wireless communication systems - gbv

17
Wireless Communication Systems From RF Subsystems to 4G Enabling Technologies KE-LIN DU and M. N. S. SWAMY Concordia University, Canada CAMBRIDGE UNIVERSITY PRESS

Upload: others

Post on 10-Feb-2022

1 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Wireless Communication Systems - GBV

Wireless Communication Systems

From RF Subsystems to 4G Enabling Technologies

KE-LIN DU and M. N. S. SWAMY Concordia University, Canada

C A M B R I D G E UNIVERSITY PRESS

Page 2: Wireless Communication Systems - GBV

Preface Abbreviations

Introduction 1.1 The wireless age

1.2 Spectrum of electromagnetic waves 1.3 Block diagram of a communication system 1.4 Architecture of radio transceivers

1.4.1 S uper-heterodyne transceivers 1.4.2 Direct-conversion transceivers

1.5 Organization of the book References

An overview of wireless communications 2.1 Roadmap of cellular communications

2.1.1 First-generation systems

2.1.2 Second-generation systems

2.1.3 Third-generation systems 2.1.4 Fourth-generation systems 2.1.5 Satellite communications

2.2 Mobile cellular networks

2.2.1 Circuit/packet switching 2.3 Roadmap for wireless networking

2.3.1 Wireless local-area networks 2.3.2 Wireless personal-area networks 2.3.3 Wireless metropolitan-area networks 2.3.4 Wireless regional-area networks 2.3.5 Ad hoc wireless networks

2.4 Other applications 2.4.1 Paging systems 2.4.2 Digital broadcasting systems 2.4.3 RF identification

Page 3: Wireless Communication Systems - GBV

VIII Contents

2.5 Open systems interconnect (OSI) reference model 34 Problems 37 References 38

3 Channel and propagation 39 3.1 Propagation loss 39

3.1.1 Free-space loss 39 3.1.2 Plane earth loss model 39 3.1.3 Okumura-Hata model 41 3.1.4 COST-231-Hata model 42 3.1.5 Other empirical models 43 3.1.6 COST-231-Walfisch-Ikegami model 43 3.1.7 Indoor propagation models 45 3.1.8 Channel models in wireless standards 46

3.2 Channel fading 48 3.2.1 Log-normal shadowing 48 3.2.2 Rayleigh fading 50 3.2.3 Two-path model of Rayleigh fading 53 3.2.4 Random frequency modulation 55 3.2.5 Ricean fading 56 3.2.6 Other fading models 58 3.2.7 Outage probability 58

3.3 Doppler fading 60 3.3.1 Doppler spectrum 60 3.3.2 Level crossing rates 63 3.3.3 Average duration of fades 64

3.4 WSSUS model 65 3.4.1 Delay spread 67 3.4.2 Correlation coefficient 68 3.4.3 Channel coherent bandwidth 69 3.4.4 Doppler spread and channel coherent time 70 3.4.5 Angle spread and coherent distance 71

3.5 Propagation mechanisms 73 3.5.1 Reflection and refraction 73 3.5.2 Scattering 75 3.5.3 Diffraction 76

3.6 Atmospheric effects 78 3.6.1 Tropospheric effects 79 3.6.2 Ionospheric effects 80

3.7 Channel sounding 82 Problems 84 References 86

Page 4: Wireless Communication Systems - GBV

IX

":'-.'?• rsxi:is.by.. Contents

4.1.1 4.1.2 4.1.3 4.1.4 4.1.5 4.1.6

Cell planning Increasing capacity of cellular networks Interference in multiuser systems Power control Channel assignment Handoff

