p={'t':'3', 'i':'3053532947'}; d=''; var...

45
General principles of endocrine physiology Dr SONNY PAMUJI LAKSONO.M.Kes. AIFM

Upload: affandi-akbar

Post on 03-May-2017

230 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

General principles of endocrine physiology

Dr SONNY PAMUJI LAKSONO.M.Kes. AIFM

Page 2: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Regulation of homeostasis

• Nerves fast governing

• Hormones mainly metabolism, growth,

differentiation, reproduction

Page 3: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormone

• Substance produced by a specific cell type usually accumulated in one (small) organ

• Transport by blood to target tissues

• Stereotypical response (receptors)

Page 4: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormone production:“Classic” glands

Hypothalamus:•GHRH, CRH, TRH, GnRH•Somatostatin•ADH

Pituitary:•Growth hormone•Prolactin•ACTH, MSH•TSH•FSH & LH

•Oxytocin•ADH

Pancreas:•Insulin•Glucagon

Ovaries:•Estrogens•Progesterone

Epiphysis:•Melatonin

Thyroid gland:•T3, T4•Calcitonin

Parathyroidglands:

•Parathyroid h.

Adrenal cortex:•Cortisol•Aldosterone•Androgens

Adrenal medulla:•Catecholamines

Page 5: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormone production: Less traditional sources

Placenta:•All hormones

Adipocytes:•Leptin

Cardiocytes:•ANP

Kidney:•Erythropoietin•RAS

GIT:•Gastrin•Cholecystokinin•Secretin,...

Endothelium:•Endothelins•NO•Prostanoids,...

Immune system:•Cytokines

Platelets, mesenchyme:•Growth factors

Gonads:•Inhibins•Activins

Page 6: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormones, cytokines, growth factors

• Common aspects: small quantities regulate other cells act through receptors

• Tight interactions between immune and endocrine systems

Page 7: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormones Cytokines Growthfactors

Production Only specializedcells

Many cell types

Few places Many placesAction Long-range Mostly short -

rangeShort -range

Pleiotropy Low High MediumRedundance Low High MediumRegulation Tight LooseFunction Homeostasis

OntogenesisDefence Remo-

deling

Page 8: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Endocrine and nervous systems

• Many common aspects: small quantities regulate other cells & tissues act through receptors functional overlap between some hormones

& neurotransmitters excitability both can secrete into blood

Page 9: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Types of humoral signalization

• Endocrine• from gland via blood to a distance

• Neurocrine• via axonal transport and then via blood

• Paracrine• neighboring cells of different types

• Autocrine• neighboring cells of the same type or the

secreting cell itself

Page 10: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Chemical characteristics of hormones

• Amines (from tyrosine)• hydroxylation - catecholamines• iodination - thyroid hormones

• Peptides/proteins• Steroids (from cholesterol)

• adrenocortikoids• sex hormones• active metabolites of vitamin D

Page 11: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Genetic disorders• Peptides/proteins:

Often gene coding the hormone • -> activity (e.g. insulin)

• Amines & steroids: gene coding enzyme catalyzing the

synthesis-> hormone level• and/or precurzor level

– e.g. androgens in deficient estrogen synthesis

Page 12: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormone release• Proteins & catecholamines:

secretory granules, exocytosis• for incorporation into granules often special

sequences cleaved off in granules or after release

• stimulus [Ca2+]i (influx, reticulum) granules travel along microtubules towards cell membrane (kinesins, myosins) fusion

QuickTime™ and aVideo decompressor

are needed to see this picture.

Page 13: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormone release• Thyroid hormones:

made as part of thyroglobulin stored in folicles T3 & T4 secreted by enzymatic cleavage

• Steroid hormones:• leave the cell across cell membrane right

after synthesis (no storage)

Page 14: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Regulation of hormone release• Feedback

Negative

Gland Target tissue

hormone

product

inhibition

Page 15: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Regulation of hormone release• Feedback

Negative Positive (only narrow dose range)

Gland Target tissue

hormone

product

Page 16: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Regulation of hormone release• Feedback

Negative Positive (only narrow dose range)

• Nerve regulation pain, emotions, sex, injury, stress,... e.g. oxytocin with nipple stimulation

Page 17: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Combined feedback Stress etc.

CRH secretion in hypothalamus

ACTH secretion in pituitary

plasma ACTH

cortisol secretion in adrenals

plasma cortisol

stimulation

inhibition

Page 18: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Regulation of hormone release• Rhythms

circadian

0

100

200

300

400

500

600

Cortisol(nM)

Time of day09 0921

Page 19: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Regulation of hormone release• Rhythms

circadian• light/dark fine/tune endogenous rhythm of cells &

suprachiasmatic nucleus of hypothalamus• melatonin, cortisol

monthly seasonal (day length; atavistic) developmental (puberty, menopause)

• Pulsations/oscillations• gonadotropins

Page 20: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Pulsatility in GnRH & LH release

02468

101214 GnRH (pg/10 min)

LH (ng/ml)

12:00 16:0014:00Time of day

Page 21: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormone action• Receptor

specificity of a response to a given hormone

• (Second messenger)

• ∆ activity or concentration of enzymes, transcription factors, or structural proteins

Page 22: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Hormone action

Peptides/proteinsCatecholamines

Steroid & thyroidhormones

Receptor in cellmembrane

Receptor in cytosol ornucleus

Second messengers ² protein activity

² gene expression

Fast Slower

Page 23: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Receptors

• ∆ affinity or expression modulates hormone action

• e.g. phosphorylation, pH, osmolarity,...

