¡1id dii iimullid - ucm

108
22 29 —1 Universidad Complutense de Madrid (Dpto. de Bioquímica y Biología Molecular 1) REGULACIÓN DE LA SECRECIÓN DEL FACTOR DE CRECIMIENTO NERVIOSO EN CÉLULAS GLIALES. MECANISMOS DE TRANSDUCCIÓN A TRAVÉS DE MENSAJEROS LIPÍDICOS ¡1 ID DII II MUllID *5 ! 098396 UNIVERSIDAD COMPLUTENSE TESIS DOCTORAL por Ismael Galve Roperh Directores: Dra. Inés Díaz-Laviada Dr. Amador Haro Ramos

Upload: others

Post on 03-Feb-2022

4 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: ¡1ID DII IIMUllID - UCM

22 29 —1

UniversidadComplutensedeMadrid

(Dpto. deBioquímica y Biología Molecular 1)

REGULACIÓN DE LA SECRECIÓNDEL FACTOR

DE CRECIMIENTO NERVIOSOEN CÉLULAS GLIALES.

MECANISMOS DE TRANSDUCCIÓNA TRAVÉS DE

MENSAJEROSLIPÍDICOS

¡1 ID DII II MUllID*5 ! 098396UNIVERSIDAD COMPLUTENSE

TESISDOCTORAL

por

IsmaelGalveRoperh

Directores:

Dra. InésDíaz-Laviada

Dr. AmadorHaroRamos

Page 2: ¡1ID DII IIMUllID - UCM

V0 B0 de los Directores:

Page 3: ¡1ID DII IIMUllID - UCM

Este trabajo de investigación ha sido realizado en el Departamento de

Bioquímicay Biología Molecular 1 de la Facultad de CienciasBiológicas de la

Universidad Complutensede Madrid, con la dirección de la Dra. Inés Díaz-

Laviaday el Dr. AmadorHaro Ramos.Parte de la investigaciónfue realizadaen

la unidad 298 del INSERM de Angers (Francia) en colaboración con el Dr.

Philippe Brachet y en la unidad 466 del INSERM de Toulouse (Francia) en

colaboracióncon el Dr. Thierry Levade,a los que quiero manifestarmt s¿ncero

agradecimiento.

Page 4: ¡1ID DII IIMUllID - UCM

1- INTRODUCCIÓN

1. Sistemasde señalizacióncelular

1.1 Los lípidoscomomensajerosintracelulares

Fosfolipasasde glicerolipidos

La ruta de la esfingomielinasa-ceramida

1.2 Sistemasde fosforilación de proteínas

Sistemasdefosforilaciónencascadareguladosextracelularmente

MAP quinasas

SAPK/JNK y pSS

La isoforma~ de proteínaquinasaC

1.3 Regulaciónde la expresióngénica

2. El factorde crecimientonervioso

2.1 El gende NGF

2.2 La proteínaNGF

2.3 Localizaciónde la síntesisde NGF

2.4 Regulaciónde la síntesisde NGF

3. Los astrocitosy otrascélulasgliales

4. Objetivos

II- RESULTADOSY DISCUSIÓN

1. Regulación de la síntesis y secreción de NGF

lipídicos en cultivos primariosde astrocitos.

- Introducción

1.1 “Phosphatidylcholine-phospholipaseC mediates

nervegrowthfactor in culturedglial celís”

FEESLetters364:301-304(1995)

1.2 “Induction of nerve growth factor synthesisby

andceramidein primary astrocytecultures”

Mol. Brain Res.52:95.102(1997)

- Resultadosy Discusión

por mensajeros

the induction of

sphingomyelinase

Page 5: ¡1ID DII IIMUllID - UCM

2. Regulaciónde la proteínaquinasaO ~ (PKC ~)pormensajerosilpídicosen

célulasgliales

- Introducción

2.1 “Addlition of phosphatidylcholirie-phospholipaseC induces ceDular

redistributionandphosphorylationof proteinkinaseC ~in C6 glial celis”

Neurosci.Letters219:68-70(1996)

2.2 “Ceramide-inducedtranslocationof protein kinase C ~ in primary

culturesof astrocytes”

FEBSLetters415:271-274 (1997)

- Resultadosy Discusión

3. Regulación de la síntesis y secreción de NGF por el factor de

necrosis tumoral (TNFcz) y lipopolisacárido (LPS) en astrocitos en

cultivo primario

- Introducción

3.1 “Evidence for the lack of involvement of sphingomyelingeneration

in the tumor necrosis factor-induced secretion of NGF in primary

astrocytes”

J. Neurochem.,en prensa

3.2 “Regulation of NGF secretionand mRNA expressionby bacterial

lipopolysaccharidein primaryculturesof rat astrocytes”

1 Neurosci.Res.49:569-575(1997)

- Resultadosy Discusión

III- DISCUSIÓN GENERAL Y CONCLUSIONES

IV- BIBLIOGRAFÍA

Page 6: ¡1ID DII IIMUllID - UCM

ABREVIATURASARF,BDNF,BlM,cAMP,CAPK,CAPP,cdc42,CNTF,CRE,DAG,Elk-1,ciAP,GDNF,GFs,Grb2-sos,hsp,ICER,IL,‘PS’JARs,JNR,LPA,LPS,MAPK,MEK,mRNA,NGF,PA,PAR,PC,PE,PI’PMA,PIlA,PKC,PLO,PS,Rho,SAPK,SER,SF,SM, SMasa,SNC, SNP,src,SRE,SRF,STAT,TNF,Trk,zIP’

FactordeADP.ribosilaciónFactorneurotróficoderivadode cerebroBisindoleilmaleimida0F109203XAMP cíclicoProteínaquinasaactivadapor ceramidaProteínafosfatasaactivadapor ceramidaProteínahomólogadelgende ciclo celularde levaduras42Factor ciliar neurotróficoElementosensiblea cAMPDiacilglicerolFactorde transcripciónsimilar a EtsProteínaactivadoraactividadGTPasaFactorneurotróficoderivadode guaFactoresdecrecimientoComplejoproteicomediadorde la activaciónde MAPKProteínade choquetérmicoRepresortempranoinducible por cAMPInterleuquinaInositol 1,4,5-trisfosfatoQuinasasdel tipo JanoProteínaquinasadel extremoN terminal de c-JunAcido lisofosfatídicoLipopolisacáridoProteínaquinasaactivadapor mitógenosProteínaquinasade MAPKÁcido ribonucléicomensajeroFactorde crecimientonerviosoAcido fosfatídicoProteínaquinasaactivadapor p2iFosfatidileolinaFosfatidiletanolaminaFosfatidilinositol

4r3-forbol 12¡3-miristatoiSa-acetatoProteínaquinasadependientede cAMPProteínaquinasaCFosfolipasaOFosfatidilserinaProteínahomologade RasProteínaquinasaactivadapor estrésProteínaquinasade SAPKEsfingosinaEsfingomielina,EsfingomielinasaSistemanerviosocentral,SistemanerviosoperiféricoProteínacondominio de homologíaSHElementoderespuestaalsueroFactorderespuestaal sueroProteínascontndóndetranalucriónde~ñalesyk±nrdetranaripcíónFactorde necrosistumoralReceptordeneurotrofinasconactividaddetirosinaqumasaProteínaqueinteraccionaconPKC ~

Page 7: ¡1ID DII IIMUllID - UCM

Introducción 1

1. SISTEMAS DE SEÑALIZACIÓN CELULAR

La regulaciónde la función celular dependede la transmisiónde información

del exterior al interior de la célula, lo que le permite responderde forma adecuadaa

un entornocambiantey dinámico.Esteprocesode comunicaciónintercelular se reali-

za a travésde mensajerosquímicosde diferente naturaleza.Los sistemasde trans-

ducciónde señalesestánformadospor un componentereceptory otro efectorque in-

ducela respuestacelular, pudiendoestosdos componentesfuncionalesformar o no

parte de la misma entidadproteica.La unión del agonistaal receptorpromueveuna

respuestacelular mediadapor la regulacióndel componenteefector. Generalmente,

los mensajeros intracelulares elercen su efecto a través de fosforilación-

desfosforilaciónde proteínas.Por último, los factoresde transcripción permiten la

regulaciónde la expresióngénica.