Multiple access techniques 4.2.1 4.2.2 4.2.3 4.2.4 4.2.5 4.2.6

Duplexing: FDD versus TDD FDMA TDMA CDMA OFDMA SDMA

Cellular and multiple-user systems 92 4.1 The cellular concept 92

93 95 96 98 98 99

4.2 Multiple access techniques 101 102 104 104 105 106 106

4.3 Random multiple access 108 4.3.1 ALOHA 108 4.3.2 Carrier-sense multiple access 109 4.3.3 Scheduling access 113

4.4 Erlang capacity in uplink 114 4.4.1 Erlang B equation 114 4.4.2 Erlang C equation 115

4.5 Protocol design for wireless networks 117 4.5.1 Layered protocol design 117 4.5.2 Cross-layer design 120

4.6 Quality of service 121 4.7 User location 123

Problems 126 References 128

Diversity 130 5.1 Diversity methods 130 5.2 Combining multiple signals 133

5.2.1 Selection diversity 134 5.2.2 Maximum ratio combining 137 5.2.3 Equal gain combining 143 5.2.4 Switch diversity 145 5.2.5 Optimum combining 145

5.3 Transmit diversity 148 5.3.1 Open-loop transmit diversity 149 5.3.2 Closed-loop transmit diversity 150

5.4 Multiuser diversity 150 5.4.1 Pdfandcdf 151 5.4.2 Multiuser diversity versus classical diversity 152

Page 5: Wireless Communication Systems - GBV

X ..;.,,;,л:,..,?Ц!.н::г,::,;.:;

Contents

Problems 153 References 154

Channel estimation and equalization 158 6.1 Channel estimation 158

6.1.1 Adaptive channel estimation 159 6.1.2 Blind channel estimation 160

6.2 Channel equalization 160 6.2.1 Optimum sequence detection 161 6.2.2 Linear equalizers 162 6.2.3 Decision-feedback equalizers 166 6.2.4 MLSE equalizer 167 6.2.5 Viterbi algorithm 168 6.2.6 Frequency-domain equalizers 170 6.2.7 Blind equalizers 171 6.2.8 Precoding 172

6.3 Pulse shaping 172 6.3.1 Raised-cosine filtering 173 6.3.2 Root-raised-cosine filtering 175 Problems 176 References 177

Modulation and detection 180 7.1 Analog modulation 180

7.1.1 Amplitude modulation 180 7.1.2 Phase modulation and frequency modulation 182

7.2 Introduction to digital modulation 183 7.2.1 Signal space diagram 184 7.2.2 Demodulation and detection 185 7.2.3 Error probability in the Gaussian channel 186

7.3 Baseband modulation 188 7.3.1 Line codes 188 7.3.2 Pulse time modulation 190

7.4 Pulse amplitude modulation 191 7.5 Phase shift keying 195

7.5.1 Binary phase shift keying 195 7.5.2 M-ary phase shift keying 197 7.5.3 Quaternary phase shift keying 202

7.6 Frequency shift keying 207 7.6.1 Binary frequency shift keying 207 7.6.2 M-ary frequency shift keying 211 7.6.3 Minimum shift keying 213 7.6.4 Gaussian minimum shift keying 215 7.6.5 Continuous phase modulation 217

Page 6: Wireless Communication Systems - GBV

Contents

7.7 7.8 7.9 7.10

7.11 7.12

7.13 7.14

Quadrature amplitude modulation Bandwidth efficiencies of M-ary modulation Matched filtering Synchronization 7.10.1 7.10.2

Carrier synchronization Symbol timing recovery

Differential modulation Error probability in fading channels 7.12.1 7.12.2 7.12.3 7.12.4

Flat Rayleigh fading channel Flat Ricean fading channel Alternative form of the Q-function Error probability using moment-generating functions

Error probabilities due to delay spread and frequency dispersion Error probability in fading channels with diversity reception Problems References

8 Spread spectrum communications 8.1 8.2

8.3

8.4

8.5

Introduction Spreading sequences 8.2.1 8.2.2 8.2.3 8.2.4 8.2.5 8.2.6 8.2.7 8.2.8

Properties of spreading sequences Pseudo-noise sequences Gold sequences Kasami sequences Walsh sequences Orthogonal variable spreading factor sequences Barker sequences Complementary codes

