax_ Somax dyn SvM stat Pmax Sp eval. Lred

choose units ---> °C bar m/s mm kg/m3 cP No. mm mm mm mm mm mm mm mm mm / name / / MPa x MPa x bar x / mm

0 0 0 0 0 2 No. 0 0 0 0 0 0 0 0 0 77 109 100 102 97 98 114 115 < row ^ ###

sample 343 9.807 8.008 11.46 3d 235 90 6.6 30 14 5.00 316L ###

sample 160 9.807 8.078 680.9 2b 255 6.6 30 14 5.00 316L ###

sample 370 3.432 90.1 654.6 4c 84 6.6 30 18 7.00 316L ###

sample 370 3.432 45.05 654.6 4c 115 6.6 30 18 7.00 316L ###

sample 465 167.7 8.493 510.7 4c 255 6.6 30 16 5.00 316L ###

sample 370 3.432 66.46 0.1 4c 110 6.6 30 18 7.00 316L ###

sample 370 300 66.46 0.1 4c 110 6.6 30 18 7.00 316L ###

sample 315 3.432 0.973 650.9 4c 230 6.6 30 14 5.00 316L ###

sample 310 157.9 12.05 636.3 4c 249 6.6 30 16 5.00 316L ###

Disclaimer:(mouse over) Thermowell - Calculation (ASME PTC 19.3 TW - 2010 v1.1)

rmax=

Disclaimer:(mouse overor read shortinstruction)

full calculation line calculation

Fig.

Z3
Standard rmax=0.8 N1300~0,66
AC3
PTC 19.3 = 1000 N1300 100..1000
A5
Disclaimer: WIKA has made every reasonable attempt to validate the calculation procedure contained in this spread sheet, however, responsibility for validation rests solely with the user.  This spread sheet is intended to assist the experienced designer of thermowells and should not be considered a replacement for professional engineering. End user is responsible that the calculation is compatible to the process conditions.
B5
temperatur T 0 [°C] 1 [°F] with [°F] output rows will be in imperial units
C5
pressure P 0 [bar] 1 [psi]
D5
velocity V 0 [m/s] 1 [ft/s] flow rate flr* 2 [kg/h] 3 [lb/h] *you need Di !
E5
tube Di 0 [mm] 1 [inch] needed only for flow rate instead of veloc. V
F5
density rho 0 [kg/m3] 1 [lb/ft3] 2 [lb/in3] spec.vol. vs 3 [ft3/lb] 4 [in3/lb]
G5
kin. viscosity ny 0 [mm2/s] = "cSt" 1 [ft/1000s] dyn. viscosity eta 2 [cP] ny=0 -> Ns=0.22! Strouhal number fixed like PTC 19.3
H5
TW sketch fig.Xx (simiiar to standard sketches): straight stepped tapered screwed 2a 3a 4a socket weld 2b 3b 4b flanged 2c 3c 4c van Stone 2d 3d 4d weld-in *) 2e 3e 4e *) additional fig. (pics look tab TW sketch)
I5
insertion length L 0 [mm] 1 [inch]
J5
shielded length Lo 0 [mm] 1 [inch]
K5
stepped length Ls 0 [mm] 1 [inch] (only Fig.3x)
L5
bore dia db 0 [mm] 1 [inch]
M5
root dia A 0 [mm] 1 [inch]
N5
tip dia B 0 [mm] 1 [inch]
O5
tip thickness Tt 0 [mm] 1 [inch]
P5
root radius rA 0 [mm] 1 [inch] default: rA = 2 mm (~ 0,08 inch) (no screwed)
Q5
step radius rB 0 [mm] 1 [inch] only for typ stepped shank: rB =1,5 mm or 0,06 inch
R5
short signs: (for fatigue strength) aw as welded wm +machined nw not welded (threaded = aw) if empty autoset on TW sketch Fig.
S5
allowed names look blue fields on Mat.sheets. Switch to reg.: - MatDat_UNS - Mat_DIN_EN input "free" for - freeMatInput
T5
r = fw/fn r < rmax ?
U5
rmax_ 0.8/0.4 depending on Nsc>2.5 and Re<10e5 and Ssd>1 (fatigue) ( r< rmax_? )
V5
fatigue stress at design velocity: Somax=Kt*Sqr(Sd²+SL²) Somax < Sf(T) ?
W5
safety factor fatigue: dyn = Sf(T)/Somax
X5
combined static stress from pressure and bending near root at design velocity: SvM=f(P, v, r) <S(T)? ("LHS"= von Mises)
Y5
safety factor static: stat = 1.5 S(T)/SvM S(T) from ASME Sec.II
Z5
pressure limit at tip B Min(B31.3, tip shear)
AA5
safety factor: Sp = Pmax/P Pmax = f(1x S(T)) ASME Sec.II)
AB5
error on: T T > Tmax material R r > rmax frequency ratio F dyn < 1 safety factor fatigue B stat < 1 safety factor bending P P > Pmax (B31.3 or Tip shear) and additional for step shank: r (r_ > rmax frequency ratio) f dyn_ < 1 safety factor fatigue b stat_ < 1 safety factor bending
AC5
proposal for the maximum free TW length (support collar) only step shank: s! = stresses f/b near rb higher than listed root stresses but not critical on eval. good
G6
ny=0 => Ns=0.22
Page 6: WIKA_TWC_PTC19_3_2010_v1_1

