1 daq for fvtx detector implementation mark prokop los alamos national laboratory

12
Mark Prokop, FVTX Review Nov 2008 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Upload: emery-pope

Post on 01-Jan-2016

218 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008 1

DAQ for FVTX detector Implementation

Mark Prokop

Los Alamos National Laboratory

Page 2: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008 2

Talk Outline

• Overall Readout System

• ROC Pre-Production Prototype

• FEM Pre-Production Prototype

• Risk Factors

• Summary

Page 3: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

Technical Challenges for Readout

• Challenges– Radiation environment

around the detector• 10 year Total Integrated

Dose - <200 kRad• Acute Radiation Effects

on FPGA configuration SRAM memory

– Data Bandwidth• 3.38 Terabits/sec

– Number of Data I/O Lines

• ~17k LVDS Pairs

• Solutions– Use Radiation Tolerant

FPGAs close to the detector

• ACTEL FLASH based FPGA

– IR Data Compression Circuitry

• Sync word removal

– FO Data Transport to FEM• 16 - 2.5 Gigabit/sec FO

data links

3

Page 4: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

Overall Readout Strategy

• ½ of each detector arm is read out independently

• 6 ROC cards collect and compress the data from the detector

• Each ROC card sends fiber output to two FEM boards in the Counting House

• Slow Control fiber sends control data stream up/down the FEM↔ROC Slow Controls link

• Clock Distribution Board distributes Beam Clock and Start signals to individual ROC boards (the signals are sent over dedicated optical fibers)

Page 5: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

DAQ

• ROC board layout started• Clock Distribution Board layout started• Components, cost, power consumption

estimated• Electronics supply voltages regulated on ROC• Voltages Required:

– 3.3V: FO Tx/Rx– 2.5V: SERDES, ROC I/O, Wedge– 1.5V: FPGA Core

• Total power per ROC board ~ 20 W board + 18 W for V regulators = 38 W

• Total Power per ½ Arm = 228 W• Total Power per Arm = 456 W• Total Power for Detector = 912 W

5

12 ROC boards + 2 Clock Distribution boards in a “big wheel”

Page 6: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

ROC Board - WBS 1.5.2

6

Slow Controls

FPGA

Gas Seal Area

FPGA A

FPGA B

FPGA C

FPGA D

8x FO Tx

8x FO Tx

Slow Controls

FO Tx/Rx

SERDES

SERDES

SERDES

SERDES

Wed

ge C

on

necto

rsW

edg

e Co

nn

ectors

Wed

ge C

on

necto

rsW

edg

e Co

nn

ectors

Power Power

JTAGFPGA

SC SERDES

10.2”(W) x11.75”(L)30°

Page 7: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

FEM Board – WBS 1.5.3

7

8x FO Rx

Slow ControlsFO Tx/Rx

SlowControls

FPGA

MainFEM

FPGA

SERDES

SERDES

SERDES

EEPROM

RotarySwitch

Power

Power

Bu

s Interface

Slow ControlsSERDES

DCM II SERDES

DCM II FO Tx

VME 6U Board

Page 8: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

Risk Factors

• FVTX DAQ design utilizes well tested, commercially available parts, nothing “state-of-the-art”.

Risk – low

• Design of the ROC requires a significant amount of digital signal tracing and excellent ECAD skills. Risk – moderate

• FEM board is simple VME board with a few components. Moderate number of I/Os.

Risk – low

• None of the WBS 1.5 items is on the critical path

8

Page 9: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008 9

SummaryWBS 1.5 – Technical

• Specification Document TDR, DAQ overview document• Prototype status ROC and FEM pre-production

prototypes – started• Electronics Components All available from distributor

stock• Production Quantities 24 + 4(spares) ROC boards

48 + 6(spares) FEM boards• Heat load 38 W per ROC board

456 W per arm• On-project Manpower 1 EE + 1 ECAD• Institutions Involved LANL• Infrastructure Defined draft• QA procedures in place Full QA plans for ROC and FEM

Page 10: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

DAQ Implementation

Backup Slides

Page 11: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008 11

SummaryWBS 1.5 - Schedule

• PHENIX System Test: 1/09-3/09• ROC Pre-prod Proto: 10/08-1/09• FEM Pre-Prod Proto: 3/09-7/09• ROC Production: 10/09-1/10• FEM Production: 10/09-1/10

Page 12: 1 DAQ for FVTX detector Implementation Mark Prokop Los Alamos National Laboratory

Mark Prokop, FVTX Review Nov 2008

SummaryWBS 1.5 - Cost

• ROC Pre-production: $74k

• FEM Pre-production: $85k

• ROC Production: $390k

• FEM Production: $350k

• Ancillary: $116k

• Fibers and Lab Equipment: $124k

12