08 flotation machines

Upload: rajaram-jayaraman

Post on 07-Feb-2018

222 views

Category:

Documents


1 download

TRANSCRIPT

  • 7/21/2019 08 Flotation Machines

    1/47

    FLOTATION KINETICS

    A flotation model is similar to chemical kinetics

    dN/dt =-k1 N1a- k2N2

    b

    N- species (1 and 2) concentration

    t- time

    k - rate constant(s)

    a, b

    process order-negative sign indicates that the concentration is diminishing due to the loss

    of particles being floated.

    -exponents a andb signify the order of the process

    Since flotation seems to depend only on particles concentration

    dN/dt =-k1 N1a

  • 7/21/2019 08 Flotation Machines

    2/47

    Model Relation

    Classic first order=

    [1 exp (k1t)]

    Modified first order=

    {1 1/(k2t)[1 exp (k2t)]}

    For reactor with ideal mixing=

    [1 1/(1 + t/k3)]*

    Modified for gassolid adsorption

    =k4t/(1 + k4t)*

    Kinetics of second order= (

    )2k5t/(1 + k5t)

    Modified second order=

    {1 [ln (1 + k6t)]/(k6t)}

    Two rate constants

    =[1{ exp (k7t) + (1 ) exp(k8t)}

    Distributed rate constants

    =[1 exp(kt) f (k, 0) dk]

    0

    * Equivalent models because k3= 1/k4.

    flotation recovery after time t,

    maximum recovery,

    fraction of particles having lower flotation rate constant, k7,

    k

    flotation rate constant.

    Flotation kinetics models

  • 7/21/2019 08 Flotation Machines

    3/47

    Selected kinetic equations (recovery of a component in separation product, maxmaximum recovery of the

    same component in separation product, krate constant of separation, tseparation time

    Model Formula

    Zeroth-order model tk (1)

    First-order model tke 1max (2)First-order with rectangular distribution of

    floatabilities

    tke

    tk 1

    11

    max (3)

    Fully mixed reactor model

    k

    t

    1

    11max

    (4)

    Improved gas/solid adsorption model

    tk

    tk

    1max

    (5)

    2

    3 -order model

    2

    max

    max

    2

    11

    11

    tk

    (6)

    Second-order modeltk

    tk

    max

    2

    max

    1 (7)

    Second-order model with rectangular offloatabilites

    tktk

    1ln1

    1max

    (8)

    A. Bakalarz, J. Drzymala, 2013, Interrelation of the Fuerstenau upgrading curve parameters with kinetics of separation, Physicochemical

    Problem of Mineral Processing, 49(2), 443-451

    more

  • 7/21/2019 08 Flotation Machines

    4/47

    0

    20

    40

    60

    80

    100

    0 10 20 30

    recoveryofacomponentin

    conc

    entrate,,

    %

    separation time, min

    remaining components

    component 1

    Flotation kinetics of the whole mass and components

    components (recovery vs time)

    0

    10

    20

    30

    40

    0 10 20 30

    yieldofconcentrate,,

    %

    separation time, min

    sum of kinetics of

    component 1 and

    remaining components

    Flotation results plotted as a relationship between recovery of each component in

    concentrate and separation time (a), yield of components forming concentrate vs.

    separation time (b)

    product (yield vs time)

    A. Bakalarz, J. Drzymala, 2013, Interrelation of the Fuerstenau upgrading curve parameters with kinetics of separation, Physicochemical

    Problem of Mineral Processing, 49(2), 443-451

  • 7/21/2019 08 Flotation Machines

    5/47

    0

    20

    40

    60

    80

    100

    0 10 20 30

    recoveryofcomponent1in

    concentrate,

    1,c,

    %

    separation time, min

    component 1

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    recoveryofcomponent1in

    con

    centrate,1,c,

    %

    recovery of component 2 in concentrate,

    2,c, %

    ideal upgrading

    idealupgrading

    Fuerstenau curve

    0

    20

    40

    60

    80

    100

    0 10 20 30

    re

    coveryofcomponent2in

    concentrate,2,c,

    %

    separation time, min

    component 2

    a b

    relation between flotation kinetics and upgrading curves

    The kinetics of separation of feed components (a) provide separation results in the form of

    the Fuerstenau upgrading curve (b).