A continuación se presentaránalgunos de los componentesde sistemasde

transducciónde señalesmás directamenterelacionadoscon el trabajo de investiga-

ción desarrolladoen la presentetesisdoctoral,destacandopor ello, su papelen siste-

ma nerviosoy enparticular enastrocitosy otrascélulasgliales - Primerose describi-

rán los distintos sistemasde generaciónde mensajeroslipídicos intracelularesapar-

tir de glicerolípidos.Posteriormentese revisaránlos actualesconocimientossobreel

papelde los esfingolipidosen la regulacióncelulara travésde ceramidas.El estudiode

los sistemasde fosforilaciónde proteínasincluirá unabrevedescripciónaclaratoriade los

sistemasde fosforilación reguladosextracelularmente,MAPK y SAPKJJNK/p38,que se

completaráconel estudiode las característicasde la isoforma~ de proteínaquinasaC.

1.1 LOS LÍPIDOS COMO MENSAJEROS INTRACELULARES

Además de su función estructural,las membranasbiológicas desempeñanun

importantepapelcomo fuentede generaciónde mensajerosintracelularesy extrace-

lulares,quepermiten la comunicaciónintercelular, la regulacióndel crecimiento,di-

ferenciación,secreción,migracióno apoptosiscelular (Prescott,1997). La investiga-

ción de los mecanismosde generaciónde mensajeroscelularesde naturalezalipídica

constituyeuno de los camposde la bioquímicade mayor avanceen los últimos años.

La accióndediferentesenzimascon actividadde fosfolipasasobreglicerolípidosgene-

ra algunos de los mensajeroslipídicos mejor conocidosy caracterizados(Exton,

1997a;b;Leslie, 1997; Rheey Bae, 1997). Recientementese ha descritola existencia

de esfingolipidos con importantesefectosreguladoresde la actividad celular, en lo

Page 8: ¡1ID DII IIMUllID - UCM

Introducción 2

que se havenidoen llamar la ruta de la esfingomielinasao de las ceramidas(Testi,

1996;Hannun,1996; Spiegelet al., 1997).

FOSFOLIPASAS DE GLICEROLÍPIDOS

Fosfolipasa C

La actividadde la fosfolipasaU (PLC) sobreel fosfolipido generadiadilglicerol

(DAG) y el grupo polar fosforilado,que puedenserinositolesfosforilados,el másim-

portanteel inositol 1,4,5-trisfosfato(IPs), parala fosfolipasaC específicade fosfatidi-

linositol (PI-PLC) o fosforilcolina en el casode la fosfolipasaC específicade fosfatidil-

colina (PC-PLC)(revisadoporExton 1997a;Rheey Bae,1997).

FosfolipasaC de fosfatidilinositol

Los productosresultantesde la actividadde la PI-PLC actúancomo mensaje-

ros intracelulares:el DAG como activadorde proteínaquinasaC (PKC) y el IP3 regu-

lando la concentraciónde Ca24 intracelular. Además,un descensoen los niveles de

Pís enla membranaplasmáticatieneotrasconsecuenciasfuncionalesimportantesen

la célula, ya quealgunosde estosfosfolipidossonel punto de unión a la membranade

proteínascon dominiosde homologíacon la plecstrina,entreellas la propia PI-PLC.

Los FIs sonademássubstratode la enzimaPI-3 quinasa,y asímismocofactoresde la

fosfolipasaD específicade PC (Rheey Bae, 1997). Existen diferentesformasde PI-

PLC, las formas j3 secaracterizanpor seractivadasfundamentalmentepor receptores

de sietesegmentostransmembranares,a travésde las subunidadesaq activasde pro-

teínasO heterotriméricas(Chenet al., 1996), o por subunidadesj3y. La activaciónde

las formasPJ-PLCytiene lugar mayoritariamentea travésde receptoresconactividad

de tirosina quinasa(Rheey Bae, 1997). El Ca2~es necesarioparala actividad de las

distintasformasdePI-PLC, siendolas formas6 especialmentesensibles.La actividad

de PI-PLC puedeversemoduladatambiénpor ácido fosfatídico,ácido araquidónicoe

IPa, lo quepermite suponerla existenciade unaactivaciónde PJ-PLCsecundariatras

la activación de receptoresacopladosa PLD, cPLA2, o PJ-3 quinasa (Rhee y Bae,

1997). La actividad de PI-PLC en astrocitos se activa por distintos agonistascomo

insulina, glutamato,bradiquininao angiotensinaII (Chen et al., 1996; Ruiz-Albusac

et al., 1997; Tallant et al., 1997).

Page 9: ¡1ID DII IIMUllID - UCM

1ntraducción 3

FosfolipasaC de fosfatidilcolina

La PC-PLC esta implicada en la regulación del control de la proliferación ce-

lular (Díaz-Laviadaet al., 1990; Bjorkoy et al., 1995; 1997; Chenget al., 1997). El

aumentode DAG intracelularresultantede la hidrólisis de PC es de largaduracióny

se mantiene elevado más allá del aumento transitorio generadopor la PI-PLC

(Asaokaet al., 1996; Nakamura,1996). Este aumentode DAG, permite explicar la

activaciónde PKC a largo plazonecesariaen la regulacióndel crecimientoy prolife-

ración celular, siendo esteprocesode especialimportanciaen las células gliales

(Klein et al., 1995). El aumentoen los nivelesde DAG estáen estrecharelaciónconla

transformacióncelular (Laurentzet al., 1996). Comoveremosmásadelantela activa-

ción de PC-PLC se ha relacionadocon la cascadade fosforilación de MAPK y con la

PKC ~ (VanDijk et al., 1997a;b).

Fosfolipasa D

El substratoespecíficqde la PLD es la PC, aunquede forma secundariapuede

actuarsobrefosfatidiletanolamina(PE) o PI. La acciónde la PLD sobrela PC genera

ácido fosfatídico(PA) y colina libre (Fig. 1). El PA generadopuedeactuardirectamen-

te como mensajerointracelular, ser transformadoen DAG por acciónde una fosfati-

dato fosfohidrolasa,o ser metabolizadoen ácido lisofosfatídico (revisadopor Exton,

1997a;b).Alternativamentela PLD puedecatalizar una reacciónde transfosfatidila-

ción por la que se transfiere el grupo fosfato a un alcohol primario, lo que se utiliza

parala medidade suactividad.

La PLD, aunquemayoritaria en la membranaplasmática,se encuentratam-

biénen el núcleo, retículoendoplásmico,Golgi y citoplasma.La PLD se estimulapor

PI, Ca2+ y lasproteínasO monoméricasARF y Rho A (Exton, 1997a;b).Existenvarias

formasde PLD quese diferencianensu regulación,siendola actividadPLD del Golgi

mássensiblea activaciónpor ARF, mientrasque la forma de membranaplasmática

se activa fundamentalmentepor Rho A y la forma citosólicapor Ca2~. La PKC activa

la PLD, aunqueno existen evidenciasdirectasde una fosforilación directa sobrela

propiaPLD (Exton, 1997a;b).

La PLD cumpleunaimportantefunción reguladoraen la fisiología del sistema

nervioso(Klein et al., 1995)y su actividadparecemásimportante,en términosgene-

rales, quela actividadde la PI-PLC en la regulaciónde la funcionalidadde los astro-

citos (Jehanet al., 1995; Mangouraet al., 1995).En los astrocitosencultivo primario

existenimportantesdiferenciasde regulaciónde PLD y engeneralenlos sistemasde

Page 10: ¡1ID DII IIMUllID - UCM

Introducción 4

señalizacióncelular segúnel origenanatómicodel sistemanerviosocentral (SNC) de

los cultivos (Mangouraet al., 1995;Tallant y Higson, 1997).