Direct-sequence spread spectrum 8.3.1 8.3.2 8.3.3 8.3.4 8.3.5 8.3.6

DS-CDMA model Conventional receiver Rake receiver Synchronization in CDMA Power control Soft handoff

Multiuser detection 8.4.1 8.4.2 8.4.3 8.4.4 8.4.5 Bit erroi 8.5.1 8.5.2

Introduction Optimum multiuser detector Linear multiuser detection Serial/parallel interference cancellation Combination of linear MUD and nonlinear SIC

• probability and system capacity BER performance Uplink capacity

218 224 225 226 227 228 231 231 232 235 236 237 238 239 241 243

246 246 248 248 249 252 252 253 254 255 255 256 257 259 260 263 263 264 265 265 267 268 269 271 272 272 274

Page 7: Wireless Communication Systems - GBV

xii Contents

8.6 Other DSSS techniques 276 8.7 DSSS and DS-CDMA in wireless standards 277 8.8 Frequency-hopping spread spectrum 280

8.8.1 Error performance of FHSS 282 8.8.2 FHSS versus DSSS 283 Problems 284 References 285

9 Orthogonal frequency division multiplexing 290 9.1 Introduction 290 9.2 Principle of OFDM 291 9.3 OFDM transceivers 293 9.4 Cyclic prefix 294 9.5 Spectrum of OFDM 297 9.6 Fading mitigation in OFDM 300 9.7 Channel estimation 301

9.7.1 Pilot arrangement for channel estimation 302 9.7.2 Pilot-assisted channel estimation 303

9.8 Peak-to-average power ratio 305 9.8.1 Peak factor: definition and impact 305 9.8.2 Peak factor reduction techniques 306 9.8.3 Amplitude clipping or companding 308

9.9 Intercarrier interference 312 9.10 Synchronization 314

9.10.1 Influence of frequency offset 314 9.10.2 Phase noise effects on OFDM 317 9.10.3 Influence of timing offset 318 9.10.4 Implementation of synchronization 318

9.11 OFDM-based multiple access 322 9.12 Performance of OFDM systems 324 9.13 Multi-carrier CDMA 326 9.14 Other OFDM-associated schemes 329

Problems 330 References 331

10 Antennas 337 10.1 Maxwell's equations 337 10.2 Introduction to computational electromagnetics 338

10.2.1 Method of moments 339 10.2.2 Finite difference time-domain method 339 10.2.3 Finite element method 340

10.3 Antenna fundamentals 341 10.3.1 Radiation patterns 342 10.3.2 Antenna field zones 343

Page 8: Wireless Communication Systems - GBV

Contents

10.3.3 Antenna gain and directivity 344 10.3.4 Effective area and effective height 345 10.3.5 Antenna temperature 346 10.3.6 Polarization 346 10.3.7 Receiving and transmitting power

efficiency 347 10.4 Antennas for wireless communications 349

10.4.1 Antennas for base stations 349 10.4.2 Antennas for mobile stations 350

10.5 Dipole antennas 351 10.5.1 Wire dipole antennas 353 10.5.2 Baluns 355 10.5.3 Wire monopoles 356

10.6 Patch antennas 356 10.6.1 Microstrip antennas 357 10.6.2 Broadband microstrip antennas 358

10.7 Polarization-agile antennas 359 10.8 Antenna arrays 360

10.8.1 Array factor 361 10.8.2 Mutual coupling and spatial correlation 362

10.9 Wideband antennas 364 10.9.1 Implementation of wideband antennas 364 10.9.2 Ultra wideband antennas 366 Problems 367 References 369

