y. ishihara erythronolide and erythromycin baran lab gm ... · y. ishihara erythronolide and...

7
Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 1 O O O Me Me OH OH Et Me OH Me Me Me 1 2 3 5 6 8 9 10 12 13 O O O Me Me OH OH Et Me OH Me Me Me 3 5 6 12 6-deoxyerythronolide B cytochrome P450 (C6 hydroxylase) OH erythronolide B O O O Me Me OH OH Et Me OH Me Me Me 3 5 6 12 OH erythronolide A O O O Me Me O O Et Me OH Me Me Me 3 5 6 12 mycarose glycosyl transferase OH erythromycin D (JACS 1977, 99, 1620) O NMe 2 Me HO O Me OH Me OH desosamine glycosyl transferase O O O Me Me O O Et Me OH Me Me Me 3 5 6 12 O-methyl transferase OH erythromycin B (JACS 1957, 79, 6070) O NMe 2 Me HO O Me OMe Me OH [O] at C12 [O] at C6 and C12 HO O O O Me Me O O Et Me OH Me Me Me 3 5 6 12 OH erythromycin C (JACS 1957, 79, 6074) O NMe 2 Me HO O Me OH Me OH O O O Me Me O O Et Me OH Me Me Me 3 5 6 12 O-methyl transferase OH erythromycin A (JACS 1957, 79, 6062) O NMe 2 Me HO O Me OMe Me OH HO HO mycarose glycosyl transferase desosamine glycosyl transferase [O] at C12 [O] at C12 Absolute configuration of erythromycin A was first established via X-ray analysis in Tetrahedron Lett. 1965, 6, 679. propionyl CoA methylmalonyl CoA (6 equiv.), polyketide synthase, β-ketoacyl reductase, β-ketoacyl dehydratase enzyme-bound 6-deoxy- erythronolide seco acid (linear heptaketide) cyclization upon cleavage from polyketide synthase O O O Me Me O O Et Me OH Me Me 3 5 6 12 OH erythromycin E (Tet. 1975, 31, 1985) O NMe 2 Me HO O Me OMe Me OH HO O O O O Me Me O O Et Me OH Me Me 3 5 6 12 OH erythromycin F (J. Antibiot. 1982, 35, 426) O NMe 2 Me HO O Me OMe Me OH HO OH O O O Me Me O O Et Me OH Me Me 3 5 6 12 OH erythromycin G (J. Antibiot. 2003, 56, 280) O NMe 2 Me HO O Me OMe Me OH OH O O O Me OH OH Me OH Me Me Me 3 5 6 12 O erythronolide H Me HO O O Me Me O O Me Me Me OH Me Et HO erythronolide I (Org. Lett. 2009, 11, 1353) 2 3 5 6 9 12 13

Upload: others

Post on 17-May-2020

35 views

Category:

Documents


4 download

TRANSCRIPT

Page 1: Y. Ishihara Erythronolide and Erythromycin Baran Lab GM ... · Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 4 R. B. Woodward (Harvard; posthumous, 1981): First

Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15

1

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me

12

3

56

89

10

1213

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me

3

5612

6-deoxyerythronolide B

cytochrome P450 (C6

hydroxylase) OH

erythronolide B

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me

3

5612 OH

erythronolide A

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

Me

3

5612

mycarose glycosyl

transferase OH

erythromycin D(JACS 1977, 99, 1620)

O

NMe2

MeHO

OMe

OH

MeOH

desosamine glycosyl

transferaseO

O

O

Me

Me

O

O

Et

MeOH

Me

Me

Me

3

5612

O-methyl transferase OH

erythromycin B(JACS 1957, 79, 6070)

O

NMe2

MeHO

OMe

OMe

MeOH

[O] at C12[O] at C6 and C12

HO

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

Me

3

5612 OH

erythromycin C(JACS 1957, 79, 6074)

O

NMe2

MeHO

OMe

OH

MeOH

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

Me

3

5612

O-methyl transferase OH

erythromycin A(JACS 1957, 79, 6062)

O

NMe2

MeHO

OMe

OMe

MeOH

HOHO

mycarose glycosyl

transferase

desosamine glycosyl

transferase

[O] at C12 [O] at C12Absolute configuration of erythromycin A was first established via X-ray analysis in Tetrahedron Lett. 1965, 6, 679.