Nsc = 0.05 0.0001 10000FMx 1000 Sn 5.3 CD 1.4 r2 0.113

Project Name of project zeta 0.00050 Sa 1.0 CL 1 Sa 86Order -No. Reference rmax 0.4 St 1.1 Cd 0.1 1.5Sa 129Customer Name of customer r 0.336 Sr 1.0 Kt 1.595 Sf 90Tag-No. sample

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

LG r FM FM_ r2 Sn SvM Somax## 0.336 1.128 1.826 0.113 5.280 7.393 9.619

wake frequency fw 126.9 1/s SvM 7.4 MPa

nat. frequency fnc 377.5 1/s safety bending stat 17.49 /

freq. ratio r 0.34 fw/fnc pressure limit pmax 278.4 bar

ratio limit rmax 0.4 inline? safety pressure Sp 28.39 /

fatigue stress Somax 9.6 MPa evaluation: goodsafety fatigue dyn 9.32 / reduced length? Lred mm

Process data:temperature T 160 °C

proc. pressure P 9.80665 bar

velocity V 8.1 m/s

flow rate flr kg/h

inner diameter Di mm

med.density rho 680.85 kg/m3

kin.viscosity ny 0 mm2/s

Design data:TW shape Fig. 2b (2a...4e)

insertion length L 255 mm

shielded length (Lo) 0 mm

stepped length (Ls) 0 mm

bore diameter db 6.6 mm

root diameter A 30 mm

tip diameter B 14 mm

tip thickness Tt 5 mm

root radius at A rA 2 mm

radius at step B (rB) 0 mm

welded ? no welds nw wm aw

Material data:Thermowell shape Grade 316L

spec. weight D(T) 7.999492461 kg/dm3

straight socket Youngs modulus E(T) 185.3 GPa

factor for temp. FT 0.956 /

compare with standard fatigue strength Sf(T) 89.6 MPa

ASME PTC 19.3 TW - 2o1o max.all.stress 1.5S(T) 129.3 MPa

press. strength S(T) 86.2 MPaclass B

printed date : 4/8/2023 by: Name, Date

WIKA Alexander Wiegand SE & Co.KG Kommanditgesellschaft: Sitz Klingenberg

Alexander-Wiegand-Strasse 30 Amtsgericht Aschaffenburg HRA 1819

63911 Klingenberg Germany Komplementärin: WIKA Alexander Wiegand Verwaltungs GmbH

Telefon 09372 / 1 32-0 Sitz Klingenberg, Amtsgericht Aschaffenburg HRB 306

Telefax 09372 / 1 32-4 06/ -4 14 Geschäftsführer: Alexander Wiegand

WIKA has made every reasonable attempt to validate the calculation procedure contained in this spread sheet, however, responsibility for validation rests solely with the user.