El PA generadoposeeun efectomitogénicoquepuedeexplicarsepor sutrans-

formación en DAG, activadorde PKC (Asokaet al., 1996; Nakamura,1996), por su

efectomoduladorde Raf-1, componentede lacascadade MAPK (Ghoshy Bell, 1997) o

por sutransformaciónenLPA (Keller et al., 1997). En astrocitosalgunosfactoresmi-

tógenicoscomo trombina o endotelinasactivanla PLD (Desagher,et al., 1997). Ade-

más, los niveles de PLD se regulandurantela diferenciacióninducidapor cAMP de

lascélulasde glioma C6 y en la apoptosisinducidapor C2-ceramidaen estasmismas

células(Yoshimuraet al., 1997).

Ceramidasy PLD

Las ceramidasgeneradaspor acciónde esfingomielinasasinhiben la actividad

de PLD (Venable et al., 1996; Gomez-Muñozet al., 1997) lo que potenciael efecto

inhibidor del crecimiento de estos esfingolípidos (Hannun, 1996). La inhibición de

PLD por ceramidasse debeal bloqueode la translocacióna membranaplasmáticade

Rho A, ARF, cdc42y determinadasisoformasde PKQ (Abousalhamet al., 1997). Por

otro lado, la esfingosina-1-fosfato,quese caracterizapor ejercerun efectofundamen-

talmente mitogénico en las células (Spiegelet al., 1997), activa PLD (Desai et al.,

1992). Existe portanto unaregulacióncruzadaentrelas víasde señalizacióna través

de esfingolipidosy glicerolípidos queaumentanla complejidadde los mecanismosde

regulacióncelular(Gomez-Muñozet al., 1997).

Fosfolipasa A2

La acción de la PLA2 libera el ácidograsosituadoen la posiciónsn-2del fosfo-

lípido, generandoel lisofosfolípidocorrespondiente(revisadopor Leslie, 1997) (Fig. 1).

Existendistintasformas de PLA2, unaforma secretada,una forma independientede

Ca2~ y la forma citosólica, con característicasreguladorasespecíficascada una de

ellas. La actividad de la PLA2 citosólica, cPLA2, es especialmenteimportanteen los

astrocitos,interviniendoen la regulacióndel procesode gliosis (Clemenset al., 1996).

La liberación de ácidoaraquidónicopor cPLA2 regula la formación de diversosmen-

sajeroslípidos. La completaactivaciónde cPLA2 implica primero sufosforilación por

MAPK y posteriormente,graciasal Ca2~, su unión a la membrana.Aunque la PKC

incrementala actividad de cPLA2, esta activaciónpareceserdebidaa un efectoindi-

recto mediadopor la activaciónprevia de MAPK. TNFa, IL-1j3, ATP y glutamatoin-

Page 11: ¡1ID DII IIMUllID - UCM

Introducción 5

crementanlos niveles de cPLA2 y aumentansu actividad en diferentesmodeloscelu-

lares,entreellos astrocitosy célulasde glioma C6 (Stellaet al., 1997).

PA

II ¡ LisoPC¿ LiscSM

CatiRaAa

PLD PLA2 PLA2

PC SMPLO SMaso

CDP•Cot ‘ rcouna P-Colina

II II

DAG Ceramida

Fig. 1 Mensajeroslipídicosgeneradosporacciónde diferentesfosfolipasassobrefosfatidileolina(PC>y esfingomielina(SM).

LA RUTA DE LA ESFINGOMIELINASA-CERAMIDA

La identificación de los esfingolípidoscomo reguladoresde los procesosde

transducciónde señalescomenzócon la caracterizacióndel efectoinhibidor de la es-

fingosina(SP) sobrela actividad de PKC dependientede Ca2. Actualmentese conoce

la existenciade la denominadaruta de señalizaciónde la esfingomielinasa(SMasa),

tambiénllamada de las ceramidaspor ser este uno de sus productoscon actividad

biológica (revisadoHannun et al., 1996; Testi, 1996). La degradaciónde la esfingo-

mielina (SM) conlíeva la generaciónde ceramida(Figs. 1 y 2), que posteriormente

puedeser transformadaen SF, SF-1-P,o ceramida-1-fosfatoquetambiénpuedenac-

tuar comomensajeroscelulares(Merrill et al., 1996; Spiegelet al., 1997).El aumento

de ceramidaes transitorioy la SM se resintetizaincorporandoel grupo fosforilcolina

procedentede PC atravésde la sintasade SM (Fig. 1).

TNFx, IL-1[3, Fas, o la vitamina DS fueronlos primeros activadoresidentifica-

dos de este nuevosistemade transducciónde señales(mm et al., 1991; Hannunet

al., 1996). Posteriormentese ha descritoqueel efecto de la vitamina DS es debido a

Page 12: ¡1ID DII IIMUllID - UCM

Introducción 6

un mecanismoautocrinode regulaciónmediadopor la inducción de TNFa (Geilenet

al., 1997). La lista de inductoresdeestavía de señalizaciónincluye, entreotros, agen-

tes quimioterapéuticos,radiacionesionizantes,NGF, interferón y (Casaccia-Bonnefil

et al., 1996a;Hannunet al., 1996). La SM estálocalizadade forma mayoritariaen la

caraexternade la membranaplasmática,existiendodistintasfracciones(“pools”) de

SM implicadasen la señalizacióncelular. Así la SM sensiblea hidrólisis estimulada

por TNFx estálocalizadaen la cara interna de la membranaplasmática(Andrieu et

al., 1996) y la SM sensiblea NGF se localiza en determinadosmicrodominios de

membranaenriquecidosencaveolina(Bilderbacket al., 1997).

Existendistintos tipos de SMasascon característicasde regulacióndiferentes.

Se ha descritola existenciade una actividad SMasade membranadependientede

unaSMasacitosólicaindependientede Mg2~, unaSMasadenominadaácida,por

poseerun pH óptimo de actuaciónácido,quese localiza en los endosomasy unaSMa-

sa nuclear(Andrieu et al., 1994; Albi y Magni, 1997). Las distintasformasde SMasa

parecenintervenir en diferentesmecanismosde señalizacióncelular, lo que puede

explicar la existenciade respuestascelulares opuestasactivadaspor la ruta de la

SMasa.En el casodel receptorde 55 kDa del TNFct, existendos dominioscitosólicos

queactivande forma independientela SMasaáciday la SMasaneutra. La activación

de la SMasaácidaestáprecedidapor la activaciónde PC-PLC.El aumentoen los ni-

velesintracelularesde ceramidasdesencadenadopor estemecanismoseríaresponsa-

ble de la activación del factor nuclearde transcripciónNF-KB (Schútzeet al., 1992;

Wiegmann et al., 1994). El otro dominio citosólico interaccionacon una proteína

adaptadoraFAN y activaSMasaneutra(Adam-Klageset al., 1996). La generaciónde

ceramidaspor estaramade señalizaciónpuedeactivarla cascadade MAPK y de este

modo inducir la activación de cPLA2 (Adam-Klageset al., 1996). Sin embargo,en

otros modelos, la activaciónde cPLA2 es un requisitoprevio necesarioparala genera-

ción de ceramidasestimuladapor TNFcz (Jayadevet al., 1997).

Las ceramidaspuedenactivar una proteína fosfatasade tipo 2A, CAPP, que

fue identificadaen célulasde glioblastomaT9 y quepuederegularel estadode fosfo-

rilación de c-Jun(Gonzalezet al., 1996). Además,existeunaproteínaquinasaactiva-

da por ceramida(CAPK) querecientementeseha identificado comola quinasasupre-

sora de Ras (Zhanget al., 1997a),y quepuedefosforilar y activar Raf-1 (Yao et al.,

1995).