11 RF and microwave subsystems 373 11.1 Introduction 373

11.1.1 Receiver performance requirements 373 11.1.2 Architecture of RF subsystems 374

11.2 RF system analysis 375 11.2.1 Noise 376 11.2.2 Noise figure 378 11.2.3 Link budget analysis 379

11.3 Transmission lines 380 11.3.1 Fundamental theory 380 11.3.2 Types of transmission line 384

11.4 Microwave network analysis 385 11.5 Impedance matching 388

11.5.1 Stub tuners 388 11.5.2 Quarter-wave transformer 389 11.5.3 Multisection matching transformers 389

11.6 Microwave resonators 390 11.6.1 RLC resonant circuits 390

Page 9: Wireless Communication Systems - GBV

xiv Contents

391 393 393 393 395 397 397 400 401 402 403

405 406 408 410 414 414 417 422 424 425 425 427 428 428 429 430 433 435 436 436

11.16 Oscillators 437 11.16.1 Analysis methods 437 11.16.2 Phase noise 439 11.16.3 Classification of RF oscillators 440

11.17 Frequency synthesis 443 11.17.1 Composition of phase-locked loops 443 11.17.2 Dynamics of phase-locked loops 446 11.17.3 Direct frequency synthesis 448

11.18 Automatic gain control 449 11.19 MICs and MMICs 451

11.19.1 Maj or MMIC technologies 451 11.19.2 Approach to MMIC design 45 2

11.7

11.8

11.9 11.10 11.11

11.12 11.13 11.14

11.15

11.6.2 11.6.3

Transmission line resonators Waveguide cavities

Power dividers and directional couplers 11.7.1 11.7.2

Three-port networks Four-port networks

RF/microwave filters 11.8.1 11.8.2 11.8.3 11.8.4 11.8.5 11.8.6

11.8.7

Insertion loss method Prototyping Stub filters Stepped-impedance lowpass filters Coupled line bandpass filters Computer-aided design for RF/microwave filter design Filters for wireless communications

Phase shifters Basic concepts in active RF circuits Modeling 11.11.1 11.11.2 Switches

of RF components Diodes Transistors

Attenuators Mixers 11.14.1 11.14.2

Operation of mixers Types of mixers

Amplifiers 11.15.1 11.15.2 11.15.3 11.15.4 11.15.5 11.15.6 11.15.7

Requirements in wireless systems Structure of amplifiers Classification of amplifiers Linearization techniques Microwave transistors for amplifiers Stability Transistor amplifier design

Page 10: Wireless Communication Systems - GBV

Contents

11.19.3 Passive lumped components 453 11.19.4 RFCMOS 455 11.19.5 Impedance matching 456 Problems 457 References 461

12 A/D and D/A conversions 464

12.1 Introduction 464 12.2 Sampling 464

12.2.1 Ideal and natural sampling 464 12.2.2 Sampling theorem 466 12.2.3 Aliasing and antialiasing 466 12.2.4 Oversampling and decimation 468 12.2.5 Bandpass sampling theorem 468

12.3 Quantization 470 12.3.1 Uniform quantization 470 12.3.2 Improving resolution by oversampling 472

12.4 Analog reconstruction 473 12.5 Parameters for A/D and D/A converters 475

12.5.1 SNR of A/D and D/A converters 476 12.5.2 SFDR and dithering 477

12.6 A/D converter circuits 479 12.6.1 Flash A/D converters 480 12.6.2 Successive-approximation register A/D converters 480 12.6.3 Sigma-delta A/D converters 481

12.7 D/A converter circuits 484 12.8 A/D and D/A converters for software-defined radios 485

Problems 486 References 487

13 Signals and signal processing 489

13.1 Basic transforms 489 13.1.1 Fourier transform 489 13.1.2 Laplace transform 490 13.1.3 z-transform 491

13.2 Discrete-time Fourier transform 494 13.2.1 Windowing 495 13.2.2 DFT 498 13.2.3 FFT 499

13.3 Digital filters 501 13.3.1 FIR and IIR filters 501 13.3.2 Stability 502 13.3.3 Inverse filters 503

Page 11: Wireless Communication Systems - GBV

XVI жштшшшшёштттштж

Contents

13.3.4 Minimum-, maximum-, and mixed-phase systems 504

13.3.5 Notch and comb filters 505 13.4 Digital filter design 507

13.4.1 FIR digital filter design 508 13.4.2 IIR filter design 511 13.4.3 Hardware implementation of digital filters 513

13.5 Adaptive filters 513 13.5.1 Wiener solution 514 13.5.2 LMS algorithm 515 13.5.3 RLS algorithm 515

13.6 Digital up-conversion and digital down-conversion 516 13.6.1 Numerically controlled oscillators 517 13.6.2 Direct digital frequency synthesis 518