propionyl CoA

methylmalonyl CoA (6 equiv.), polyketide synthase, β-ketoacyl reductase, β-ketoacyl dehydratase

enzyme-bound 6-deoxy-erythronolide seco acid (linear heptaketide)

cyclization upon cleavage from polyketide synthase

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

3

5612 OH

erythromycin E(Tet. 1975, 31, 1985)

O

NMe2

MeHO

OMe

OMe

MeOH

HO

O

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

3

5612 OH

erythromycin F(J. Antibiot. 1982, 35, 426)

O

NMe2

MeHO

OMe

OMe

MeOH

HO

OH

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

3

5612 OH

erythromycin G(J. Antibiot. 2003, 56, 280)

O

NMe2

MeHO

OMe

OMe

MeOHOH

O

O

O

Me

OH

OH

MeOH

Me

Me

Me

3

5612 O

erythronolide H

Me

HO

O

OMe

MeO

O

Me

Me Me

OHMe

Et

HO

erythronolide I(Org. Lett. 2009, 11, 1353)

23

5

6

9

1213

Page 2: Y. Ishihara Erythronolide and Erythromycin Baran Lab GM ... · Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 4 R. B. Woodward (Harvard; posthumous, 1981): First

Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15

2

12

89

10

13

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

Me

3

5612 OH

O

NMe2

MeHO

OMe

OMe

MeOH

HO

Currently used as an antiobiotic agent; especially useful for patients with penicillin allergies.Isolation first reported in U.S. Patent 2,653,899 by R. L. Bunch and J. M. McGuire (Eli Lilly), filed in 1952 and approved in 1953; originally called "erythromycin".Quotes from the 1953 patent: "[...] the empirical formula of erythromycin [is] C38-9H69-71NO13." "We claim: 1. A method of producing an antibiotic agent which comprises cultivating under aerobic conditions an erythromycin-producing strain of Streptomyces erythreus in a culture medium containing assimilable sources of carbohydrate, nitrogen and inorganic salts until substantial antibiotic activity is produced by said organism in said culture medium. [...]"Structure first reported in 1957 without stereochemical assignments; X-ray analysis established the absolute configuration at each stereocenter in 1965.Quote from R. B. Woodward: "Erythromycin, with all our advantages, looks at present quite hopelessly complex, particularly in view of its plethora of asymmetric centers." (In Perspectives in Organic Chemistry, Todd, A., Ed., Interscience Publishers: New York 1956, p.155.)Quote from J. Mulzer's review entitled "Erythromycin Synthesis - A Never-Ending Story?": "The synthesis of [...] erythromycin A and B [...] is probably the most extensive single project in the history of synthetic organic chemistry. This phenomenon is not rational as [they] are accessible in large quantities from fermentation [...]. It is the complexity of the molecule's structure, the plethora of stereocenters and functional groups and the magic of the medium ring that has fascinated about 15 large research groups worldwide for more than a decade." (Angew. Chem. Int. Ed. 1991, 30, 1452-1454)Cost of erythromycin A is 2.80 $/g, so just buy it for medchem/chembio purposes...This molecule caught the attention of... - "Giants": Woodward, Stork, Corey, Danishefsky; - "Aldol Giants": Masamune, Evans, Paterson; - "European Giants": R. W. Hoffmann, Mulzer, and recently Carreira.

erythromycin A:

-

-

-

-

erythromycin A

[...]

-

-

-

Our modern "retrosynthetic reflex" effectuates the following disconnections:

1

13

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

MeOHHO

erythromycin A

erythronolide A

macrolactonization1

13

OH

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

MeOHHO

seco acid of erythronolide A

HO

smaller aldol precursors

Commonly used macrolactonization methods:1. Corey-Nicolaou macrolactonization (PyS-SPy + PPh3 on the hydroxyacid, then heat; J. Am. Chem. Soc. 1974, 96, 5614);2. Masamune thiol ester activation (TlStBu on the acyl chloride to generate a thioester, then Hg(OCOCF3)2 or CuOTf to lactonize; J. Am. Chem. Soc. 1975, 97, 3515);3. Mukaiyama onium salt method (N-methyl-2-chloropyridinium iodide and Et3N on the hydroxyacid; Chem. Lett. 1976, 49);4. Mitsunobu alcohol activation (DEAD + PPh3 on the hydroxyacid; Tetrahedron Lett. 1976, 17, 2455);5. Yamaguchi mixed anhydride lactonization (2,4,6-trichlorobenzoyl chloride + DMAP on the hydroxyacid; Bull. Chem. Soc. Jpn 1979, 52, 1989);6. Keck-Steglich activation (DCC + DMAP + DMAP•HCl on the hydroxyacid; Angew. Chem. Int. Ed. 1978, 17, 522 and J. Org. Chem. 1985, 50, 2394);7. Shiina benzoic anhydride lactonization (various benzoic anhydrides + Lewis acid or base; Nature Protocols, 2007, 2, 2312).