Page 13: ¡1ID DII IIMUllID - UCM

1ntraducción 7

R~FanvipMW

\~af4 ,,g¿PLA2

++

.PRaIFERAUÓN~ELUL4RDIFERENcJAaÓNAFOPItEIRFÑLÚSL4INMUNE

Hg. 2Fsqirnndelarutadeseíializacióncelulardelasceramidas

La estimulaciónpor TNFa y el aumentointracelular de ceramidasincremen-

tan la actividadMAPK (Sasakiet al., 1995; Modur et al., 1996), sin embargo,parece

quees másimportante la activación de esta quinasapor SF-1-Py factoresde creci-

miento (Coroneoset al., 1996; Pyne et al., 1996). Las ceramidasson potentesactiva-

doresde SAIPK/JNK (Westwicket al., 1995), lo que puedeexplicarsu efectoapoptóti-

co (Verheij et aL, 1996). El aumentoen los niveles de DAG intracelular inhibe la

apoptosis,lo que se explica por su efecto inhibidor en la generaciónde ceramida

(Laurenzet al., 1996). Existe por tanto un complejomecanismode regulaciónde la

proliferacióny muertecelularen función del contextofisiológico en el quese generan

los distintostipos de mediadoreslipídicos.

SF-1-P~ SF

0$, 4 CAPK

deino

Page 14: ¡1ID DII IIMUllID - UCM

Introducción 8

Efectosbiológicosde las ceramidas

Lasceramidasse hanrelacionadocon la inhibición del crecimiento,la diferen-

ciación celular y con la apoptosisestimuladapor citoquinas inflamatorias y Fas

(Hannun, 1996). Ademásde ejercerun importantecontrol de los procesosdel creci-

miento celulary axonal, las ceramidasregulanla expresióngénicaa travésde facto-

res de transcripcióncomo NF-KB o AP-1, procesosde endocitosisy canalesde K~

(Hannun et al., 1996). Los efectosantiproliferativos de las ceramidaspuedenestar

mediadospor la disminuciónde los niveles de c-myca travésde CAPP. La elevación

de los niveles de ceramidapuededetenerlas célulasen las etapasGo/Ol del ciclo ce-

lular, manteniendola proteínade retinoblastomapRben un estadohipofosforilado.

En sistemanervioso, las ceramidaspuedeninducir la muertecelular en oligo-

dendrocitos,mientrasque los astrocitosson resistentesa este fenómeno(Casaccia-

Bonnefil et al., 1996a;b).En cultivos neuronalesse ha observadoque las ceramidas

puedeninducir o impedir la apoptosis, según el origen o momento de desarrollo

(Wiesnery Dawson, 1996; Scharwzy Futerman,1997). Sin embargo,pareceque la

apoptosisinducidapor ciertos activadoresde la vía de las ceramidascomoFas, puede

ser independientede la generaciónde ceramidas(Watts et al., 1997). En cualquier

caso, existendistintas fraccionesde SM implicados en la señalizacióncelular, y no

todassoncapacesde inducir apoptosisen la célula (Zhanget al., 1997b).

La mayorpartedel conocimientodel papelde los esfingolípidosen la señaliza-

ción celularse fundamentaen la generaciónde ceramidaconcomitantea la degrada-

ción de SM. Sin embargo,la degradaciónde los niveles de ceramidapor la ceramida-

sa, o la regulación de su síntesisson también crucialesen el control de los niveles

intracelulares de ceramida (Bose et al., 1995; Biewlaska et al., 1996; Nikolova-

Harakashianet al., 1997). La diferente regulaciónqueejercencitoquinasy factores

a Factoresdecrecimiento

citoquin, +Factoresde 1+crecimiento Ceramidasa SPquinasa

Ceramida.1-P ~ SP ~ Ca”CAPP r 4~ — cAMP

SAPKJJNK cAMP MAPK ** PRC CLPA < PA ~ PC MAFE4 cPLA2«4 4 \4 4

REGIJLAcIOÑEfl>RESIÓN PROLIFERACIÓNAPOPTOSLS CÉNIO?. CELULAR

Fig. 3 Esquemade la regulaci6nquesobrela rutade lasceramidasejercencitoquinaspor.inflamatoriaay factoresde crecimiento

Page 15: ¡1ID DII IIMUllID - UCM

Introducción 9

de crecimientosobreSMasa,ceramidasay quinasade SE puededeterminarel balan-

ce entre los nivelesde ceramidasy SF/SF-1-Plo que permite controlar el balance

muerte celular/diferenciacióno proliferación a través de la activación de distintas

cascadasde fosforilación (Fig.S)(Coroneoset al., 1995; 1996; Cuvilhieret al., 1996; Pyneet

al., 1997).

1.2SISTEMAS DE FOSFORILACIÓN DE PROTEÍNAS

La fosforilación y desfosforilaciónde proteínaspor proteínaquinasasy fosfata-

sasconstituyeuno de los procesosreguladoresmáscomunesen la célula. Su organi-

zación en cascadasde fosforilación permite una amplificación de la señal,unagran

sensibilidaden la respuesta,la integraciónde la informaciónprocedentede diferentes

estímulosasícomo la aceleraciónde la respuestacelular. En eucariotas,la fosforila-

ción de proteínascon fines reguladoresse lleva a cabo fundamentalmenteen sen-

na/treoninao tirosina, resultandoexcepcionalla posibilidadde fosforilación de ambos

tipos de aminoácidos(“actividad dual”). A continuaciónsehaceuna brevedescripción

de diferentes cascadas de fosforilación reguladas extracelularmente: MAPK,

SAPK/JNK y p88. Ademássetrataránde forma específicalascaracterísticasregula-

dorasde la isoforma~ de la proteínaquinasaC.

SISTEMAS DE FOSFORILACIÓN EN CASCADA REGULADOS

EXTRACELULARMENTE

Los sistemasde fosforilación de proteínasreguladospor estímulosextracelula-

res incluyen al menostres grandesgruposde señalización:MAPKs , SAPK/JNKsy

pSS(Fig. 4). Los primeros se caracterizanpor seractivadosfundamentalmentepor

agentesmitogénicosque actúana travésde receptorescon actividad de tirosina qui-

nasa(Denhart, 1996). Los segundosse activan por estréscelular y citoquinas pro.

inflamatorias a través de receptoresque carecende actividad de tirosina quinasa

(Kyriakis y Avruch, 1996). Algunasde las serina/treoninaquinasasqueformanparte

de estossistemasde fosforilación se caracterizanpor precisarde unadoble fosforila-

ción en tirosina y treonina,paraalcanzarsu máximo grado de activación,lo queper-

mite un control muy precisoen su regulación (Denhardt, 1996; Kyriakis y Avruch,

1996).

Page 16: ¡1ID DII IIMUllID - UCM

Introducción lo

MAP quinasas

El sistemade fosforilación por la cascadade MAPK incluye la activaciónsuce-

siva de Ras/Raf-1/MEKy MAPK (Fig. 4). Estavía de transducciónde señalesconsti-

tuye uno de los principalessistemasde control de proliferación celulartanto en célu-

las glialescomode diferenteorigen(Cazaubonet al., 1997;Van Brocklyn et al., 1997).

El NGF se encuentraentre la granvariedadde mensajeroscon receptoresde activi-

dadde tirosina quinasaqueutilizan estesistemade transducciónde señales(Segaly

Greenberg,1996). En general, la activación de receptorescon actividad de tirosina

quinasapor sus agonistasinducesu autofosforilacióny dimerización.Los residuosde

tirosina fosforilados son reconocidospor una serie de proteínasque contienenuna

estructurade homologíaendominiosdenominadosSH2 (“src homology2”), estandoel

reconocimientode tirosinasfosforiladascondicionadopor el contextode aminoácidos

en el que se encuentran.El receptorfosforilado une directamenteo a través de pro-

teínas adaptadoras,el complejo citosólico preexistente Grb2-Sos (revisado por

Denhart, 1996). Soses unaproteínaactivadoradel intercambiode GDP por GTP, lo

quepermite la activaciónde Raslocalizadaen la membranaplasmáticay queperte-

necea la superfamiliade las proteínasG monoméricas.En la regulaciónde Rasade-

másde proteínasquefacilitan el intercambioGTP-GDP,participanproteínasactiva-

dorasde su actividad GTPasa,GAP, importantesparala integración de la informa-

ción de señalesprocedentesde Ras y Rho (Denhart,1996). Los receptorescon siete

segmentostransmembranarestambiénpuedeninducir respuestasmitogénicasa tra-

vés de la cascadade MAPKs (revisadopor Posty Brown, 1996). Así, la activaciónde

PI-PLC vía Gq/11 generaDAG quejunto con el aumentode Ca2~intracelularpromo-

vido por IPs permiten la plena activación de determinadasPKCs, lo que puedede-

sembocaren la activaciónde la cascadade IVIAPK. La activaciónde Gi, ademásde

inhibir la adenilatociclasa,libera subunidadesJ3y quepuedenactivarRasa travésde

tirosinasquinasacitosólicascomosrc.