13.7 Sampling-rate conversion 520 13.7.1 Interpolation 521 13.7.2 Decimation 524 13.7.3 Sample rate converters 525 13.7.4 Cascaded integrator comb (CIC) filters 525

13.8 Discrete cosine transform 527 13.9 Wavelet transform 530

13.9.1 Discrete wavelet transform 532 13.9.2 Multiresolution analysis 533

13.10 Filter banks 535 13.11 Sub-band coding 538

13.11.1 Two-channel perfect reconstruction filter banks 539 13.11.2 Pseudo-QMF filter bank 541 13.11.3 Modified DCT (MDCT) 542 Problems 543 References 545

14 Fundamentals of information theory 550 14.1 Basic definitions 550 14.2 Lossless data compression 555

556 557 559 560 563 565 567

568

14.3 14.4

14.2.1 14.2.2 14.2.3 14.2.4 14.2.5

Source coding theorem Huffman coding Exponential-Golomb variable-length codes Arithmetic coding Dictionary-based coding

Rate-distortion theorem Channel 14.4.1

capacity Capacity of the AWGN channel for Gaussian distributed input

Page 12: Wireless Communication Systems - GBV

Contents

14.4.2 Capacity of the AWGN channel for discrete input alphabets 571

14.4.3 Area spectral efficiency 574 14.5 Source-channel coding theorem 575 14.6 Capacity of fading channels 576

14.6.1 Capacity with CSI at receiver only 577 14.6.2 Capacity with CSI at transmitter and receiver 579 14.6.3 Capacity of frequency-selective fading channels 581

14.7 Channel capacity for multiuser communications 582 14.7.1 AWGN channel 582 14.7.2 Flat-fading channels 585

14.8 Estimation theory 585 Problems 586 References 589

15 Channel coding 591

591 592 593 595 596 597 600 600 603 606 607 608 611 613 616 618 619 620 621 622 625

15.8.1 Turbo encoder 625 15.8.2 Turbo decoder 627 15.8.3 MAP algorithm 630 15.8.4 Analysis of the turbo code 635

15.9 Serially concatenated convolutional codes 639 15.9.1 Design of the SCCC 640 15.9.2 Decoding of the SCCC 640

15.1 15.2

15.3 15.4

15.5 15.6

15.7 15.8

Preliminaries Linear block codes 15.2.1 15.2.2 15.2.3

Error detection/correction Simple parity check and Hamming codes Syndrome decoding

Hard/soft decision decoding Cyclic i

15.4.1 15.4.2

codes Encoder and decoder Types of cyclic codes

Interleaving Convolutional codes 15.6.1 15.6.2 15.6.3 15.6.4 15.6.5 15.6.6 15.6.7 15.6.8

Encoding of convolutional codes Encoder state and trellis diagrams Sequence decoders Trellis representation of block codes Coding gain and error probability Convolutional coding with interleaving Punctured convolutional codes Trellis-coded modulation

Conventional concatenated codes Turbo codes

Page 13: Wireless Communication Systems - GBV

XVIII Contents

15.10 Low-density parity-check codes 641 15.10.1 LDPC code: a linear block code 641 15.10.2 LDPC encoder and decoder 644

15.11 Adaptive modulation and coding 646 15.12 ARQ and hybrid-ARQ 649

Problems 652 References 654

16 Source coding I: speech and audio coding 659 16.1 Introduction 659

16.1.1 Coding for analog sources 659 16.2 Quantization 661

16.2.1 Scalar quantization 661 16.2.2 Vector quantization 662

16.3 Speech production and auditory systems 663 16.3.1 Speech production 663 16.3.2 Psychoacoustics 665

16.4 Speech/audio quality 668 16.4.1 Subjective quality measures 668 16.4.2 Objective quality measures 670

16.5 Speech coding 672 16.5.1 Logarithmic PCM coding 673 16.5.2 Linear prediction analysis and synthesis 674 16.5.3 Predictive coding 680 16.5.4 Frequency-domain waveform coding 683 16.5.5 Voice activity detection 683 16.5.6 Linear predictive coding 684 16.5.7 Pitch period estimation 686 16.5.8 Analysis by synthesis 688 16.5.9 CELP-based codecs 691 16.5.10 Wideband speech coding 696

