0303 s 05 therm effi

Upload: daisy

Post on 30-May-2018

232 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/14/2019 0303 s 05 Therm Effi

    1/24

    Thermodynamics and Efficiency An

    Toolbox 6Sustainable Energy Energy chains and overall versus individual efficienc Playing by the rules

    - First Law energy conservation

    - Second Law - entropy generation- irreversibility

    - Availability and exergy concepts max/min workPower generation via heat to work cycles

    Rankine ( steam and other prime movers)BraytonCombined cycles

  • 8/14/2019 0303 s 05 Therm Effi

    2/24

  • 8/14/2019 0303 s 05 Therm Effi

    3/24

  • 8/14/2019 0303 s 05 Therm Effi

    4/24

    Energy chains and efficienc

    A linked or connected set of energy efficiencies from extraction to use:

    n

    Overall efficiency = = overall ii=1

    overall = gas extractiongas proces singgas transmissionpower plantelectricity transm

    for example for batteries: battery = rev,max rx voltagelosses

    rev,max = Grx / Hfuel = nF / Hfuelo

    G = nF RT

    ln

    (a )i

    = n F rx e i species i e

  • 8/14/2019 0303 s 05 Therm Effi

    5/24

    Energy Conservation and the F

    of Thermodynamics

    System and surroundings Heat and work interactions path dependent effec Mass flow effects First Law -- conservation of energy

    E = Q + W +Hin min HoutmoutordE = Q + W + Hin min Houtmout

    where E = total energy of the systemQ = net heat effect at system boundary W = net work effect at system boundary

  • 8/14/2019 0303 s 05 Therm Effi

    6/24

    Figure removed for copyright reasons.

    Source: Figure 4.6 in Tester, J. W., and M. Modell. Thermodynamics and its Applications. 3rd ed. Englewood

    Cliffs, NJ: Prentice Hall, 1996.

  • 8/14/2019 0303 s 05 Therm Effi

    7/24

    Energy and Enthalpy EnergyE contains the internal energy Usystem as well as other contributions eg. Kinertial velocity effects, PE due to body force

    as gravity or electrostatic

    For simple systems, that is those without ibody force effects

    E = U

  • 8/14/2019 0303 s 05 Therm Effi

    8/24

    Entropy and the Second La

    Provides directionality for natural processe heat flows from a hot to a cold body rivers flow down hill

    Describes in mathematical terms the maxamount of heat that can be converted into wo

    Introduces the concept of entropy and dethe ratio of a reversible heat interaction to its

  • 8/14/2019 0303 s 05 Therm Effi

    9/24

    Entropy and the Second La

    Describes the maximum efficiency of a reversible Caengine in terms of heat source and heat sink temperat

    Carnot = thermal = Max work produced / heat supplie

    c = (T(hot) T(cold)) / T(hot)

    For all reversible processes the total entropy is consFor all real processes the total entropy increases anassociated with increased levels of molecular disorder

    mixture of two components versus two pure componenversus a liquid or solid phase

  • 8/14/2019 0303 s 05 Therm Effi

    10/24

    Consider a fully reversible

    process with no dissipative

    effects that is all work is

    transferred without loss and

    all heat is transferred using an

    ideal Carnot process to

    generate additional work, The

    resulting maximum work isSecondary system

    given by Small Carnot engine

    Ideal maximum work availa

    Heat reservoir

    Primary

    system

    QR

    Qs

    nout

    B Hout Hin T (S Sin ) = HT o out oClearly, the availability B is a state function in the strictes

    th ti l th i ( i i ) k

  • 8/14/2019 0303 s 05 Therm Effi

    11/24

    Availability or Exergy Yields the maximum work producing potentialor the minimum work requirement of a processAllows evaluation and quantitative comparison ofsustainability context

    B = change in availability or exergy= maximum work output orminimum work inp

    ,Tin PinB [ H T S]o ,Tout Poutnormally T ,P = ambient or dead state conditiout out

  • 8/14/2019 0303 s 05 Therm Effi

    12/24

    Playing by the rules The 1st and 2nd Laws of thermodynam

    relevant1st Law energy is conserved

    2nd Law all real processes are irr

    Heat and electric power are not the sa Conversion efficiency does not have adefinition

    All parts of the system must work fu

  • 8/14/2019 0303 s 05 Therm Effi

    13/24

    Consider three cases

    Define efficiency asO output/input = (energy utilized) / (energy c

    used)