    A. Bakalarz, J. Drzymala, 2013, Interrelation of the Fuerstenau upgrading curve parameters with kinetics of separation, PhysicochemicalProblem of Mineral Processing, 49(2), 443-451

  • 7/21/2019 08 Flotation Machines

    6/47

    c,1

    c,2

    0 12

    3 2

    0,c

    k,c

    21

    100

    2ln

    1,c

    k',c

    2)

    251(

    111001

    ,ck

    ,c

    )2100(100

    21

    ,c

    ,ck'

    ,c

    1

    100

    2ln1

    ,c

    k,c

    k

    ,c

    ,c

    100

    210011001

    2

    100

    2100ln51

    11100

    1

    ,c

    k

    ,c

    1

    100

    2100

    ln100

    100

    2100

    ln2

    100

    1

    ,c

    k

    ,c

    k

    ,c

    2

    3

    2)251(

    111001

    ,ck'

    ,c

    2

    100

    2100

    ln51

    11100

    1

    ,c

    k'

    ,c

    2

    2100

    )2

    10010(1

    11100

    1

    ,c

    ,ck

    ,c

    2

    )2

    100(20

    21

    111001

    ,c

    ,ck'

    ,c

    2)2100(100

    21

    ,c

    ,ck

    ,c

    1100

    2100

    ln100

    100

    2100

    ln2

    100

    1

    ,c

    k'

    ,c

    k'

    ,c

    2

    )2

    100(20

    21

    11100

    1

    ,c

    ,ck

    ,c

    100)1(2

    2100

    1

    k,c

    ,ck

    ,c

    ugrading curves (here Fuerstenaus) equations based on kinetics of flotation

    c,1recovery of component 1 in concentrate c,2recovery of component 2 in concentrate

    4

    9

    7

    13

  • 7/21/2019 08 Flotation Machines

    7/47

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    recoveryofcomponen

    t1inconcentrate,1,c,

    %

    recovery of component 2 in concentrate, 2,c, %

    k=1.5

    k=3

    k=0.5

    k=1

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    recoveryofcomponent1

    inconcentrate,1,c,

    %

    recovery of component 2 in concentrate, 2,c, %

    k=5

    k=2

    k=0.4

    k=1

    Theoretical shape of the separation data in the Fuerstenau plot

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    recoveryofcompo

    nent1inconcentrate,1,c,

    %

    recovery of component 2 in concentrate, 2,c, %

    k=0.005

    k=0.5

    k=0.02

    k=1

    4 97

    0

    20

    40

    60

    80

    100

    0 20 40 60 80 100

    recoveryofcomp

    onent1inconcentrate,1,c,

    %

    recovery of component 2 in concentrate, 2,c, %

    k=3

    k=0.5

    k=0.2

    k=1

    13

    *for a suitable equation see previous slide(more plots in A. Bakalarz, J. Drzymala, 2013, Interrelation of the Fuerstenau upgrading curve parameters with kinetics of separation,

    Physicochemical Problem of Mineral Processing, 49(2), 443-451

    *

    Remeber: for characterizing separation results we need

    either two parameter or a law governing separation and

    then you can use one parameter which can be called

    selectivity as in these plots selectivity k

  • 7/21/2019 08 Flotation Machines

    8/47

    An example of separation results approximation using the Fuerstenau plot

    plant 3, trial 1

    a=102.28

    0 20 40 60 80 100

    r

    0

    20

    40

    60

    80

    100

    = a(100-

    r)/(a-

    r)

    Polish copper orelab tests with xanthate

    0 20 40 60 80 100

    component 2 in product 2,%

    0

    20

    40

    60

    80

    100

    (component1

    inproduct1)%

    ideal upgrading

    F= (89/89)

    no upgrading

    a=100

  • 7/21/2019 08 Flotation Machines

    9/47

    Homework

    Calculate the rate constant and order of a set of yield flotation data

  • 7/21/2019 08 Flotation Machines

    10/47

    Microlaboratory cells

    Laboratory cells

    Laboratory machines

    Industrial machines

    Mechanical

    Pneumo-mechanical

    PneumaticPressurized (DAF)

    Other (sparged hydrocyclone, ASH)

  • 7/21/2019 08 Flotation Machines

    11/47

  • 7/21/2019 08 Flotation Machines

    12/47

  • 7/21/2019 08 Flotation Machines

    13/47

    gas

    magnetic stirrer

    porous glass

    water level

    froth

    product

    x

    gas

    deflector

    stirrer

    flotaton pr

    water level

    porous glass

    Other laboratory flotation devices

    a) cylindrical cell equipped with magnetic stirrer (Fuerstenau, 1964)b) laboratory flotation device of Partridge and Smith, 1971

    Laboratory cells

  • 7/21/2019 08 Flotation Machines

    14/47

    air

    drive

    Laboratory Mechanobr flotation machine

  • 7/21/2019 08 Flotation Machines

    15/47

    Laboratory Denver flotation machine

  • 7/21/2019 08 Flotation Machines

    16/47

    EIMCO Product Leaflets, 2000

    Industrial flotation

  • 7/21/2019 08 Flotation Machines

    17/47

    Flotation machines are used individually and as a group (bank)

  • 7/21/2019 08 Flotation Machines

    18/47

    Svedala Product Handbook, 1996

    Flotation machines are rectangular and circular

  • 7/21/2019 08 Flotation Machines

    19/47

    Constructions and impellers of flotation machines are different

  • 7/21/2019 08 Flotation Machines

    20/47

    Denver

    Mechanobr

    Fagergreen (WEMCO-EIMCO)