End user is responsible that the calculation is compatible to the process conditions.

ALEXANDER WIEGAND SE & Co. KG

Results to ASME PTC 19.3 TW - 2010 (program version: WIKA_TWC_PTC19_3_2010_v1_1)

steady stress LHS

 This spread sheet is intended to assist the experienced designer of thermowells and should not be considered a replacement for professional engineering.

ØBTt

ØArA

(Ls)

db

L

(Lo)

(rB)

0.01 0.1 1 10

25

nominal bend.stress Snsteady stress < 1.5 S

fatigue stress < Sf(with resonances)

over frequency ratio(r = fw/fnc ~ veloc.)r < rmax [0.4; 0.8] actual position

129 129

Sf(T)

SvM

Somax

Sn

rmax

Nsc = 0.05

rel. velocity

Fig. 3x

stepped

Page 7: WIKA_TWC_PTC19_3_2010_v1_1

Project Name of projectRef. -No. ReferenceCustomer Name of customerTag-No. sample

wake frequency fw 126.9 1/s SvM 7.4 MPa

nat. frequency fnc 377.5 1/s safety bending stat 17.49 /

freq. ratio r 0.34 fw/fnc pressure limit pmax 278.4 bar

ratio limit rmax 0.4 inline? safety pressure Sp 28.39 /

fatigue stress Somax 9.6 MPa evaluation: goodsafety fatigue dyn 9.32 / reduced length? Lred mm

Process data:temperature T 160.00 °C

proc. pressure P 9.81 bar

velocity V 8.1 m/s

flow rate flr kg/h

inner diameter Di mm

med.density rho 680.85 kg/m3

kin.viscosity ny 0 mm2/s

Design data:TW shape Fig. 2b (2a...4e)

insertion length L 255.000 mm

shielded length (Lo) 0 mm

stepped length (Ls) 0 mm

bore diameter db 6.6 mm

root diameter A 30 mm

tip diameter B 14 mm

tip thickness Tt 5 mm

root radius at A rA 2 mm

radius at step B (rB) 0 mm

welded ? no welds nw wm aw

Material data:Thermowell shape Grade 316L

spec. weight D(T) 7.999 kg/dm3

straight socket Youngs modul E(T) 185.3 GPa

factor for temp. FT 0.956 /

compare with standard fatigue strength Sf(T) 89.6 MPa

ASME PTC 19.3 TW - 2o1o max.all.stress 1.5S(T) 129.3 MPa

press. strength S(T) 86.2 MPaclass B

printed date : 4/8/2023 by: Name, Date

WIKA Instruments Canada Ltd. Kommanditgesellschaft: Sitz Klingenberg

3103 Parsons Road Amtsgericht Aschaffenburg HRA 1819

Edmonton, Alberta, Canada Komplementärin: WIKA Alexander Wiegand Verwaltungs GmbH

Phone: 780.463.7035 Sitz Klingenberg, Amtsgericht Aschaffenburg HRB 306

Fax: 780.462.0017 Geschäftsführer: Alexander Wiegand

WIKA has made every reasonable attempt to validate the calculation procedure contained in this spread sheet, however, responsibility for validation rests solely with the user.

End user is responsible that the calculation is compatible to the process conditions.

ALEXANDER WIEGAND SE & Co. KG

Results to ASME PTC 19.3 TW - 2010 (program version: WIKA_TWC_PTC19_3_2010_v1_1)

steady stress LHS

 This spread sheet is intended to assist the experienced designer of thermowells and should not be considered a replacement for professional engineering.

