z-pinches in the western part of the united states · robert a. schill. jr., unlv university of...

47
Z-Pinches in the Western Part of the United States Robert A. Schill, Jr. University of Nevada, Las Vegas Dept. of Electrical and Computer Engineering 4505 Maryland Parkway; Box 454026 Las Vegas, NV 89154-4026 (702) 895-1526/4183 Lab: (702) 895-1430 FAX: (702) 895-4075 e-mail: [email protected] URL: http://www.ee.unlv.edu/~schill

Upload: others

Post on 25-Jul-2020

3 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Z-Pinches in the Western Part of the United States

Robert A. Schill, Jr.University of Nevada, Las Vegas

Dept. of Electrical and Computer Engineering4505 Maryland Parkway; Box 454026

Las Vegas, NV 89154-4026(702) 895-1526/4183 Lab: (702) 895-1430

FAX: (702) 895-4075e-mail: [email protected]

URL: http://www.ee.unlv.edu/~schill

Page 2: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 2

References and Special Thanks• Special Thanks

• Dr. John Maenchen & Dr. David Johnson, Radiographic Physics Dept. - SNL • Dr. Rick Spielman, High Energy Plasma Physics - SNL• Dr. Bruno Bauer & Dr. Victor Kantsyrev, Physics, University of Nevada, Reno• Dr. Frank Wessel, Physics, University of California, Irvine• Dr. H.U. Rahman, Physics, University of California, Riverside• Dr. John DeGroot, Physics, University of California, Davis• Dr. David Scudder & Dr. Jack Schlachter, Los Alamos National Laboratory• Gordon MacLeod & Sheldon Freid, Bechtel Nevada

• Interesting References• ABCs of Zs: Z-Pinch Technology Workshop Proc., May 21-22,1998.• G. Yonas, Fusion and the Z Pinch, Scientific American, Aug. 1998.• K. Matzen, Z Pinches as Intense X-Ray Sources for High-Energy Density Physics

Applications, Physics of Plasmas, 4 (5), 1997, pp.1519.• Ronald Riley, Jr., Instability Heating of Solid Fiber Z-Pinches, thesis , Univ. California

San Diego, 1993.• D. Mosher, Phy. & Tech. of Z-Pinches, US Part. Accel. Sch., Berkeley, CA, Jan. 1997.

Page 3: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 3

Flow Diagram

Issues?Z PINCHESZ PINCHES

ZOT-Staged Z-

Pinch

NTF -HDZP II

Sandia Nat. Lab-

PBFA Z

What?Motivation?

Brief History.

Why All The Interest?

Differences

Mechanisms

Components

NTF - Nevada Terawatt FacilityPBFA Z - Particle Beam Fusion Accel. ZZOT - UC Irvine

Page 4: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 4

Z-Pinch Effect• Z-Pinch Geometry

• Plasma column• Large current flow along its longitudinal axis

• Mechanism• Current generates a large magnetic field• Magnetic field in turn interacts with the local current• By a Lorentz force (J x B), radial confinement or a radial

compression• Magnetic energy concentrated near plasma surface; efficient

• Instabilities - Currents seek paths of low inductance• dI/dt = V/L; Coaxial geom. with rigid return -- L ~ ln(rc/r)

• NOTE: NO External Coils!!! SIMPLICITY!?!?

Page 5: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 5

Graphical Picture of the Z-Pinch Effect

B

I

Ir

rc

Plasma

Rigid ReturnConductor

J x B

B

I

Plasma

J x B

Z-Pinch Mechanism Z-Pinch Coaxial Geometry

Page 6: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 6

Artist’s View of the Radiation from a Z-Pinch

Page 7: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 7

Brief Historical Background• 1934 Bennett -- (Bennett Pinch - Equilibrium)

• W.H. Bennett, “Magnetically Self Focusing Streams,” Phys. Rev. 45, (1934), p. 890-897.

• Plasmas thermal and magnetic pressures are balanced.

• Around 1950; Pinch Exp. for B-Confined Fusion• Easy to build & operate but NOT a promising approach• Testbed for plasma physics and plasma diagnostic dev.