Examples of asymmetric control in the synthesis of stereotriads found in polyketides (for an excellent review on this topic, see: R. W. Hoffmann, Angew. Chem. Int. Ed. 1987, 26, 489-503):

OH

Me Me

* * *1. Propionate enolate additions onto α-methylaldehydes (i.e. aldol);2. Propionate enolate additions onto α-methylesters, followed by carbonyl reduction;3. Acetate enolate additions onto α-methylaldehydes followed by α-methylation;4. Propenyl or butenyl group additions onto α-methylaldehydes, followed by hydrogenation or hydroboration;5. Danishefsky's diene (methylated version) Diels-Alder onto α-methylaldehydes followed by hydrolysis and ozonolysis; 6. Crotyl-metal and pentenyl-metal additions onto α-methylalde- hydes followed by ozonolysis;7. Epoxidation of an allylic alcohol bearing a methyl group at the allylic position, followed by methylcuprate addition;8. Hydroboration-oxidation or hydrosilylation-oxidation of the alkene motif shown on the right.

Me Me

-

eg.

Page 3: Y. Ishihara Erythronolide and Erythromycin Baran Lab GM ... · Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 4 R. B. Woodward (Harvard; posthumous, 1981): First

Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15

3

E. J. Corey (Harvard; 1978, 1979):

2

810

13

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me

3

5612 OH

erythronolide A (R=OH)erythronolide B (R=H)

R

First total syntheses of erythronolide B (JACS 1978, 100, 4618 and 4620) and erythronolide A (JACS 1979, 101, 7131), synthesized in (longest linear) 31 steps (ca. 0.8% overall, yields of the last epimerization-deprotection steps are not reported).

OHMe Me

Me

56

1

43

2

OMe Me

Me

OMe Me

MeO

OH

OMe Me

MeO

O

Br

OMe Me

MeO

OHO

(resolution at this stage)

OMe Me

Me

O

98

7

56

1

43

2

O

O

OHMe Me

MeHO O

O

O

MeMeOBz

OBzOMe O

SPyMe

56

14

32

98

798

7

56

14 3 2

O

MeMeOBz

OBzOMe O

Me

98

7

56

14 3 2

EtMe

BrMg

Me

OTBS

131211

10

EtMe Me

OTBS

131211

10 12

89

13

OH

OH

O

Me

Me

O

O

Et

Me

Me

Me

Me

3

5612 OH

erythronolide BHO

(The erythronolide A synthesis simply uses a coupling partner with a protected hydroxyl group at C12)

-

-

-

-

89

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me6

6-deoxyerythronolide B

S. Masamune (MIT; 1981):First total synthesis of 6-deoxyerythronolide B (JACS 1981, 103, 1568), synthesized in (longest linear) 22 steps (<7 % overall; missing yields for the last few steps).4 students worked on it.41 % yield for the macrolactonization, effectuated with Masamune's own t-butylthioester method, using CuOTf.Key feature: Aldol, aldol, aldol... a synthetic mimic of a polyketide synthase.Textbook-style retrosynthesis!Excellent demonstration of his own methodology.

-

-

-

- macrolactonization

89

CHO

MeO

OMe

Me

56

R2BOOTBS

c-Hx

8

OMe

Me

O

O

Me

3then 4-step redox

Me

4

12

89

O

O

Me

Me

O

OMe

Me

3S

tBu

13

OTESEt

MeO12

11

(Coupling partner prepared from EtCHO in 70-85% yield and in >100:1 dr)

LHMDS, thenMe

10

12

89

10

13

OTES

OH

O

Me

Me

O

O

Et

MeOH

Me

Me

Me

3

5612

tBuS

6-deoxyery-thronolide B

9

1) (COCl)22) Et2CuLi

(88%, 17:1 dr)

(71%, 14:1 dr)(85%, 40:1 dr)

R2BO

OTBSc-Hx

Me

34

12

MeMe

MeMe

MeMe

-

-

Key features: Cyclic stereocontrol (i.e. not a single aldol!); convergency amenable to the synthesis of both erythronolides A and B.Hard to retrosynthetically disconnect!"Classics-worthy" synthesis!