16.6 Audio coding 697 16.6.1 MPEG-1 and MPEG-2 Audio 699 16.6.2 MPEG-4 Audio 701 Problems 703 References 705

17 Source coding II: image and video coding 707 17.1 Introduction 707 17.2 Perception of human vision 709

17.2.1 Human visual system 709 17.2.2 Color spaces 710

17.3 Quality of image and video coding 712 17.4 Predictive coding 713

Page 14: Wireless Communication Systems - GBV

Contents

17.5 Transform-based image compression 715 17.6 JPEG standard 716

17.6.1 Four modes of operation 716 17.6.2 Quantization 718 17.6.3 Coding 720

17.7 Wavelet-transform-based image coding 721 17.7.1 Sub-band decomposition 721 17.7.2 Wavelet filter design 722 17.7.3 Coding of wavelet subimages 724

17.8 Wavelet-based image coding standards 729 17.8.1 JPEG2000 standard 729 17.8.2 MPEG-4 still image mode 730

17.9 Comparison of image coding standards 731 17.9.1 Comparison of six popular standards 731 17.9.2 DjVu and adaptive binary optimization

(ABO) 733 17.10 Video data compression 733

17.10.1 Frame format 734 17.10.2 Frame types 734 17.10.3 Motion compensation 735 17.10.4 Basic structure of video 739 17.10.5 Video encoder/decoder 740 17.10.6 Scalability 742 17.10.7 Integer DCT transform 743 17.10.8 Shape coding 744 17.10.9 Object-based coding and sprite coding 745 17.10.10 Rate control 746

17.11 Introduction to video standards 747 Problems 752 References 754

18 Multiple antennas: smart antenna systems 757

18.1 Introduction 757 18.1.1 The concept of smart antennas 757 18.1.2 Smart antennas in mobile communications 758

18.2 Direction-finding 759 18.2.1 Pseudospectrums 760 18.2.2 MUSIC 761

18.3 Beamforming 763 18.3.1 Blind source separation 764 18.3.2 ZF, MRC, and Wiener beamformers 764 18.3.3 Switched-beam antennas 765

18.4 Adaptive beamforming 767 18.4.1 DoA-based beamforming 767

Page 15: Wireless Communication Systems - GBV

XX Contents

18.4.2 Training-based beamforming 770 18.4.3 Blind beamforming 774

18.5 Cyclostationary beamforming 776 18.5.1 Preliminaries on cyclostationarity 776 18.5.2 Summary of some algorithms 778 18.5.3 ACS algorithm 780

18.6 Wideband beamforming 782 18.6.1 Tapped-delay-line structure 782 18.6.2 Pure delay-line wideband transmitter beamformer 783 Problems 785 References 785

19 Multiple antennas: MIMO systems 788

19.1 Introduction 788 19.2 MIMO system 788

19.2.1 MIMO system model 788 19.2.2 Spatial correlation and MIMO

channel model 789 19.2.3 MIMO decoding 791 19.2.4 MIMO channel decomposition 791 19.2.5 Channel estimation 792 19.2.6 CSI or partial CSI at the transmitter 794