  • 7/21/2019 08 Flotation Machines

    21/47

    DENVER

  • 7/21/2019 08 Flotation Machines

    22/47

    Wemco-Fagergreen (V=0.085 85m3)

    Kelly E.G., Spottiswood D.J., Introduction to mineral processing. J.Wiley& Sons, N.Jork 1985

  • 7/21/2019 08 Flotation Machines

    23/47

    Wemco-Fagergreen (WEMCO-EIMCO)mechanical flotation machines

    EIMCO Product Leaflets, 2000

  • 7/21/2019 08 Flotation Machines

    24/47

    Denver

    AgitairMetso RCS (Metso Minerals)

    Outotec (Outokumpu)

    X-Cell (FLSmidth Minerals)

    Humbolt-WedagIMN Gliwice

  • 7/21/2019 08 Flotation Machines

    25/47

    Wills B.A., Mineral processing

    technology. Pergamon Press 1983

    Fragment of mechano-pneumatic flotation machine

    (continueous, multi-impeller tankless Denver D-R

  • 7/21/2019 08 Flotation Machines

    26/47

    Pneumo-mechanic multi-tank (15m3 each)

    (Aker FMHumbold Wedag)

    Humbold-Wedag Product Leaflets, 1998

    tailing

  • 7/21/2019 08 Flotation Machines

    27/47

    Maszyna

    jednowirnikowa

    Maszyna przepywowa

    wielowirnikowa

    Pneumo-mechanical flotation machines IMN

    New machines: large volume and output saving energy

  • 7/21/2019 08 Flotation Machines

    28/47

    New machines: large volume and output, saving energy

    Flotation technologies. Outotec Leaflets 2007

    Historyczny rozwj pojemnoci maszyn flotacyjnych

    (Outokumpu OK 100 V= 100m3

  • 7/21/2019 08 Flotation Machines

    29/47

    Outokumpu Oy Leaflets 2000

    (Outokumpu OK-100, V= 100m3

    TankCell300300m3

    Flotation technologies, Outotec Oyj. Leaflets 2007

    Outotec TankCell 500 (500m3)

  • 7/21/2019 08 Flotation Machines

    30/47

    2012 Outotec Oyj. www.outotec.com

    Outotec TankCell 500 (500m )

  • 7/21/2019 08 Flotation Machines

    31/47

    RCS (Reactor Cell System) from 5 to 200 m3(Metso

    Minerals/Svedala)

    1-radial flow of

    slurry to tank

    wall

    2-primary slurry

    stream to

    benith impeller3-secondary

    recirculation

    towards upper

    part of tank

    Basics in mineral processing. Metso

    Minerals 2003

  • 7/21/2019 08 Flotation Machines

    32/47

    RCS (Reactor Cell System) from 5 to 200 m3(Metso Minerals)

    Basics in mineral processing. Metso Minerals 2003

  • 7/21/2019 08 Flotation Machines

    33/47

    RCS (Reactor Cell System) from 260 m3(Metso Minerals)

  • 7/21/2019 08 Flotation Machines

    34/47

    pneumo-machanic

    XCELL (FLSmidth Minerals)

    XCELLFlotation Machines. FLSmidth Mineralss brochure 2008.

  • 7/21/2019 08 Flotation Machines

    35/47

    FLOTATION COLUMNS

    MetsoOutotec (Outokumpu)

  • 7/21/2019 08 Flotation Machines

    36/47

  • 7/21/2019 08 Flotation Machines

    37/47

    Jameson Cell

    Imhoflot

    Pneuflot (Humbolt-Wedag)

  • 7/21/2019 08 Flotation Machines

    38/47

    Injection Jameson Cell

  • 7/21/2019 08 Flotation Machines

    39/47

  • 7/21/2019 08 Flotation Machines

    40/47

    Pneumatic PNEUFLOT

    Pneumatic flotation with PNEUFLOT cells HUMBOLDT WEDAG leaflet 2009

  • 7/21/2019 08 Flotation Machines

    41/47

    Multi-injection Imhoflot 3 (centrifugal flotation)

  • 7/21/2019 08 Flotation Machines

    42/47

    Pneumatic cell Imhoflot. Maelgwyn Mineral Service leaflet 4/06 Chile 2006

    u jec o o o 3 (ce ug o o )

    concentrate

    tailing

    feed pump tailing pump

    feed reagents

    compressed

    air

    feed

    air plus

    suspension

    Injection column

  • 7/21/2019 08 Flotation Machines

    43/47

    Siemens

    SIMINE Hybrid Flot

    Metals and Mining, Siemens VAI, No. 1, 2011

    Injection column

  • 7/21/2019 08 Flotation Machines

    44/47

    Dissolved air flotation (DAF)

    Di l d i fl t ti (DAF)

  • 7/21/2019 08 Flotation Machines

    45/47

    Dissolved air flotation (DAF)

  • 7/21/2019 08 Flotation Machines

    46/47

    Flotation ZWR Polkowice

  • 7/21/2019 08 Flotation Machines

    47/47

    Flotation, ZWR Polkowice