• Niche in Material Radiation Studies• Z-Pinch Classifications (Non-Equilibrium Pinch)

• Shock-Heated Z Pinch• Resistive Heated Z Pinch• Gas-Embedded Z Pinch

Page 8: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 8

What’s the Problem?• Early Shock-Heated Pinch Exp. (Snowplow)

• Low density gas & large pulsed voltage supplied by• Inductive storage device• Capacitive storage device

• Required electric field needed ~ 1.6 MV/m• Achieved only ~ 0.1 MV/m• FLASH OVER Problem - surface becomes ionized by high

voltage allowing current to arc & hence short out

• Early Resistively Heated Pinch Experiments• Current carrying electrons being slowed by ion collisions• Resistance ~ T-3/2 ; less effective at high temperatures• Simple pinch is unstable

Page 9: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 9

What’s the Problem? (conti.)• Early Gas Embedded Z Pinch

• Z-pinch is initiated in a narrow column immersed in a medium of neutral gas (~1960)• Inhibit wall impurities in the plasma• Suppress some instabilities by inertially coupling the pinch to the

ionized corona around the pinch

• Column expansion was driven by an accretion of neutral gas surrounding the pinch which increased the pinch line density and cooled the plasma (~1982)

• Suggested solution was to increase the current rise rate

• Summarized Major Problems in Early Days• Instabilities -- non-uniform compression for req. time scale• State of the art in pulse power not mature

Page 10: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 10

Z-Pinches Throughout the United States

Page 11: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11

Motivation & Goals Driving Z-Pinch Exp.• Mid 1960’s to 1990’s

• Limited power output for fusion race -- 10-3 TW ( mid 1960s)• Focus on optimizing subkiloelectron-volt X-ray output• (Nuclear weapon) Radiation studies on materials & electronics

• Radiation-Materials & Stockpile Stewardship - Present• 1-5 keV Spectral region: radiation-material interaction studies• Simulate different stages of a nuclear explosion

• Inertial Confinement Fusion [ICF](Origins ’73) - Present• Emphasis - generation of softer X-rays that can be thermalized

• Pulse power - charged particles (electrons 70s, ions 80s, X-rays 90s)• Ablator physics and radiation symmetrization experiments

• Applications in Shock Physics & Astrophysics - Present

Page 12: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 12

Specific Energy Densities

• Explosives 4 x 103 J/gm• Bituminous Coal 22 x 103 J/gm• Natural Gas 35 x 103 J/gm• Crude Oil 36 x 103 J/gm• D-T Fusion 2 x 1010 J/gm

Page 13: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 13

Fusion Process

• Forcing together Deuterium and Tritium nuclei• Fuse into a form of Helium• Emits large amount of energy• Pellet must be squeezed uniformly to high density for a

fusion reaction to ignite and burn - Major Problem

Page 14: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 14

ICF Uses the Principle of the Hydrogen Bomb

PRIMARY (FISSION DETONATOR)

RADIATIONCASE

RADIATION

SECONDARY (FUSION FUEL)

HYDROGEN BOMB

PRIMARY HOHLRAUM

FOAM

SECONDARYHOHLRAUM

DEUTERIUMTRITIUMPELLET

TUNGSTENWIREARRAY

PRIMARY HOHLRAUM

PROPOSED FUSION REACTION CHAMBERS

Page 15: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 15

The Inertial Confinement Fusion ConceptLaser FusionLaser energy

Blowoff

Inward transportedthermal energy

Atmosphereformation

Compression Ignition

During the final part of the laser pulse, the fuel core reaches 20 times thedensity of lead and ignitesat 100,000,000oC.

Burn

Thermonuclear burnspreads rapidly throughthe compressed fuel, yielding many times theinput energy.

Laser beams rapidlyheat the surface of thefusion target forminga surrounding plasmaenvelope.

Fuel is compressed bythe rocket-like blowoffof the hot surfacematerial.

Page 16: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 16

Inertial Confinement Fusion (ICF) RequirementsPulsed Power Fusion

X-rays vaporize outer layer of fuelpellet which bursts outward andimparts inward momentum to thehydrogen fuel.

Pellet implodes to 1/1000 to 1/10,000of its original volume, fusionbegins as temperature reaches120 million degrees or more. Wavefront of burning hydrogen

expands outward and cools untilfusion ceases.

• Ignition Requirements - Laser or Pulse Power• 500 TW• 2 MJ of X-ray radiation at 3 million degrees• 4 ns• Pellet size --- .