Raf-1

La proteína Raf-1 es una serina/treoninaquinasaactivadapor la interacción

con Ras, parala queposeedos posiblessitios de unión (revisadopor Morrisony Cu-

tíer, 1997). La activaciónde Raf-1 dependede sutranslocacióna la membranaquees

dirigida por la proteínaRasactiva(Stokoeet al., 1994), de modoquesu translocación,

independientementedel grado de fosforilación, determinasu activación (Stokoe y

McCormick, 1997). La proteínaRaf-1 estaasociadade forma constitutiva con las pro-

Page 17: ¡1ID DII IIMUllID - UCM

Introducción 11

teínashsp 90,hsp50y 14-3-3. La interaccióncon 14-3-3 favoreceel mantenimientode

Raf-1 en su forma inactivadadoque interfierela unión de Rasa travésdel segundo

sitio (Clark et al., 1997). La proteína14-3-3es unaproteínaque uneresiduosde sen-

na fosforilados posible componentede una familia de proteínasaún desconocida,

análogasa las queposeendominios5112 queunen tirosinasfosforiladas,y quepermi-

tirían la formaciónde complejosmultiproteicos(Muslin et al., 1996).

Raf-1 sepuedeactivarpor interacciónespecíficaconceramidas,lo.quepermite

estableceruna relación directa entre la ruta de señalizaciónde las ceramidasy la

activaciónde MAPK (Huwiler et al., 1996).Además,el PA, productode la acción de

PLD, también puede activar Raf-1 (Ghosh y Belí, 1997). Del estudio de la secuencia

de Raf-1 y del análisisfuncional de sus distintosdominios, sehapostuladola existen-

cia de un elevadogradode analogíaconla familia de PKC (Ghoshy Belí, 1997).

La regulaciónde Raf-1 por los sistemasde fosforilación escomplejay dista de

serbiencomprendida.Por un ladola fosfonilaciónen tirosina por srcparecesernece-

sariapara su plena activaciónjunto con la interaccióncon Ras-GTP(Marais et al.,

1995). Sin embargo,existensistemasen los que la activaciónde Raf-1 no va acompa-

ñadade sufosforilación entirosina (Wartmannet al., 1997). La fosforilación de Raf-1

en treoninao sermapor CAPK o porPKC promuevetambiénsuactivación(Yaoet al.,

1995). La isoforma4 de PKC atípica puedeactivarsepor Ras(Diaz-Mecoet al., 1994)

lo quepodría explicar la activaciónde MEK/MAPK por PKC 4 (Bernaet al., 1995), tal

vez a travésde la activación directade PKC 4 sobreRaf.1 (VanDijck et al., 1997a).

Por otro lado, la fosforilación de una sermaespecíficapor PKA inhibe Raf-1, lo que

indica la existenciade regulacióncruzadaentre diferentessistemasde transducción

de señales(Hafner et al., 1994). En cualquiercaso, el grado de fosforilación es fun-

damentalen la regulaciónde la actividad de Raf-1, y suhiperfosforilaciónconducea

unamenor afinidad por la membranaplasmáticay constituyeuno de los mecanismos

de inactivación(Wartmannet al., 1997).

La activación de Raf-1 por fosforilación permite activarlas proteínaMEKs de

especificidaddual (MEK1 y MEK2). La fosforilación de MEKs por Raf-1 estádirigida

por la existenciade dominios 5H3 ricos en prolina. Posteriormente MEK activa las

proteínasquinasasMAPK1 y MAPK2. Estasenzimaspuedentranslocarseal núcleoy

por fosforilación activar substratoscomo proteínasasociadasa microtubulos,proteí-

nas quinasasnibosomales,cPLA2 y factoresde transcripcióncomo Elik-1 y c-myc, lo

que permiteel control de importantesprocesoscelularescomo la proliferación,la or-

ganizacióndel citoesqueletoy la regulaciónde la expresióngénica.

Page 18: ¡1ID DII IIMUllID - UCM

Introducción 12

Regulaci¿nde la actividadMAPKenastrocitos

La activaciónde la cascadade MAPKs es esencialen la regulaciónde la proli-

feración de los astrocitos.Factores mitogénicoscomo endotelinas,FGF, PDGF, los

gangliósidoso el péptido P estimulan la actividad de MAPK de forma sostenida

(Kurino et aL, 1996; Lazarini et al., 1996; Luo et al., 1996; Cazaubonet al., 1997;

VanBrocklynet al., 1997). El aumentoen los nivelesintracelularesde cAMP inhibe la

proliferaciónde astrocitosy activa la diferenciaciónhaciaun fenotipoastrocitarioen

las células de glioma C6 (Chenet al., 1996; Anciaux et al., 1997), estandola inhibi-

ción de la proliferación directamenterelacionadacon la inhibición de la actividad

MAPK (Kurino et al., 1996; Prins et al., 1996). La inhibición de MAPK por el aumen-

to intracelularde cAMP seobservatambiénenla activaciónde lVIAPK inducidapor el

lipopolisacárido(LPS) bacteriano(Willis y Nisen, 1996).

La activaciónde MAPK por endotelinasenastrocitosocurre por un doble me-

canismo:el clásicode fosforilaciónen tirosina del adaptadorShc, asociaciónaGrb2 y

activaciónde Raf-1 (Lazarini et al., 1996) y por un mecanismodependientede Rho y

proteínasde matriz extracelular(Cazaubonet al., 1997).

La actividad MAPK es importante también en la regulación del espaciosi-

náptico, condicionadopor la regulacióndel volumencelularde los astrocitos(Portery

McCarthy, 1997). La reduccióndel volumen celular en los astrocitosen respuestaa

un estímulohipoosmóticotienelugar a travésde un aumentointracelularde Ca2~, vía

IPay la activaciónde MAPK dependientede PI-3 quinasa(Schliesset al., 1996).

SAPK/JNK Y P38

De modo semejantea la cascadade fosforilación Ras/Raf¡MAPKactivadapor

factoresmitogénicos,se ha descritola existenciade sistemasde transducciónactiva-

dos por estréscelular (rayos UV, rayos X) y citoquinas inflamatorias (revisadopor

Kyriakis y Avruch, 1996). Estossistemasde transducciónde señalesgeneranen la

célula fundamentalmenterespuestasinhibitorias del crecimiento, diferenciación o

muertecelular(Coroneoset al., 1996;Hannun, 1996;Brenneret al., 1997). Los recep-

toresde TNFct o IL-1[3, carecende actividad de tirosina quinasay su activaciónva

asociadaa la activación de proteínas tirosina quinasas citosólicas como JAKs

(quinasasdel tipo Jano)que se autofosforilany fosforilan el receptorpermitiendola

unión de proteínasadaptadoras(Baker y Reddy, 1996). La activaciónde SAPK/JNK

estáprecedidapor la hidrólisis de SM y generaciónde ceramida,y las ceramidasson

capacesde activar SAPK/JNK de forma específica(Westwick et al., 1995), lo que

Page 19: ¡1ID DII IIMUllID - UCM

Introducción 13

permite atribuir un papela este mensajeroensu regulación. En efecto, la apoptosis

inducida por citoquinas inflamatoriasy estrés celular puede estarmediada por la

activaciónde SAPK/JNK a travésde ceramida(Verheij, et al., 1996). En concreto,en

cultivos primarios de astrocitos,la activaciónde SAPK por TNFct coincide con suac-

tivación por la adición de SMasaexógenao ceramidaspermeables,sin embargo, la

cinética de activación de SAPK por SMasay ceramidasno coincide con la inducida

porel TNFct (Zhanget al., 1996).