11 students worked on it, including K. C. Nicolaou.50% yield for the macrolactonization, effectuated with a modified Corey-Nicolaou procedure (substituted imidazoles instead of pyridines).

5 steps

2 steps

8 steps

2 steps6 steps

7 steps

aldol

aldol

-

-

NaOMeAllyl-Br

1) BH3; H2O2

2) CrO3

Br2

KOH

(2 steps from chiral pool)

7

then 2-step [O]

8

OMe

Me

O

OH

Me

34

9

MeO

OH1

2

5 steps, then

12

89

10

13

OTES

O

O

Me

Me

O

O

Et

MeOH

Me

Me

Me

3

5612

tBuSMe

Me

NaBH4

including [O]

Page 4: Y. Ishihara Erythronolide and Erythromycin Baran Lab GM ... · Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 4 R. B. Woodward (Harvard; posthumous, 1981): First

Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15

4

R. B. Woodward (Harvard; posthumous, 1981):First and only total synthesis of erythromycin A (JACS 1981, 103, 3210, 3213 and 3215), synthesized in (longest linear) 52 steps (0.0089% overall, of which the last 10 steps, required for the glycosidations, yielded 1.54%).48 students worked on it, including R. M. Williams.70% yield for the macrolactonization, effectuated with a Corey-Nicolaou macrolactonization.Key features: Aldols using asymmetric induction via dithiadecalins; interestingly convergent; first detailed study on the structural requirements of the erythronolide seco acid macrolactonization.The end of the "Woodwardian era"...

erythronolide A analog, and then 10 more steps to erythromycin A

-

-

-

G. Stork (Columbia; 1987):First total synthesis of 9S-dihydroerythronolide A (JACS 1987, 109, 1564 and 1565), synthesized in (longest linear) 30 steps (1.3 % overall).Only one student: S. D. Rychnovsky64 % yield for the macrolactonization, effectuated with a Keck-Steglich macrolactonization.Key features: Aldols performed via butenolides; convergent synthesis.

-

-

-

12

89

O

O

PivO

Me

Me

O

O

Et

MeO

Me

Me

Me

3

56

9S-dihydroerythronolide A

10

13

O

O

O

Me

Me

O

O

Et

MeOH

Me

Me

Me12 OH

O

NMe2

MeHO

OMe

OMe

MeOH

HO

erythromycin A

MeMe

12

89

10

OMOM

OAc

O

Me

Me

O

OH

Et

MeO

Me

Me

Me

3

56 OO

tBuS

MeMe

Me

Me(33%

overall) 12

13

OH

NH

O

Me

Me

O

O

Et

MeO

Me

Me

Me

3

5612 OHHO

PySMes

O

10 steps

S

MeO OMe

SHCH2OMs

BnOOMeMeO

+1) NaH2) AcOH

3) D-proline(asym. aldol, 70%, 1:1 dr, 36% ee; then recrystallize)

S SH

OH

OH

(6 steps to make; racemic)

(5 steps to make; racemic)

BnO

S SH

MOMOO

OBnOMeO

OMe

S SH

OO

OBnOMeO

OMe

Me Me Me

MOMOO

O OMeO

OMe

8 67 5 3

4

1213 11 9

10

7

MesLi

and then 7 steps to

manipulate C7 and C9

S SH

BnSO

OBnOMeO

OMe

8 67 5 3

4Me Me Me

MOMOO

O AcOMeO

OMe

1213 11 9

10

5 steps

Ra-Ni, aldol with EtCOStBu,

etc...