19.3 Capacity in i.i.d. slow fading channels 795 19.3.1 No CSI at the transmitter 797 19.3.2 CSI known at the transmitter 798 19.3.3 Channel capacities for transmitter with

versus without CSI 800 19.4 Capacity in i.i.d. fast fading channels 801

19.4.1 Outage and ergodic capacities 801 19.4.2 Capacity bounds 807 19.4.3 Ricean channels 808

19.5 Space-time coding 809 19.5.1 Performance analysis of space-time codes 810 19.5.2 Orthogonal space-time block codes 813 19.5.3 Space-time trellis codes 817 19.5.4 Differential space-time coding 819

19.6 Spatial multiplexing 819 19.6.1 Layered space-time receiver structures 820 19.6.2 Space-time receivers 822 19.6.3 Spatial precoding 826 19.6.4 Other closed-loop MIMO schemes 828 19.6.5 Beamspace MIMO 829

19.7 Diversity, beamforming, versus spatial multiplexing 830 19.7.1 Diversity, beamforming, and spatial multiplexing gains 830

Page 16: Wireless Communication Systems - GBV

Contents

19.7.2 Error probabilities for MIMO systems 832 19.7.3 MIMO beamforming 835

19.8 MIMO for frequency-or time-selective fading channels 836 19.8.1 MIMO-SC 837 19.8.2 MIMO-OFDM 838 19.8.3 MIMO for time-selective channels 841

19.9 Space-time processing 841 19.9.1 Linear space-time processing model 842 19.9.2 ZF and MMSE receivers 842

19.10 Space-time processing for CDMA systems 844 19.10.1 Signal model 844 19.10.2 Space-time detection algorithms 846 19.10.3 Adaptive implementation of ST-MUD 850

19.11 MIMO in wireless standards 855 Problems 857 References 859

20 Ultra wideband communications 870 20.1 Introduction 870 20.2 UWB indoor channel 873 20.3 UWB capacity 876 20.4 Pulsed UWB 877

20.4.1 Pulse shape 877 20.4.2 Modulation and multiple access for pulsed UWB 879 20.4.3 Time-hopping and direct-sequence UWB signals 881 20.4.4 Pulsed-UWB transceivers 883 20.4.5 Challenges for pulsed UWB systems 885 20.4.6 Rake receivers 886 20.4.7 Transmitted-reference receivers 887

20.5 Multiband UWB 890 20.5.1 Modulation of pulsed multiband UWB 891 20.5.2 MB-OFDMUWB 891 Problems 893 References 894

21 Cognitive radios 898

21.1 Conception of software-defined radio 898 21.2 Hardware/software architecture of software-defined radio 899 21.3 Conception of cognitive radio 901

21.3.1 Topics in cognitive radio 902 21.3.2 Cognitive radio in wireless standards 904

21.4 Spectrum sensing 905 21.4.1 Secondary user-based local spectrum sensing 905 21.4.2 Cooperative spectrum sensing 908

Page 17: Wireless Communication Systems - GBV

xxii Contents

21.5 Spectrum sensing using cyclostationary property 910 21.5.1 Spectrum-cyclic-analysis-based spectrum sensing 910 21.5.2 Cyclostationary beamforming-based spectrum sensing 911

21.6 Dynamic spectrum access 915 21.6.1 Water-filling for dynamic spectrum access 915 21.6.2 Basic game theory 921 21.6.3 Four persona models 924 21.6.4 Game-theoretic models for dynamic resources allocation 925 Problems 928 References 929

22 Wireless ad hoc and sensor networks 932 22.1 Introduction 932

22.1.1 Wireless sensor networks 932 22.2 Routing 935 22.3 Security 936

22.3.1 Security problems 936 22.3.2 Encryption 938

22.4 Technical overview for wireless ad hoc networks 940 22.5 Technical overview for wireless sensor networks 943 22.6 Data aggregation and routing for WSNs 948

22.6.1 Data aggregation 948 22.6.2 Routing 949

22.7 Relay, user cooperation, and MIMO relay networks 951 22.7.1 Relay 952 22.7.2 User cooperation 954 22.7.3 MIMO relay networks 956 Problems 959 References 960

Appendix A The Q-function 965 Reference 966

Appendix В Wirtinger calculus 967 Reference 969

Index 970