xrnlsouwanzcb1la9fr8dszkofwqo3fbv7qhhkbxvvu%3d

8
 1 Lecture 5-Energy Method MEEM 3700 1 MEEM 3700 MEEM 3700 Mechanical Vibrations Mechanical Vibrations Mohan Rao Chuck Van Karsen Mechanical Engineering-Engineering Mechanics Michigan Technological University Copyright 2003 Lecture 5-Energy Method MEEM 3700 2 M K X Single Degree of Freedom Free Vibration Single Degree of Freedom Free Vibration - Energy Energy Method Method M K X  M K Given an initial condition, Determine the resulting motion

Upload: priyanka-cholleti

Post on 05-Nov-2015

219 views

Category:

Documents


3 download

TRANSCRIPT

  • 1Lecture 5-Energy MethodMEEM 3700 1

    MEEM 3700MEEM 3700Mechanical VibrationsMechanical Vibrations

    Mohan Rao Chuck Van Karsen

    Mechanical Engineering-Engineering MechanicsMichigan Technological University

    Copyright 2003

    Lecture 5-Energy MethodMEEM 3700 2

    M

    K

    X

    Single Degree of Freedom Free VibrationSingle Degree of Freedom Free Vibration--Energy Energy MethodMethod

    M

    K

    XM

    K

    Given an initial condition, Determine the resulting motion

  • 2Lecture 5-Energy MethodMEEM 3700 3

    m

    K

    X

    Energy Method: Conservation of Energy

    m X

    K.E. +P.E. = constant

    T + U = constant

    21T= mX2

    &

    Total Kinetic energy in the system

    Lecture 5-Energy MethodMEEM 3700 4

    Energy Method: Conservation of Energy

    KU = Total potential energy in the system

    U = potential energy in the spring +change in potential energy due to elevation

    21U=mgx+ Kx -mgx2

    X

  • 3Lecture 5-Energy MethodMEEM 3700 5

    Energy Method: Conservation of Energy

    T + U = constant

    Therefore the rate of change of system energy must be zero

    0=+dt

    )UT(d

    2 21 1T+U= mx + Kx2 2

    &

    d(T+U) 2 2= mxx+ Kxx=0dt 2 2

    &&& &&&

    Lecture 5-Energy MethodMEEM 3700 6

    0mx Kx+ =&&Equation of motion

    Energy Method: Conservation of Energy

    0=22+2

    2=+ XKXXXmdt

    )UT(d &&&&

    tsin)(xtcos)(x)t(x nn

    n 0+0= &

    Solution to equation of motion (as before)

    n

    eqn eq

    KmKor m

    =

    =eq = equivalent values

  • 4Lecture 5-Energy MethodMEEM 3700 7

    The classic pendulum problemThe classic pendulum problem--Energy MethodEnergy Method

    m

    L Kinetic Energy

    2

    21= L

    dt)(sindmT

    Determine the equation of motionand the natural frequency

    for small angles sin

    ( )221= LmT &

    Case 1: Energy method

    Lecture 5-Energy MethodMEEM 3700 8

    m

    L

    Potential energy U, is proportional tothe change in elevation of the mass

    )cosLL(mgU =cosL L

  • 5Lecture 5-Energy MethodMEEM 3700 9

    m

    L

    constant UT =+( ) )cosLL(mgLmUT +21=+ 2&

    0=+dt

    )UT(d

    0=+22 2 &&&& sinmgLLm

    0=+ gL && Equation of motion

    Lg

    n =

    Lecture 5-Energy MethodMEEM 3700 10

    The classic pendulum problemThe classic pendulum problem--NewtonNewtons Methods MethodCase 2: Newtons method

    m

    L

    = xmF && = &&JM

  • 6Lecture 5-Energy MethodMEEM 3700 11

    Free body diagram

    L

    mmg

    T

    mgcos

    mgsin

    mg

    Lecture 5-Energy MethodMEEM 3700 12

    Free body diagram

    mg

    T

    mgsin

    = &&JM= &&JLsinmg0=+2 mgLmL &&

    0=+ gL &&L

    gn =

  • 7Lecture 5-Energy MethodMEEM 3700 13

    m

    Connecting barMass M, length L

    Pendulum problem: mass of bar is consideredPendulum problem: mass of bar is considered

    o Kinetic Energy

    2 2 2

    2 22

    2 2

    1 12 2

    2 12 212 3

    bar bob o

    o cg

    T T T J mL

    L ML LJ J M M

    MT m L

    = + = + = + = +

    = +

    & &

    &

    Lecture 5-Energy MethodMEEM 3700 14

    m

    Connecting barMass M, length L

    Pendulum problem: mass of bar is consideredPendulum problem: mass of bar is considered

    Potential Energy

    ( cos ) ( cos )2 2

    bar bobU U UL LU Mg mg L L

    = += +

  • 8Lecture 5-Energy MethodMEEM 3700 15

    Equation of Motion( )

    2 2

    2

    2

    0

    1 (1 cos ) (1 cos ) 02 3 2

    sin 03 2

    for small angles sin

    03 2

    d T Udtd M Lm L Mg mgLdt

    M Mm L m gL

    M Mm L m gL

    + = + + + =

    + + + = =

    + + + =

    &

    &&

    &&

    2

    3

    n

    Mm g

    Mm L

    + = +

    Lecture 5-Energy MethodMEEM 3700 16

    Compound Pendulum problemCompound Pendulum problem

    o

    pivotd

    cg

    0oJ mgd + =&&

    0 0M J = &&0sinmg d J = &&