12

10

13

O

OH

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me

3

12 OHHO

9S-dihydro-erythronolide A

7

-Butenolide strategy in polypropionate synthesis(JACS 1987, 109, 1564):

O OOiPr

OiPr

Me OH

OiPr O

Me OH

OiPr

O

Me OH

OiPr

O OiPr

O OiPr

Me OH Me OH2 steps 4 steps

3 steps 1 step

iPr CO2H

OH

Me

OH

iPr CO2H

OH

Me

OH

iPr CO2H

OH

Me

OH

iPr CO2H

OH

Me

OH

MeH

7 steps

O Me

12

PivO

Me

O

OMe

Me

3

56

MeMe

OOH

89

O

MgBr

OMe

Et

MeO

MeMe

H

O Me+ 73%

single isomer

O OPiv

Me

6 steps

O

O

OBn

MeOEt

MeO Me

13 steps

910

11

8

1 235

4

Grignard addition

macrolactonization

6 steps

(2 steps)

(3 steps)

(4R)-ethyl 4-hydroxy-2-hexynoate9 steps

11

11

-

-

butenolide carbonyl attack

(All discon-nections shown here are aldols)

3 steps;racemic

3 steps;racemic

Page 5: Y. Ishihara Erythronolide and Erythromycin Baran Lab GM ... · Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 4 R. B. Woodward (Harvard; posthumous, 1981): First

Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15

5

I. Paterson (Cambridge; 1988):Total synthesis of 9S-dihydroerythronolide A (TL 1988, 29, 1461 and 1989, 30, 7463), synthesized in (longest linear) 22 steps (3.4% overall).2 students worked on it.91-96% yield for the macrolactonization, effectuated with a Yamaguchi macrolactonization.Key features: Excellent use of "modern" (Evans herein) aldol technology; convergent; macrolactonization performed on a conformationally favorable system bearing two olefins, precluding the use of acetonides.

-

-

S. J. Danishefsky (Yale; 1990):Relay synthesis of 6-deoxyerythronolide B (JOC 1990, 55, 1636), synthesized in (longest linear) 35 steps (ca. 0.014 % overall, yields of the last two steps are not reported). A total synthesis from the procedures described herein would result in racemic 6-deoxyerythronolide B.Only one student worked on it.17 % yield for the macrolactonization, effectuated with a Yamaguchi macrolactonization.Key feature: "Formal double aldol" using a Lewis-acid catalyzed diene aldehyde condensation (LACDAC) strategy.Great application of his own methodology.

-

-

-2

10

13

O

OH

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me12 OHHO

9S-dihydro-erythronolide A

4 steps

7

2

10

13

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me

3

12

6-deoxyerythronolide B

7

HWE olefination

aldol

aldol

12

Xc

PhS

O

OHMe

Me10

OHMe

PhS

Me

734

5

5

O Xc11

98

PhS

O(racemic)

+

ON

O

iPrO

Me

Bu2BOTf, iPr2NEt(70%, 10g scale, 1:1 dr; both isomers needed)

10

CO2Me

OHMe

SPh

Me 98

1) NaOMe2) TBSOTf3) NCS4) ZnBr2, enolate of 3-pentanone

Me

OEt1312

10

CHO

OHMeMe 9

8

Me

OHEt13

1) [O]

2) [H]3) [H]

12

10

13

OH

OTBS

PhS

Me

O

OTBS

Et

Me

Me

Me

Me 5

3 steps to generate phosphonate; then add aldehyde fragment C7-C13

6 steps

O

OTBS

O

Me

O

OTBS

Et

Me

Me

Me

Me

98

3

O

OTBS

O

Me

OTMS

OTBS

Et

Me

Me

Me

Me

-

Me9S-dihydro-

erythronolide A

1) OsO4-NMO, 1h

2) Zn(BH4)23) OsO4-NMO, 5d

"LACDAC"

Me

Me

OTMS

OMe

HCHO, ZnCl2heat

(69%)O

OMe

Me

3 steps

O

OHMe

Me

4 steps

OMe

1 2 34

5 2PG-O

O

OBnMe

Me

31

54

"diene" "diene"(40%)

2PG-O

O

OBnMe

Me

31

4

OMeMe

H 56 7 8

2

O

PG-O

Me

Me

OBn

OBnMe

Me

3

7

PG = TBDPS

1

456

89

-

6 steps"diene"(76%)

2

10

OBn

PG-O

Me

Me

OBn

OBn

Me

Me

Me

Me

31

7

then 6 stepsO

4 steps

OBn

PG-O

Me

Me

OBn

OBn

Me

Me

Me

MeOH

OBn

Et

4 steps

O

O

Me

Me

O

O

Me

Me

Me

MeOH

O

Et

5 steps

HO

Me

Me

MeMe

6-deoxyery-thronolide B

-

-

Page 6: Y. Ishihara Erythronolide and Erythromycin Baran Lab GM ... · Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 4 R. B. Woodward (Harvard; posthumous, 1981): First

Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15

6

J. Mulzer (Institut für Organische Chemie; 1991):Total synthesis of erythronolide B (JACS 1991, 113, 910), synthesized in (longest linear) 25 steps (<2.4% overall, yields of first few steps unclear).4 students worked on it.>85% yield for the macrolactonization, effectuated with a Yamaguchi macrolactonization.Key features: Great use of a simple starting material from the chiral pool, glyceraldehyde; convergent; macrolactonization performed on a conformationally favorable system bearing an olefin.

-

-

R. W. Hoffmann (Universität Hans-Meerwein-Strasse; 1993):Total synthesis of 9S-dihydroerythronolide A (ACIEE 1993, 32, 101), synthesized in a total of 23 steps (6.6% overall).2 students worked on it.>77% yield for the macrolactonization, effectuated with a Yamaguchi macrolactonization.Key feature: Completely linear synthesis, but this synthesis is one of the shortest in total number of steps.Excellent application of his own crotylation methodology.

-

-

-2

10

13

O

O

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me12 OH

7

carbonyl addition

-

9S-dihydro-erythronolide A

-

1) crotyl-boronate 1) TNT, HCl

erythronolide B

O O

MeMe

CHO

2HO OH

Me

Me

1 3

45

2BnO OTBS

Me

Me

1 3

45

OH

Me6

2BnO O

Me

Me

1 3

45

O

MeO6

MeMe

98 710

Et

MeOH

Me

Me

2O

Me

Me3

45

O

MeOH6

MeMe

O

O

2

13

O

OH

O

Me

Me

OH

OH

Et

MeOH

Me

Me

Me12 OHHO

9S-dihydro-erythronolide A

7

aldol

aldol

5

aldol

macrolactonization

Et

MeOH

1312

11

Et

MeO

11

3 steps

O-PG

PG-O Me

BO

Oc-Hx

c-Hx

Me"crotylboronate" Et

MeOH

11

O-PG

PG-O

MeMe10

9

1) PMBCl2) O3; Ph3P3) ent-crotylboronate

Et

Me

OPMB

11

O-PG

PG-O

MeMe10

9

Me

OH

87

Et

MeO

O-PG

PG-O

MeMeO

87 Me

OH

MeOC6H4

4 steps

HWE

1) Sharpless AE2) TPAP-NMO3) crotylboronate4) LAH5) PMBCl6) OsO4-NMO

PG = cyclic acetal using cyclopentanone

Et

MeO

O-PG

PG-O

MeMeO

87 Me

OPMB

MeOC6H4

OHMe

O

56

2) DDQ3) OsO4-NMO-NaIO4

Et

MeO

O-PG

PG-O

MeMeO

87 Me

O

MeOC6H4

OHMe

O

56

MeC6H4OMeO

HO2) Yamaguchi3) HCl

9S-dihydro-erythronolide A

--

HOMe Me

OH

139

12 11 10HO

Me Me

OH

15

2 3 4

3) Acid 4) Base5) Me2CuLi

1) Crotylation2) Tosylation

3) Acid 4) Base5) Me2CuLi

1) Crotylation2) Tosylation

4 steps 3 steps

98 710

13

OH

MeOH

Me

12

10

13

OHEt

MeOBn

Me

12

10

13

OHEt

MeOBn

Me

12Me

SPh

5 steps 5 steps

9710

OHEt

MeOBn

Me

12

Me

SPh

2

BnOO

Me

Me3

5

O

MeOH6

MeMe

BuLi

BF3

(82%)

6 steps3 steps

crotyladdition

crotyladdition

9 9

Page 7: Y. Ishihara Erythronolide and Erythromycin Baran Lab GM ... · Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15 4 R. B. Woodward (Harvard; posthumous, 1981): First

Y. Ishihara Erythronolide and Erythromycin Baran Lab GM 2009-08-15

7

D. A. Evans (Harvard; 1997):Total synthesis of 6-deoxyerythronolide B (TL 1997, 38, 53), synthesized in (longest linear) 18 steps from β-ketoimide, add 2 steps to make the SM (4.3% overall).Only one student worked on it; 86% yield for the macrolactonization, effectuated with a Yamaguchi macrolactonization.Key feature: Evans aldol and its majesty. Convergency is also a plus.