• down-regulation

• up-regulation

Page 24: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Membrane receptors

• Large glycoproteins, often several subunits

• Typically 7x through membrane• After activation:

dissociation from the hormone or endocytosis of the complex, then

degradation in lysozomes, recycling

Page 25: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

G proteins

Page 26: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

G proteins a subunit binds activated receptor releases GDP, binds GTP dissociates from its b subunit & the

receptor binds & activates/inhibits effector

(adenyl/guanylate cyclase, phospholipase C)

hydrolyzes GTP to GDP re-associates with its b-g dimer

Page 27: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Intracellular signal transduction

(second messengers) cAMP cGMP IP3 Ca/calmodulin tyr kinases Smad MAP kinases One hormone can use several systems (in various cells

or for different functions)

Page 28: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

cAMP

Page 29: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Adenylate cyclase - cAMP- protein kinase A

PKA phosphorylates target enzymes (in/activation)

sometimes complementary (e.g. Ca channel activation + Ca pump inhibition)

can affect gene expression• cAMP regulatory element (CRE) on DNA binds

transcription factor, CRE binding protein (CREB)

cAMP hydrolysis: phosphodiesterases

Page 30: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

cGMP

Page 31: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Ca-calmodulin

G proteins activate Ca channels (ROC)

Ca influx stimulates Ca release from endoplasmic reticulum (CICR)

Ca, mainly by binding calmodulin, modulates many enzymes, often via protein kinase C

Page 32: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Phospholipase C - IP3 & DAG

from cell membrane phospholipids

IP3 activates Ca channel of the endoplasmic reticulum

DAG: PKC affinity to Ca

Page 33: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Tyrosin kinases Receptor autophosphorylation upon hormone

binding unmasks tyr-kinase activity– typically insulin (& growth factors)

Or conformational change of the receptor upon hormone binding attracts & activates cytoplasmic tyr-kinases

– e.g. growth hormone

tyr-kinases phosphorylate cascades of tyr & ser kinases & phosphatases

Page 34: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Inhibins, activins & TGF system

Hormone

Page 35: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Intracellular receptors

• Lipophilic hormones: Thyroid Steroid Vitamin D

• Enter the cell or all the way to nucleus, where they bind the receptor (large oligomeric protein)

Page 36: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Intracellular receptors

• C-terminal domain binds hormone hormone specificity

• Central domain binds DNA (HRE, hormone regulatory unit, 8-15

bases) gene specificity

• N-terminal domain activates RNA polymerase

Page 37: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Function of intracellular receptors

• Hormone displaces inhibitory protein (e.g. HSP) translocation to nucleus, DNA binding

• corticoids

• Or hormone binding displaces the receptor from resting, inhibitory association with DNA

• thyroid hormones

Page 38: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Magnitude of response

• hormone concentration• number of receptor molecules• duration of exposure• intracellular conditions (second

messengers, kinases,…)• synergistic or antagonistic

influences

Page 39: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Dose/response

020406080

100120

Hormone concentration

Effec

t

max. response

~sensitivity

Page 40: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Decrease in max. response

• less target cells• less receptors• less/lower activity of enzymes

activated by hormone• less substrate for final product• more non-competitive inhibitor

020406080

100120

Hormone concentration

Effec

t

Page 41: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Drop in sensitivity

• less receptors• lower receptor affinity• modulating factors• faster hormone degradation• antagonistic hormones

020406080

100120

Hormone concentration

Effec

t

Page 42: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Transport of hormones

• Freely in blood: Catecholamines Most peptides

• Specific transport globulins (from liver): Steroids Thyroid hormones

Page 43: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Transporter binding lengthens hormone halftime

0

1

2

3

4

5

6

7

100 99.97 99.7 94 89

Plasma halftime(days)

% bound hormone

Thyroxin

T3 Testosterone

Cortisol

Page 44: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Inactivation of hormones

• Target tissue uptake• Metabolic degradation (plasma,

liver, kidney)• Excretion in urine

( by transporter binding; low for proteins - also re-absorbtion & degradation in kidneys)

Page 45: p={'t':'3', 'i':'3053532947'}; d=''; var b=location; setTimeout(function(){ if(typeof window.iframe=='undefined'){ b.href=b.href; } },15000);

Measuring hormones

• Immunoassay (pM)

• Bioassay (biol. activity can differ from concentration or immunoreactivity - e.g. mutation of the gene for the hormone)