La activaciónde SAPKs por los receptoresde membranaselleva a cabofun-

damentalmentepor las proteínasG monoméricasRací y Cdc42 de la familia Rho,

siendola activaciónde SAPK independientede la accióndirectade Ras(Kyriakis et

al., 1994). EstasproteínasactivanMEKI{1 a travésde las proteínasPAR, que inhi-

ben la actividad GTPásicade las proteínasRho. La proteínaMEKK1, situadaa nivel

de Raf-1 en la cascadade fosforilación mitogénica (Fig. 4), es el activador de

SEK1/MKK4 y tambiénde MEK (Kyriakis y Avruch, 1996). La proteínaSEK1¡MKK4

es la proteínahomóloga de MEK responsablede la activación específicade SAPK e

incapazde activar MAPK. Las SAPKs, tambiénse denominanquinasasdel extremo

N terminal de c-Jun (JNKs) debidoa que estefactor de transcripciónes uno de sus

substratos,junto a otros como ATF-2 y Elk-1 (Kyriakis et al., 1994). Recientemente,

se ha demostradoqueestesistemade transducciónde señaleses fundamentalen la

regulacióndel procesode gliogénesisy diferenciaciónde los astrocitosa partir de cé-

lulasprogenitorascorticales(Bonni et al., 1997).

1~nA

____ ffiPAK ~

4, 1~c~z~

M

M4HCAP2,~Hk-1oJu,~Hk-1

+BE~ZIJLAB~

IMaua~a ¡

c-flz c-jw~ EIk-L c~nr,

~FEE

Hg. 4Fs~.nnrdelaspdr4el~mandasdefEftri1ai6nr~u1adasexlnnlulanmt

Page 20: ¡1ID DII IIMUllID - UCM

Introducción 14

Ademásdel sistemaSAPK/JNK existeen células de mamíferosuna serie de

proteínashomólogasal sistemade señalizaciónde estréscelular osmóticoen levadu-

ras(HOG1)(Takekawaet al., 1997), denominadop38 (Fig. 4). Estacascadade fosfo-

rilación activadapor estréscelular y citoquinasinflamatoriases paralelaa SAPK e

implica a las quinasasMKK3/MKK6 (Kyriakis y Avruch, 1996).

La activaciónde Raspor agentesmitogénicospuedeactivarde forma secunda-

ria SAPK a travésde la activaciónde MEKK1 o directamentede Rac-cdc42(Kyriakis

y Avruch, 1996). La existenciade puntos de regulacióncruzadaentre las distintas

cascadasde fosforilación descritas,permite su coordinaciónen diferentes sistemas

celularescomolos astrocitos(Korzuset al., 1997).

LA ISOFORMA ~ DE PROTEÍNA QUINASA C

El término PKC englobaunafamilia de proteínasquinasascaracterizadasini-

cialmentepor su actividad dependientede Ca2~ y DAG (Inoue et al., 1977). Actual-

mentese handescritoal menos12 isoformasde PKC que se agrupanen función de su

estructuray característicasfuncionalesen tres categorías.Las PKCs convencionales

a, [31,[311y y, cPKCs,queprecisanparasuactividadde Ca2~,DAG (o susanálogoslos

ésteresde forbol) y fosfatidilserina(PS). Las PKCs denominadasnuevas6, s, e, ~/L

(ratón/humano),nPKCs, tienenlos mismos requerimientosde cofactoresexceptoque

no precisande Ca2~. Por último la categoríade las PKCsatípicasAh. (ratón/humano)y

~, aPKCs, únicamenterequierenpara su actividad de PS,y son independientesdel

Ca2~ o del DAG (revisadopor Jaken,1996; Hoffman, 1997). El Ca2~se une al denomi-

nadodominio C2 y el DAG y sus análogosal dominio Cl. Las distintasisoformasde

PKC se expresanen astrocitosy en células de glioma C6 (Ballestas y Benveniste,

1995; Chenet al., 1995; 1996), conla excepciónde la forma cPKC y (Roisin y Desche-

pper, 1995>. Las característicasintrínsecasreguladorasde cadagrupode PKC deter-

minan que cadatipo sea activado preferentementepor determinadossistemasde

transducciónde señales.Así, las nPKCsparecenseractivadasfundamentalmentepor

la generaciónde DAG vía PLD, mientrasque las cPKCsprecisanparasu completa

activacióndel aumentode Ca2~intracelular queacompañaa la hidrólisis de fosfoino-

sítidosvía PI-PLC (Hay Exton, 1993).

La activación de PKC va acompañadade su translocacióndesde la fracción

citosólicaa la bicapalipídica, dondeencontrarála PS necesariaparasu actividaden-

zímática.La PKC despuésde unaactivaciónpersistentesufreunaproteolisisparcial,

Page 21: ¡1ID DII IIMUllID - UCM

Introducción 15

seguidode un procesode degradaciónposteriorqueconduceaunadisminuciónde los

niveles de enzima,denominado“downregulation” (Jaken,1996; Hoffman, 1997).

PKCatípica

El grupo de las PKCs atípicasincluye dos isoformasX/t y 4. La ausenciadel

dominio C2, y el poseerúnicamenteunaestructuraen “dedo de zinc” en Cl, explica

su independenciade Ca2~y DAG (Wootenet al., 1997). La PKC 4 sepuedeactivarpor

el productode la PI-3 quinasa(Nakanishiet al., 1993),y tambiénporPA (Limatola et

al., 1994). La PKC 4 espor suscaracterísticasestructuralesresistentea la activación

y “downregulation” por ésteresde forbol, como ocurre en los astrocitos (Ballestasy

Benveniste,1995; Chenet al., 1995), y estaenzimapodría estarimplicada en el con-

trol de la diferenciaciónastrocitaria(Yoshimuraet al., 1997). Resultainteresantela

observaciónde quela activaciónde MAPK por endotelinassea independientede la

actividad de PKCs sensiblesa “downregulation”por ésteresde forbol (Tournieret al.,

1994). Además,la PKC 4 se encuentra implicadaen la diferenciaciónde célulasPC12

por NGF (Colemany Wooten, 1994), el procesode potenciacióna largo plazo, “long-

term potentiation”(Hrabetovay Sacktor,1996), y el control de la proliferacióncelular

(Berraet al., 1993; Lehrich y Forrest,1994). La funcionalidadde la PKC 4 estáínti-

mamenteasociadaa su localizaciónsubcelular (Wootenet al., 1996), y el procesode

diferenciacióncelular precisa de la translocación de PKC 4 a la matriz nuclear

(Wootenet al., 1997). La localizaciónsubcelularde PKC 4 puedeestarreguladapor

su interacción con proteínas especificas como ZIP (“zeta interactingprotein”) o PICK

(Puls et al., 1997). La interaccióncon estetipo de proteínaspuedeserimportantepa-

ra aumentarla especificidadde la interacciónde aPKCscon los lípidos que actúan

como cofactores(Diaz-Meco et al., 1996). La translocaciónnuclear de PKC 4 puede

venir condicionadatambiénpor la presenciade mensajeroslipídicos, como el PA ge-

neradovía PLD nuclear, o por la existenciade secuenciasespecíficasde señalización

nuclear(Wootenet al., 1997).

Sistemasde transduccióndeseñalesy PKC 4La PKC 4 actúade forma cooperativacon Rasy podríacoordinarlos efectosde

PC-PLC y PI-3 quinasaen el control de la proliferacióncelular (Nakanishiet al.,

1993; Diaz-Mecoet al., 1994), actuandoen un nivel anterior a IVIAPK (Berra et al.,

1995). La PKC 4 activadapor laPC-PLCesun activadorde Raf-1, lo queexplicaríala

Page 22: ¡1ID DII IIMUllID - UCM

Introducción 16

existenciade un procesode activación de MAPK independientede Ras (van Dijk et

al., 1997a).

El modelo de Moscat y colaboradoresproponequela PKC 4 es un importante

reguladorde la mitogénesise inhibidor de la apoptosis(Berra et al., 1997). Sin em-

bargo,la PKC 4 revierte el fenotipo transformadoinducido por la expresiónde v-Raf

en células3T3 (Kieser et al., 1996), y su sobrexpresiónno tiene consecuenciasmito-

génicasen estasmismascélulas(Crespoet al., 1995; Montaneret al., 1995).