Page 17: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 17

Fusion Experiment Alternatives• Magnetic Confinement -- Tokamak

• Magnetic field confines the energy and particles (traps hot deuterium-tritium plasma statistically long enough for fusion)• International Thermonuclear Exp. Reactor (ITER) - ~$6 to $10 B• Break-even? - Techn. and political diff. (US, Japan, Europe, Russia)

• Inertial Confinement -- Laser Fusion• Inertia confines the energy and particles (lasers used to heat

the fusion fuel, blow-off results causing the pellet to implode)• National Ignition Facility (NIF) - ~$1.2 B • Ignition - 0.1% to 0.5 % equivalent efficiency due to laser technology

• Magnetic Insulation - Inertial Confinement -- Z Pinch• B-field confines the energy and inertia confines the particles

• X1 Facility - ~$0.4 B (Note: Z’s equiv. eff. is 15%; X1’s equiv. eff. ?)• HIGH YIELD - fusion energy output >>energy input to the system

Page 18: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 18

US Z-Pinch Programs Directed Towards Weapons & ICF R&D Diagnose Intense X-Ray Sources

• DOD & DOE Nuclear Weapons Effects Sim. (NWES)• X-rays in the 1 keV and above regime to study transient

response and damage due to exo-atmospheric nuclear bursts

• DOE Weapons Physics (WP) and ICF Programs• Soft X-rays below 1 keV

• Radiation transport and trapping• Equation of state• Opacity properties of high energy density matter

• X-ray Diagnostics• Study initiation and evolution of imploding pinches-optimize

X-ray performance• Material response to X-ray heating

Page 19: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 19

• Saturn (1996)• Input: 10 MA, 20 TW• Out: 40 TW (90 wire array)

• PBFA Z or Z• Input: 20 MA, 50 TW,

25 TW/cm2, few ns• Output: ~ 3MJ, 290 TW • 1.8 million deg. (~233 eV)

• X1 (High yield)• Input: 60 MA, 150 TW,

75 TW/cm2, ~10ns• Output: 16 MJ, 103 TW• 3 million deg. (~390 eV)

Z-Pinch Advances at Sandia National Lab.

Page 20: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 20

Cartoon Picture of PBFA-Z or Z

Page 21: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 21

PBFA-Z or Z

Page 22: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 22

Building a Wire Array - Close-Up View• Wire Array - Single/Double

• ~1/10 th Dia. human hair• 0.7 microns thick• Array dia. ~ shot glass

• Wire Material• Trial & error approach

• Al, Ti, Cu, W (Tungsten)

• K Shell Rad. & Rad. Emissivity

• Wire Placement• Symmetry - crucial• Small interwire spacing - cont.

plasma shell

Page 23: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 23

Experimental Setup of Double Nested Wire Arrays

Page 24: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 24

Close-Up View of a Double Nest Wire Array

Page 25: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 25

The Hohlraum - Vacuum Hohlraum

• Radiation chamber-X-ray oven• Composite -Gold Coated Chamber

• High Z (atomic number) lined material

• Secondary Hohlraums - Physics Factories

Page 26: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 26

Target Concepts for X1 - Hohlraum Types• Dynamic Hohlraum (a)

• High Z imploding plasma shell stagnates on an inner low Z cylinder (foam)

• Plasma stagnates in the low Z • Radiation permeates low Z• Outer cooler regions of

imploding plasma act as a high Z hohlraum wall

• Static-Walled Hohlraum (b)• Dynamic hohlraum concept• Min. capsule preheat at

expense of x-ray drive eff.

Page 27: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 27

Temperatures for 90 TW Pinch Power

• Computer Simulation Temp. (eV) • Nonuniformity: due to sec. hohlraum

• Active Shock Breakout Diagnos.• Measure nonuniformity of rad. field

• VISAR - Velocity Interferometry• Al/LiF VISAR sample ~ 1.2 Mbars

Page 28: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 28

Magnetically Insulated Vacuum Transmission Line - MITL

• High E-field vacuum systems emit electrons above ~ 250 kV/cm• MITLs use the aximuthal magnetic field generated behind the

leading edge of the high current power pulse to trap subsequent electrons into high efficiency (low loss) insulated flow

• This technique has been in constant use since the 1960s

CathodeC.L.

Self-MagneticField

Pulse FrontElectron LeakageCurrentAnode

Trapped Electron Sheath

Page 29: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 29

Standard Pulsed Power Components - Marx Banks, Intermediate Store, Pulse Forming Lines

Page 30: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 30

Typical Closing Switch

OilWater

Neg.

Pos.

SF6 SF6

Page 31: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 31

Equipotential Plots for Typical Closing Switches

Page 32: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 32

ARCS AND SPARKS: OPEN SHUTTER PICTURE OF Z

Page 33: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 33

X-Ray Pinhole Images on Nested Shot 180

• Experimental Data

• Pinch Compression• 40 to 1

• Tightest pinch achieved on Z• 1 mm diameter

1 ns intervals

Page 34: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 34

• Instability Problems Addressed?• Pulse Power Problems

Addressed?•• Secret to SuccessSecret to Success

• MITL - Magnetically Insulated Transmission Lines

• Extract the energy quickly, form of x-rays, before instabilities destroy the pinch geometry (FAST PINCH FAST PINCH MachineMachine)

• More thin wires in array allows for a more uniform plasma pinch

Why does Z appear to be so Successful?What is its Secret to Success?What is its Secret to Success?