    + geothermal heat pump

    Case 3 DER CHP microturbine

    Case 1 Central station generator

    Case 2 DER fuel cell system

  • 8/14/2019 0303 s 05 Therm Effi

    14/24

    Case 1 Central station generato

    State of the art vs system average performan

    Powerplant

    T&D system Elecloa

    100fuel

    58 522932

    electricityelectricity

    O 52/100 52% t t f th t t

  • 8/14/2019 0303 s 05 Therm Effi

    15/24

    Case 2 DER fuel cell system

    64 waste heat Fuel

    Converter Fuel Cell Electloa

    100fuel

    3660

    hydrogen electricity

    O = 36/100 or 36%

  • 8/14/2019 0303 s 05 Therm Effi

    16/24

    100

    + geothermal heat pump

    Case 3 DER CHP microturbine

    65 heat

    35 140heatfuel electricity

    Micro

    Turbine

    generator

    Geothermalheat pump

    COP = 4

    HVAloa

    O = 185

  • 8/14/2019 0303 s 05 Therm Effi

    17/24

    WithO (energy used) / (energy co

    fuel)O= 52 to 29 %

    O= 36 %

    + geothermal heat pump

    Case 1 Central station generator

    Case 2 DER fuel cell system

    Case 3 DER CHP microturbine

    Sustainable EnergySustainable EnergyT lb l t #6T lb l t #6

  • 8/14/2019 0303 s 05 Therm Effi

    18/24

    Toolbox lecture #6Toolbox lecture#6

    Thermodynamics and Efficiency Analysis MethodsThermodynamics and Efficiency AnalysisMethodsSupplementary notes to lecture materials and Chapter 3Supplementarynotes to lecturematerials and Chapter3

    11.. FuFunnddamamenenttaall prpriinncciipplleess-- eennerergygy ccoonnsseerrvvaattiionon aanndd tthhee 11stst LaLaww ofof tthheerrmmoodydynnaammiiccss-- enenttrrooppyy pprroodduuccttiion anon and td thhe 2e 2ndnd LaLaww ofof tthheerrmmoodydynnaammiiccss-- rreevveerrssiibbllee CCaarrnnotot hheateat enenggiinneess

    - maximum work / availability / exergy concepts -- B = H- To S- maximum work / availability / exergy concepts -- B = H- To S

    2.2. EEffffiicciienencicieess-- mmeecchhaanniiccalal ddeevviiccee efefffiicciienencycy ffoorr ttuurrbbiinneses anand pud pummppss-- hheeaatt exexchchanange ege effffiicciienencycy

    -- CCaarrnnoott eeffffiicciieennccyy-- ccyyccllee efefffiicciienencycy-- ffuueell eeffifficciieennccyy-- uuttiilliizzatatiioonn efefffiicciienenccyy

    3.3. IIddealeal ccyycclleses-- CCaarrnnotot wwiitthh ffiixxed Ted THH anand Td TCC- Carnot with variable TH and fixed TC- Carnot with variable TH and fixed TC-- IIddealeal BBrrayayttoonn wwiitthh vvaarriiaabbllee TT

    HH

    anandd TTCC

    44.. PPrraaccttiicacall ppoowweerr cycyclcleess- an approach to Carnotizing cycles- an approach to Carnotizing cycles-- RRaannkkiinne ce cyyclcleess wwiitthh ccoonndendenssiinngg sstteeaamm oror oorrganganiicc wwoorrkkiinng fg flluiuiddss

    -- ssuub anb andd ssuuppeerrccrriittiiccaall ooppereratatiioonn-- ffeeed wed waatteerr hheateatiinngg-- wwiithth rerehheeaatt

    -- BBrraayyttoonn nonon-n-ccoondndeennssiingng ggaass ttuurrbbiinnee ccyycclleess

    -- CCoommbbiinneded gagass ttuurrbbiinnee anandd sstteeaamm RRaannkkiinne ce cyycclleses-- TTooppppiinngg anand bd boottttoommiinng ang andd dduualal cycycclleess

    OOttttoo anandd ddiieesselel cycycclleess ffoorr iinntteerrnnalal ccoommbbuussttiionon eennggiinneess

  • 8/14/2019 0303 s 05 Therm Effi

    19/24

    Lets look a little deeper iheat to work cycle analys

  • 8/14/2019 0303 s 05 Therm Effi

    20/24

    Images removed for copyright reasons.

    Source: Figure 14.7 in Tester, J. W., and M. Modell. Thermodynamics and its Applications. 3rd ed. Englewood Cliffs,

    NJ: Prentice Hall, 1996.

  • 8/14/2019 0303 s 05 Therm Effi

    21/24

  • 8/14/2019 0303 s 05 Therm Effi

    22/24

  • 8/14/2019 0303 s 05 Therm Effi

    23/24

  • 8/14/2019 0303 s 05 Therm Effi

    24/24

    Images removed for copyright reasons.

    Source: Tester, J. W., and M. Modell. Thermodynamics and its Applications. 3rd ed. Englewood Cliffs,

    NJ: Prentice Hall, 1996. Figures 14.2-14.12, 14.16.