La PKC 4 pareceestarimplicada en el mecanismode transducciónde señales

del TNFa e IL-1[3, a travésde la activaciónde la SMasaácidaprevia activaciónde la

PC-PLC (Lozanoet al., 1994; Carísony Hart, 1996). El productode acción de la SMa-

sa,la ceramida,es en efectoun activadorde PKC 4. Concentracionesbajasde cera-

mida activan PKC 4, pero niveles mayoresrevierten esta activación. Por último el

ácido araquidónicocompite con la ceramida, inhibiendo así la activación que esta

ejercesobrePKC 4 (Múller et al., 1995). La PKC 4 puedeservir por tanto comomeca-

nismode integraciónde señalesmitogénicaso de inhibición del crecimiento.

1.3REGULACIÓN DE LA EXPRESIÓN GÉNICA

La regulaciónde la expresióngénicaestabasadaen suactivacióno inhibición

por los denominadosfactoresde transcripcióny puedeconsiderarsela última etapa

del procesode transmisiónde informaciónquecomienzaen la membranaplasmática.

La propia estructuradel DNA enasociacióncon histonasy las modificacionesquími-

cas de éstaspermiten mecanismosde control adicionales.Paraejercersu acción,los

factoresde transcripcióndebenlocalizarseen el núcleo e interaccionarcon el DNA.

La regulacióna través de factoresde transcripciónpuedeejercersea travésde la re-

gulación de su translocaciónal núcleo o por la inducción de su síntesispor señales

extracelulares.El estadode fosforilación es esencialen la regulaciónde factoresde

transcripción,favoreciendocambiosconformacionalesquepermiten exponersecuen-

cias de señalizaciónnuclear,modificandoel estadode oligomerizaciónde la proteína,

regulandola interacciónproteína-DNAo regulandosuinteraccióncon el sistemace-

lular de transcripción(Hill y Treisman, 1995). A continuaciónse describeel sistema

de regulaciónde trestipos fundamentalesde factoresde transcripción.

El factor de transcripciónNF-KB estálocalizadoenel citosol en asociacióncon

la subunidadIKB queejerceun efectoinhibidor queimpide sutransiocaciónal núcleo.

Citoquinasinflamatorias, estréscelular, LPS o infecciónviral, entre otros, son acti-

vadoresde NF-KB (Kohler et al., 1997). La fosforilación de IicB permite su degrada-

Page 23: ¡1ID DII IIMUllID - UCM

Introducción ‘7

ción, y la consiguientetranslocaciónde NF-KB al núcleo dondeejerce su efectoregu-

lador de la transcripción(O’Neill y Kaltschmidt, 1997). La transcripciónde numero-

sos genesestáreguladapor el factor NF-KB, y es esencialen la funcionalidadglial y

neuronal(O’Neill y Kaltschmidt, 1997). La identificación de la proteínaquinasares-

ponsablede la fosforilación y degradaciónde IKB, esactualmenteuno de los objetivos

parael conocimientode los mecanismosimplicadosen la activaciónde estefactor de

transcripción(Israél, 1997).

Otro tipo de factoresde transcripciónestarepresentadopor c-Fos.Estaproteí-

na perteneceal grupo de los genesde expresióntemprana.La activacióncelularindu-

ce la expresióndel genc-fos. La proteínac-Fossintetizadaconstituyehomodímeros,o

heterodímeroscon c-Jun,complejosAP-1, queregulanla expresióngénica.El promo-

tor de c-fos poseeun elementodenominadoSRE (“serum responseelement”) que es

un sitio de unión de factoresde transcripciónactivadospor el suero.La activaciónde

SRErequierede la unión del factorSRFy de Elk-1. Elk-1 esactivadopor fosforilación

a travésde la cascadade las MAPK, de modo que la translocaciónnuclearde MAPK

permite sufosforilación y activaciónde Elk-1 (Denhart,1996).

LasproteínasSTATs, son factoresde transcripciónactivadospor su fosforila-

ción en la membranaplasmáticaa través de tirosina quinasasJAKs asociadasare-

ceptoresde la familia de las citoquinas.La fosforilación permite la dimerizaciónde

STATs y sutranslocaciónal núcleo (Darnelí, 1997). Al igual queocurre con el factor

AP-1, la distinta composiciónde los oligómerospuedecondicionarla especificidaden

la interaccióncomplejoproteico-secuenciade DNA diana.

Tan importantecomola activaciónde los factoresde transcripciónessuvuelta

al estadobasal. Las proteínasfosfatasasrevierten la activación de los factores de

transcripciónactivadospor fosforilación. La inducción de la síntesisde factoresinhi-

bitorios, como IKB o de ICER, quecompiteen la unión de factoresaCRE (“cAMP res-

ponsiveelement”), es otro modo de inactivaciónde la expresióngénica.La comunica-

ción entrelos sistemasde transducciónde señalesy los factoresde transcripciónno

es unidireccional,y estosúltimos tambiénpuedenregular la actividad de los prime-

ros. Así, la activaciónde NF-KB puedeactivarla PICA de forma independientede los

niveles de cAMP a travésde la disociaciónde complejosNF-KB-IKB-PKA quemantie-

nenla PICA enestadoinactivo (Zhong et al., 1997).

Un mismo estímuloextracelularpuederegular diferentesfactores de trans-

cripción, y las células recibenmultitud de estímulosde forma simultánea.Estosu-

madoa los efectoscruzadosde regulaciónentre distintasrutas de señalizacióncelu-

Page 24: ¡1ID DII IIMUllID - UCM

Introducción 18

lar, permite imaginar una situación en la que la regulación de la expresióngénica

estámoduladapor un delicadobalanceentrenumerosossistemasde control.

2. EL FACTOR DE CRECIMIENTO NERVIOSO

El factor de crecimientonervioso (NGF) fue el primer factor de crecimiento,

supervivenciay diferenciaciónneuronalcaracterizadoy con el que se constituyó la

familia de las neurotrofinas(Levi-Montalcini, 1987). El NGF fue descubiertocomo el

factor difusible responsablede la producciónde un halo de fibras nerviosasenun ex-

plante de ganglios simpáticos y sensorialesde embrión de poíío (Levi-Montacini y

Hamburger,1953). La teoríaneurotróficasostienequelas neuronascompitenentre sí

por unacantidadlimitada de neurotrofinasproporcionadaspor el tejido inervado.Las

neurotrofinasjuegan un papel esencialen la regulación del desarrollodel sistema

nervioso,la plasticidadsinápticadel sistemanerviosoadulto y en el mantenimiento

de su integridadestructural(Hefti, 1994). La ausenciade NGF, o una disminución

local ensus niveles,impide el desarrolloneuronalnormal y explica la apoptosisfisio-

lógica duranteel periodoneonatal.Ademásel propio NGF participaen la activación

de procesosapoptóticosmediadospor el receptorp75~R en neuronasdeficientesen

trkA (Dechanty Barde, 1997). La familia de las neurotrofinasincluye ademásel fac-

tor neurotróficoderivadodel cerebro(BDNF) y las neurotrofinasNT-3, NT4/5 y NT-6

(Varon et al., 1995; Lewin y Barde, 1996). Cadatipo de neurotrofinaejerce suefecto

de formapreferenteen determinadaspoblacionesneuronalesy enmomentosespecífi-

cos del desarrollo.Existen otras proteínascon efectosneurotróficoscomo el factor

neurotróficoderivadode la glía (GDNF) o el factor ciliar neurotrófico(CNTF) con ca-

racterísticasdiferencialesquelasseparande la familia delas neurotrofinas.