ØBTt

ØArA

(Ls)

db

(Lo)

(rB)

L

Fig. 3x

stepped

Page 8: WIKA_TWC_PTC19_3_2010_v1_1

Project Name of projectRef. -No. ReferenceCustomer Name of customerTag-No. sample

wake frequency fw 126.9 1/s SvM 1072.2 psi

nat. frequency fnc 377.5 1/s safety bending stat 17.49 x

freq. ratio r 0.34 fw/fnc pressure limit pmax 4037.6 psi

ratio limit rmax 0.4 inline? safety pressure Sp 28.39 x

fatigue stress Somax 1395.2 psi evaluation: goodsafety fatigue dyn 9.32 / reduced length? Lred inch

Process data:temperature T 320 °F

proc. pressure P 142.23 psi

velocity V 26.5 ft/s

flow rate flr lb/h

inner diameter Di inch

med.density rho 42.51 lb/ft3

kin.viscosity ny 0 cP

Design data:TW shape Fig. 2b (2a...4e)

insertion length L 10.039 inch

shielded length (Lo) 0.000 inch

stepped length (Ls) 0.000 inch

bore diameter db 0.260 inch

root diameter A 1.181 inch

tip diameter B 0.551 inch

tip thickness Tt 0.197 inch

root radius at A rA 0.079 inch

radius at step B (rB) 0.000 inch

welded ? no welds nw wm aw

Material data:Thermowell shape Grade 316L

spec. weight D(T) 0.2888 lb/in3

straight socket Youngs modul E(T) 26880 ksi

factor for temp. FT 0.956 /

compare with standard fatigue strength Sf(T) 13002 psi

ASME PTC 19.3 TW - 2o1o max.all.stress 1.5S(T) 18750 psi

press. strength S(T) 12500 psiclass B

printed date : 4/8/2023 by: Name, Date

WIKA Instruments Canada Ltd. Kommanditgesellschaft: Sitz Klingenberg

3103 Parsons Road Amtsgericht Aschaffenburg HRA 1819

Edmonton, Alberta, Canada Komplementärin: WIKA Alexander Wiegand Verwaltungs GmbH

Phone: 780.463.7035 Sitz Klingenberg, Amtsgericht Aschaffenburg HRB 306

Fax: 780.462.0017 Geschäftsführer: Alexander Wiegand

WIKA has made every reasonable attempt to validate the calculation procedure contained in this spread sheet, however, responsibility for validation rests solely with the user.

End user is responsible that the calculation is compatible to the process conditions.

ALEXANDER WIEGAND SE & Co. KG

Results to ASME PTC 19.3 TW - 2010 (program version: WIKA_TWC_PTC19_3_2010_v1_1)

steady stress LHS

 This spread sheet is intended to assist the experienced designer of thermowells and should not be considered a replacement for professional engineering.

ØBTt

ØArA

(Ls)

db

(Lo)

(rB)

L

Fig. 3x

stepped

Page 9: WIKA_TWC_PTC19_3_2010_v1_1

file:///tt/file_convert/5471420cb4af9f053c8b45a3/document.xls document.xls 04/08/2023

2a aw 2b nw 2c wm 2d nw 2e aw

3a aw 3b nw 3c wm 3d nw 3e aw

4a aw 4b nw 4c wm 4d nw 4e aw

Fig. 2x

straight

Fig. 3x

stepped

Fig. 4x

tapered

screwed

Fig. Xa

socket

Fig. Xb

flanged

Fig. Xc

van Stone

Fig. Xd

weld-in

Fig. Xe

E1
proposal for weld info ( fatigue strength Sf ): aw … as welded wm … welded + machined nw … not welded ( screwed = aw ! ) if not choosed autosetting!
E2
proposal for weld info ( fatigue strength Sf ): aw … as welded wm … welded + machined nw … not welded ( screwed = aw ! ) if not choosed autosetting!
E3
proposal for weld info ( fatigue strength Sf ): aw … as welded wm … welded + machined nw … not welded ( screwed = aw ! ) if not choosed autosetting!
Page 10: WIKA_TWC_PTC19_3_2010_v1_1

file:///tt/file_convert/5471420cb4af9f053c8b45a3/document.xls document.xls 04/08/2023

_316L 2 <== test it ! Indices for interpolationName/No Index il = MIN(MAX(GANZZAHL( TF /50)-1;1);28)

