10.06.2004norsig 2004, espoo1 least squares optimization of 2-d iir filters bogdan dumitrescu...

15
10.06.2004 Norsig 2004, Espoo 1 Least Squares Optimization of 2-D IIR Filters Bogdan Dumitrescu Tampere Int. Center for Signal Processing Tampere University of Technology, Finland

Upload: patience-heath

Post on 17-Dec-2015

213 views

Category:

Documents


0 download

TRANSCRIPT

10.06.2004 Norsig 2004, Espoo 1

Least Squares Optimization of2-D IIR Filters

Bogdan Dumitrescu

Tampere Int. Center for Signal Processing

Tampere University of Technology, Finland

10.06.2004 Norsig 2004, Espoo 2

Summary

2-D IIR filters: least-squares optimization problem 2-D convex stability domain Gauss-Newton algorithm Experimental results

10.06.2004 Norsig 2004, Espoo 3

2-D IIR filters

Transfer function

1

1

2

2

21

21

1

1

2

2

21

21

0 0 21,

0 0 21,

21

2121 ),(

),(),( n

k

n

k

kkkk

m

k

m

k

kkkk

zza

zzb

zzA

zzBzzH

Degrees m1, m2, n1, n2 are given Coefficients are optimized Denominator can be separable or not

2121 ,, , kkkk ab

10.06.2004 Norsig 2004, Espoo 4

Optimization criterion

Least-squares error with respect to a desired frequency response

2

1 1

)()(,

1

1

2

2

2211

21),(),(

L L jj eeHDBAJ

The error is computed on a grid of frequencies

10.06.2004 Norsig 2004, Espoo 5

Optimization difficulties

The set of stable IIR filters is not convex The optimization criterion is not convex

SOLUTIONS Iterative optimization Convex stability domain around current

denominator Gauss-Newton descent technique

10.06.2004 Norsig 2004, Espoo 6

convex domain around

current denominator

Iteration structure

)(iA

)1( iA

set of stable denominators

descent direction

)(iA - current denominator)1( iA - next denominator

)(iA

)(iD

10.06.2004 Norsig 2004, Espoo 7

2-D convex stability domain

Based on the positive realness condition

0),(

),(1Re

21

21

)(

)(

jji

jjiA

eeA

ee

Described by a linear matrix inequality (LMI) Using a parameterization of sum-of-squares

multivariable polynomials Pole radius bound possible

10.06.2004 Norsig 2004, Espoo 8

Gauss-Newton descent direction In each iteration, the descent direction is found by

a convexification of the criterion

(i)D

)()(

2

1 1

)()(,

)(,,

..

min 1

1

2

2 212121

iA

i

L L iiTi

Ats

HHD

This is a semidefinite programming (SDP) problem

)(

)(

iB

iA

10.06.2004 Norsig 2004, Espoo 9

Algorithm

1. Set

2. Set

3. Compute GN direction

4. Find optimal step by line search

5. Compute new filter

6. With i=i+1, repeat from 2 until convergence

1,1 )1( Ai

)( )()( iLS

i ABB )()( , iB

iA

),(min )()()()(10

* iB

iiA

i BAJ

)(*)()1()(*)()1( , iB

iiiA

ii BBAA

10.06.2004 Norsig 2004, Espoo 10

Design problems

Desired response: ideal lowpass filter with linear phase in passband

)(2121

2211),(),( jeDD

stopbandin

passbandin

,0

,1),( 21 D

10.06.2004 Norsig 2004, Espoo 11

Passband and stopband shapes

circular rhomboidal elliptic

10.06.2004 Norsig 2004, Espoo 12

Experiments details

Numerator degree: 12 Denominator degree: 2 to 10 Pole radius: 0.9

Implementation: Matlab + SeDuMi Execution time: 3-10 minutes on PC at 1GHz

10.06.2004 Norsig 2004, Espoo 13

Results

nonseparable separable

circular 2.07e-5 8.76e-6

rhomboidal 5.98e-4 7.05e-4

elliptic 9.15e-5 9.18e-5

4n 8n

5.7

6

6

10.06.2004 Norsig 2004, Espoo 14

Example, magnitude

10.06.2004 Norsig 2004, Espoo 15

Example, group delay