-

K. A. Woerpel (UC Irvine; 2003):Total synthesis of 9S-dihydroerythronolide A (JACS 2003, 125, 101), synthesized in (longest linear) 28 steps (5.6% overall).Only one student worked on it.>80% yield for the macrolactonization, effectuated with a Yamaguchi macrolactonization.Key feature: Great application of his own "allylsilane [3+2]" methodology. Convergency is also a plus.

--

-

-

NO

O O

Me

O

MeBn

NO

O O

Me

O

MeBn

OH

Me

2 3 41 56

7

NO

O O

Me

O

MeBn

OH

Et10 11 129 13

TiCl4,iPr2NEt

OMe

Sn(OTf)2,Et3N

O

Et

4 steps

6 steps

Xc

O O

MeMe

O

Me

2 3 41 56

7

O

OTMS OPMB

MeMe

OTBS

Et10 11 129 13Me

8

Me Me

Et

MeO

OH

MeMeO

87 Me

O

MeOC6H4

Me

O

56

MeMeO

HO

1) BF3•OEt2(83%)

2) Zn(BH4)23) DDQ4) NaH, CS2, MeI5) Bu3SnH, AIBN6) LiOOH7) TBAF

Me23

1312

1) Yamaguchi2) Pd(OH)2

3) PCC4) HCl

6-deoxyery-thronolide B

-

-

MeSiMe2Ph

MeOAc

MeO COOR*SnCl4,

O CO2EtMeMe

MeOAcPhMe2Si

R* = S-pantolactone

>78%,>98% ee

7 steps

O MeMe

MeOPivBnO

I 7 steps

Me

OH

Me

OH

BnO Me

OTBS

3 steps 4 steps

Et OMe

OPMB

BnO Me

OTBS12 11 1013

9

Me

O

Me

O

BnO Me

OTBS

Me

O

XcAr

9 steps

9S-dihydro-erythronolide A

Total synthesis of erythronolide A (ACIEE 2005, 44, 4036), synthesized with the best total thus far of 21 steps (1.5%).2 students worked on it; 78% yield for the macrolactonization, effectuated with a Yamaguchi macrolactonization.Key feature: Great application of his own "Mg-mediated nitrile oxide [3+2]" methodology for polyketide synthesis.

---

E. M. Carreira (ETH Zürich; 2005):

TBSO N

Me

OH tBuOCl; then iPrOH, EtMgBr,

Me OH

Methen

TBSO N

Me

O

Me OH

Me2 3 41 5 62 31

9 stepsTBSO O

Me

O

Me TESO

2 3 41 5 6Ph

Me Me

NOH

7 8 9

TBSO O

Me

O

Me TESO

2 3 41 5 6Ph

Me Me

N

7 8 9

(86%, dr >19:1)

Me

OHMe

O

10 11 12

repeatstep 1

6 stepsHO2CO

Me

O

Me TESO

Ph

Me Me

N

MeHOMe

O OH

Et4 stepserythro-

nolide A

Macrolactonization: 1) Since 1990, all syntheses utilized the Yamaguchi macrolactonization method; 2) A 6-membered cyclic acetal over the hydroxyl groups at C3 and C5 are necessary to induce (in part) the correct conformation for the lactonization, unless there are olefins within the seco acid that rigidify the conformation; 3) Woodward has contributed greatly toward examining different conformations of the macrolactonization step.Asymmetric stereocontrol: Development of aldol, dithiadecalin, butenolide, "LACDAC", crotylations and other methods such as [3+2] strategies, many of which were developed for the sake of conquering the erythronolide/erythromycin family.Other notable formal or total syntheses: Deslongchamps (CanJChem, 1985, 63, 2818), Kinoshita (TL 1986, 27, 1815), Kochetkov (TL 1987, 28, 3835 and 3839), Nakata (BCSJ 1989, 62, 2618), Chamberlin (JACS 1989, 111, 6247), Martin (JACS 1989, 111, 7634), Yonemitsu (JOC 1990, 55, 7), Vogel (HCA 2002, 85, 417), Crimmins (OL 2006, 8, 2191), Martin (Tet 2007, 63, 5709), and, as a note added after this presentation, White (NatChem 2009 AOP, DOI: 10.1038/NCHEM.351).