/ No TFil = 100+( il -1)*50

_1.4571 1 1 TC TF il ih TFil TFih TFfactor

_1.4401 1 1 °C °F i-1 i Ti-1 Ti factor

_1.4404 2 2 20 68 1 2 100 150 -0.64 RT fix_1.4435 2 2 40 104 1 2 100 150 0.08 InterPol_1.4301 3 3 60 140 1 2 100 150 0.8_1.4306 4 4 80 176 2 3 150 200 0.52_1.4541 6 6 100 212 3 4 200 250 0.24_1.4550 7 7 120 248 3 4 200 250 0.96_1.0460 8 8 140 284 4 5 250 300 0.68_1.7335 10 10 160 320 5 6 300 350 0.4_1.7380 11 11 180 356 6 7 350 400 0.12_2.4819 13 13 200 392 6 7 350 400 0.84_2.4360 14 14 220 428 7 8 400 450 0.56_2.4816 15 15 240 464 8 9 450 500 0.28_2.4856 16 16 260 500 9 10 500 550 0_1.4876 17 17 280 536 9 10 500 550 0.72

_SS 316 Ti 1 1 300 572 10 11 550 600 0.44_SS 316 1 1 320 608 11 12 600 650 0.16

_SS 316 L 2 2 340 644 11 12 600 650 0.88_SS 316 L 2 2 360 680 12 13 650 700 0.6_SS 304 3 3 380 716 13 14 700 750 0.32

_SS 304 L 4 4 400 752 14 15 750 800 0.04_SS 310 5 5 420 788 14 15 750 800 0.76_SS 321 6 6 440 824 15 16 800 850 0.48_SS 347 7 7 460 860 16 17 850 900 0.2_A105 8 8 480 896 16 17 850 900 0.92

_A182 F5 9 9 500 932 17 18 900 950 0.64_A182 F11 10 10 520 968 18 19 950 1000 0.36_A182 F22 11 11 540 1004 19 20 1000 1050 0.08_A182 F91 12 12 560 1040 19 20 1000 1050 0.8

_Hastelloy C276 13 13 580 1076 20 21 1050 1100 0.52_Monel 400 14 14 600 1112 21 22 1100 1150 0.24_Inconel 600 15 15 620 1148 21 22 1100 1150 0.96_Inconel 625 16 16 640 1184 22 23 1150 1200 0.68_Incoloy 800 17 17 660 1220 23 24 1200 1250 0.4

_316 1 1 680 1256 24 25 1250 1300 0.12_316L 2 2 700 1292 24 25 1250 1300 0.84_304 3 3 720 1328 25 26 1300 1350 0.56

_304L 4 4 740 1364 26 27 1350 1400 0.28_310S 5 5 760 1400 27 28 1400 1450 0_321 6 6 780 1436 27 28 1400 1450 0.72

_347 7 7 800 1472 28 29 1450 1500 0.44 limit_A105 8 8 820 1508 28 29 1450 1500 1.16 ExtraPol

_F5 9 9 840 1544 28 29 1450 1500 1.88_F11 10 10 860 1580 28 29 1450 1500 2.6_F22 11 11 880 1616 28 29 1450 1500 3.32_F91 12 12 900 1652 28 29 1450 1500 4.04

_C276 13 13 920 1688 28 29 1450 1500 4.76

_400 14 14 940 1724 28 29 1450 1500 5.48_600 15 15_625 16 16_800 17 17

_S31600 1 1_S31603 2 2_S30400 3 3_S30403 4 4_S31008 5 5_S32100 6 6_S34700 7 7_K03504 8 8_K41545 9 9_K11597 10 10_K21590 11 11_K90901 12 12_N10276 13 13_N04400 14 14_N06600 15 15_N06625 16 16_N08800 17 17

Page 11: WIKA_TWC_PTC19_3_2010_v1_1

document.xls Mat_DIN_EN 04/08/2023

Materialnames like DIN / EN

EN components material name Index Mat

No. DIN-EN (usual name) No sign

1.4571 X6 Cr Ni Mo Ti 17 12 2 SS 316 Ti 1 3161.4401 X 5 Cr Ni Mo 18 10 SS 316 1 3161.4404 X 2 Cr Ni Mo 18 10 SS 316 L 2 316L1.4435 X 2 Cr Ni Mo 18 12 SS 316 L 2 316L1.4301 X 5 Cr Ni 18 9 SS 304 3 3041.4306 X 2 Cr Ni 18 9 SS 304 L 4 304L