Page 35: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 35

Nevada Terawatt Facility - University of Nevada, Reno

• High Density Z Pinch - II (HDZP-II)• Existed at Los Alamos National Laboratory• Moved to Reno in Summer 1998• Smaller Pinch - Couple of Terawatts

• Purpose• Z studies at Sandia

• Limited to about 200 shots / yr• Difficult to study pinch properties due to tremendous

energies/powers generated

• Will fill a need for short-pulse, high power, low cost z-pinch with good diagnostics and high repetition rate.

Page 36: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 36

High Density Z Pinch - II (HDZP-II)

Page 37: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 37

HDZP-II Uses Three Stages of Pulse Compression

• Pulse power depends on the fast rise time of the current to the load. Induction effects hinder ideal pulse power operations and need to be minimized.

Page 38: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 38

Staged Z-Pinch: University of California, Irvine

• Laboratory Facility Name: ZOT• Projected to Achieve Break-even Fusion in a

Compact Laboratory Device• Two Dim codes suggest that ignition and near unity

yield is possible in a staged Z-pinch driven by 50 kJ energy bank

• Definitive experiments have not been performed to date

• Slow Pinch Machine• MHD instability time scales are important

• Low Cost, Low Maintenance Machine

Page 39: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 39

What Is Meant By “Staged”?

• Objective is Stable Energy and Power Compression• Energy is coupled in

stages• Pulse power driver• Imploding liner pinch• “Squeezes” magnetic

field lines • Heats prepulsed DT

fiber target

• Pinch is multi-shell configuration

to highpowerdriver

cathode(injector/nozzle)

implodingliner

(z-pinch)

co-axialtarget(fibertarget)

anodeHelmholtz

coils

Page 40: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 40

Stabilization of Linear PinchEnd-On Kerr Cell Photos

Page 41: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 41

2-D Illustration of Staged Z-Pinch Facility and Discharge-Load Region

CapacitorBank

Rail GapSwitches

CryogenicExtruder

VacuumPumps

High DensityPlasma Injector

High PressureGas Valve

High DensityPlasma Injector

DiagnosticWindows

High PressureGas Valve

To Cryogenic Extruder

H.V. Interface

BzCoils

16 PlasmaGun Array

ToVacuum Pumps

Page 42: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 42

3-D View of Staged Pinch Facility

3 m

Page 43: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 43

Vacuum Load Region

• Underside of Staged Z Device

• Z-Pinch Vacuum Chamber• Anode-cathode

gap is 15 mm• Isc=2 MA• Quarter period

rise time=1.8 µs• Vacuum Pumps

Page 44: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 44

Upper Deck

• Load Region• Maxwell Rail Gap

Switches• Plate Transmission

Line (1.25 m x 2.0 m)• 6.4 mm thick Al plates• Insulated 1.8 mm thick

mylar film

• Capacitor Banks• 2 sets of Cap. banks

each consisting of ten 2.5µF, 50 kV Cap.

Page 45: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 45

Cryogenic Extruder

• Deuterium Fibers are Extruded• Deuterium freezes at 14 K• In vacuum it can “live” at

room temperature• Transparent to room

temperature infrared• Fiber diameters ~110 to

130 µm• Gravity is used to maintain

a vertical orientation of the fiber in the Z pinch chamber

Page 46: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 46

• Staging Process• Coupling of energy in different

stages.

• Non-equilibrium, Transiently Stabilized, Composite Pinch• Two plasmas employed.• Dynamic magnetic compression

inhibits the instability process.• Simulations have shown

microsecond orders in stability.• Compressing the magnetic field

increases the implosion time compared to Fast Pinches.

What Are The Key Mechanisms?What Are The Key Mechanisms?

Page 47: Z-Pinches in the Western Part of the United States · Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 11 Motivation & Goals Driving Z-Pinch Exp. • Mid

Robert A. Schill. Jr., UNLV University of Wisconsin, Madison [Oct. 12, 1998] 47

Conclusion

• Z-Pinches May Be Used As A Testbed For Plasma Experiments and Diagnostics

• Z-Pinches Are Now Strong Contenders In The Fusion Race

• Z-Pinches Are Useful Tools In The Stockpile Stewardship And Nuclear Weapons Programs

• Someday, Compact University ICF Laboratory Reactors May Be Feasible