SS 310 5 310S1.4541 X6 CrNiTi 18 10 SS 321 6 3211.4550 X6 CrNiNb 18 10 SS 347 7 3471.0460 C 22.8 A105 8 A105

A182 F5 9 F51.7335 13 CrMo 4 4 A182 F11 10 F111.7380 10 CrMo 9 10 A182 F22 11 F22

A182 F91 12 F912.4819 Ni Mo 16 Cr 15 W Hastelloy C276 13 C2762.4360 Ni Cu 30 Fe Monel 400 14 4002.4816 Ni Cr 15 Fe Inconel 600 15 6002.4856 NiCr 22 Mo 9 Nb Inconel 625 16 6251.4876 X10NiCrAlTi3220H Incoloy 800 17 800

Page 12: WIKA_TWC_PTC19_3_2010_v1_1

Material tables from ASME PBVC Sec.II Part D - 2004

Index Mat usual nom.Comp. UNS Spec. Prod

No sign name Sec.II Div.1 No No Form

1 316 SS 316 16Cr-12Ni-2Mo S31600 A479 Bar

2 316L SS 316 L 16Cr-12Ni-2Mo S31603 A479 Bar

3 304 SS 304 18Cr-8Ni S30400 A479 Bar

4 304L SS 304 L 18Cr-8Ni S30403 A479 Bar

5 310S SS 310 25Cr-20Ni S31008 A479 Bar

6 321 SS 321 25Cr-20Ni S32100 A479 Bar

7 347 SS 347 18Cr-10Ni-Cb S34700 A479 Bar

8 A105 A105 Carbon steel K03504 A105 Forgings

9 F5 A182 F5 5Cr-0.5Mo K41545 A182 Forgings

10 F11 A182 F11 1.25Cr-0.5Mo-Si K11597 A182 Forgings

11 F22 A182 F22 2.25Cr-1Mo K21590 A182 Forgings

12 F91 A182 F91 9Cr-1Mo-V K90901 A182 Forgings

13 C276 Hastelloy C276 54Ni-16Mo-15Cr N10276 B574 Rod

14 400 Monel 400 67Ni-30Cu N04400 B164 Bar

15 600 Inconel 600 72Ni-15Cr-8Fe N06600 B166 Bar

16 625 Inconel 625 60Ni-22Cr-9Mo-3.5Cb N06625 B446 Bar

17 800 Incoloy 800 33Ni-42Fe-21Cr N08800 B408 Bar

Page 13: WIKA_TWC_PTC19_3_2010_v1_1

p702/703 kg (0,254 dm/in)3 1

NF-1/NF-2 ###

dens. Sf Sa

lb/in3 class Tmax °F

0.289 B 1500

0.289 B 850

0.289 B 1500

0.289 B 1200

0.289 B 1000

0.289 B 1500

0.289 B 1500

0.276 A 1000

0.283 A 1200

0.283 A 1200

0.283 A 1200

0.283 A 1200

0.321 BA 1250

0.319 BA 900

0.3 BA 1200

0.305 BA 1600

0.29 BA 1500

Page 14: WIKA_TWC_PTC19_3_2010_v1_1

MP-E A. Löbig july-30-2010

So you can input your own mat. specifications.be careful: there is no temperature interpolation (T)

Youngs-modul(T) 193.3 GPa units on °F/°C

stress limit (T) 177 MPa (Protokoll!$B$7)

fatigue limit (T) 93.5 MPa "mat. density 7.8 kg/dm3 "

example in 8.1 A 105 B31.1 for °F

E = 27500 ksi

S = 19800 psi

Sf = 3000 psi

rhom = 0.284 lb/in3

example in 8.2 A 182 F316 B31.1 for °C

E = 191 GPa

S = 122 MPa

Sf = 37.2 MPa

rhom = 8 kg/dm3

"free" material input

This is a verification tool for "free" material data input.

to activate it in listing, choose "free" as material name