Ademásde los efectos“convencionales”del NGF en el sistemanervioso,este

factor, desempeñaun papelcrucialen la regulaciónde lasrelacionesentreel sistema

nervioso,inmune y neuroendocrino,existiendounacomunicaciónbidireccional entre

sistemanerviosoy sistemainmune (Levi-Montalcini et al., 1996; Merrilí y Benvenis-

te, 1996). El NGF ejerceun efectoproliferativo sobrelinfocitos T y B, constituyeun

factorautocrinode supervivenciade los linfocitos B memoriay estimulala producción

de inmunoglobulinas(Torcia et al., 1996>. Además,actúacomo factor quimiotáctico

regulandola funcionalidadde microglia y macrófagosy esun mediadorde la respues-

ta de fase aguda(Gilad y Gilad, 1995;Elliabeset al., 1996). La existenciade elevados

niveles de NGF en algunassituacionespatológicascomoesclerosismúltiple o encefa-

Page 25: ¡1ID DII IIMUllID - UCM

Introducción 19

litis alérgicaexperimental(Bonini et al., 1996; DeSimoneet al., 1996), evidencianla

importanciade la interconexiónentreel sistemainmuney el sistemanervioso.

21. EL GEN DEL NGF

El gendel NGF se ha donadoen diferentesorganismos,estandosituadoen el

hombreen la región lpl3 del cromosoma1 (Scottet al., 1983; Carrieret al., 1996). El

gende NGF estáformadopor cuatroexones(Fig. 5) y su transcripciónda lugar a la

síntesisde cuatrotranscritos(A, B, C y D), debidosa la existenciade un doble sitio de

iniciación de la transcripcióny por procesamientodiferencial (“splicing”) del pre-

mRNA, siendoel principal transcritode 1.35 kb (Selbyet al., 1987).

La regiónde 5 kb situadadelantedel primer exón poseelos elementosnecesa-

nosresponsablesde la regulaciónespecíficade tejido del gen(Alexanderet al., 1989).

El promotor principal del gen de NGF posee una caja TATA y CCAAT, elementos

fundamentalesparala unión de la RNA polimerasay sus cofactores.En rata, las ca-

jas TATA estánsituadasen la posición -43 y -23, separadaspor 15 nucleótidos.Las

cajasCCAAT, asimilablesacajasCAAT, estánsituadasen las posiciones-379 y -546.

Existen dos elementosrepresoresen las posiciones-500 y -120 y tambiéndossecuen-

cias activadorasentre-120y -39 (D’Mello y Heinrich, 1991a;Cartwright et al., 1992).

En la región +33 a +50, en el límite del exón lb con el intrón siguienteexisteun ele-

mentoreguladorAP-1 (Fig. 5) (Hengereret al., 1990), y en la posición-669 seencuen-

tra un posiblesitio de regulaciónpor NF-KB (Jehanet al., 1993). La existenciade una

secuenciaAP-1 permite explicar la inducción de NGF por estímulosactivadoresde c-

fos y c-jun comoel PMA, suero,cAIVIP y dañocerebral(Jehanet al., 1993; Onteniente

et al., 1994; Colangeloet al., 1996). Sin embargo,existenotros elementosreguladores

H?fSAViti? APi w

7&~ F~ ~f -S2kb

ATO ATO

Hg 5 ntaión~prnúicadel ~nde NYenmtalis ~m~uks rqx~ntankse>n~enblannsr~gior~ ‘u tmdtridas,mllackscrdiflmnnrt~delpmzmsrdeN3Fyen~is

~ m.~tmla~ónnlifica,t delapiúeímadíxa

Page 26: ¡1ID DII IIMUllID - UCM

Introducción 20

aúnno caracterizadosque explicaríanla inducciónde NGF porotros inductorescomo

la vitaminaD3 (Rushet al., 1995).En el exón 3 existeademásun segundopromotor

capazde inducir la transcripción(Rackeet al., 1996).

El mRNA del NGF poseeen el extremo3’ unasecuenciano codificanterica en

AU, denominada3’IJTR, que actúaen cis determinandola elevadainestabilidaddel

mRNA de NGF, posiblementea travésde la interacciónen trans con proteínasde

unión a RNA (Tanget al., 1997). La inestabilidaddel mRNA de NGF condicionauna

vida mediade los transcritosmuycorta(Ontenienteet al., 1994), lo que explicaríael

hechode que numerososagentesinductoresde la síntesisdel NGF, ejerzansu acción

a travésde la activaciónde la transcripcióndel gen de NGF (Carswell, 1993; Rackeet

al., 1996).

%2 LA PROTEÍNANGF

El NGF se sintetizacomo un precursor,preproNGF, de 34 kDa a partir del

transcritoA. Tras la hidrólisis de los 25 aminoácidosdel péptido señal,se generael

proNGF, y a partir de esteel [3-NGFmaduro,responsablede la actividadbiológica.

La forma maduradel [3-NGFestáformadapor dos cadenasidénticasasociadasde

formano covalentey con trespuentesdisulfuro intracatenarios.El [3-NGFseencuen-

tra formandopartede un complejo multiprotéicode dos subunidadesa, un homodí-

mero [3’y dossubunidadesy. La subunidady es una argininapeptidasaresponsable

del procesamientodel 13-NGF (Edwardset al., 1988). La función exactade la subuni-

dad a se desconocepero secreeque protegeel [3-NGFde la degradaciónenzimática.

Todoslos determinantesnecesariosparael adecuadoprocesode maduracióny secre-

ción del NGF seconservanen la secuenciadel NGF maduro(Heymachet al., 1996>.

El NGF sintetizadoesinmediatamentesecretado,siendolos nivelesintracelularesde

NGF muy pequeños(Furukawaet al., 1987).En célulasde naturalezaneuroendocri-

na, la secreciónpuedeocurrirpor gránulosdesecrecióny estarbajocontrol de neuro-

transmisores(Missale et al., 1996).Se handescritorecientementeanticuerposnatu-

rales antiNGF que podrían tener una función transportadoradel NGF en suero

(Dicouy Nerriere,1997).

Estudioscristalográficoshanpermitidodeterminarla estructuratridimensio-

nal del NGF, queincluye dos láminas[3antiparalelasunidaspor tres cortossegmen-

tos de gran variabilidad conformacional(McDonaldy Chao, 1995). Los trespuentes

disulfuro se agrupanen un motivo estructuraldenominadonudo de cisteinas.Estu-

Page 27: ¡1ID DII IIMUllID - UCM

Introducción 21

dios de funcionalidadpormutagénesisdirigida hanpermitidoidentificar los aminoá-

cidosnecesariosparala uniónespecíficay activacióndel receptor(Woo y Neet, 1996).

2.3 LOCALIZACIÓN DE LA SÍNTESISDEL NGF

Tejidosperiféricos

La síntesisde NGF en los tejidos periféricossecorrelacionade forma positiva

con el gradode inervaciónsimpáticao sensorial(Korschingy Thoenen,1983; Davies

et al., 1987). Tejidos como la piel, el iris, o el corazóntienen un contenidorelativa-

mentealto de NGF y NGF mRNA(Heumanny Thoenen,1986).La síntesisde NGF es

tambiénsignificativa enpróstata,testículos,tiroides y tejido adiposopardo(Nisoli et

al., 1996; Chenet al., 1997).

El NGF sintetizadoen los tejidos dianaalcanzalos gangliossimpáticosy sen-

sorialespor transporteretrógrado(Korschingy Thoenen,1988; von Bartheldet al.,

1996). En estosganglios,al igual que en el nervio ciático, los nivelesde mRNA son

muy bajos, pero el contenidoen NGF es elevado.La axotomiadel nervio ciático pro-

duceun aumentobifásicoen los nivelesde NGF mRNA (Heumanet al., 1987),prime-

ro por la liberaciónde factoresséricos(Sprangeret al., 1990; Neveuet al., 1992), y

posteriormentepor la secreciónde citoquinas,fundamentalmenteIL-1[3 por la inva-

sión del nervio por macrófagosactivados(Hattori et al., 1993; Pshenichkiny Wise,

1995;Dekoskyet al., 1996).

Sistemanerviosocentral

De manerasimilar a lo que ocurre en el sistemanerviosoperiférico (SNP), el

NGF es sintetizadopor los tejidosdianade las neuronascolinérgicasdel cerebroba-

salanterior, que constituyenlas principalescélulassensiblesal NGF (Robneret al.,

1997). Así, la síntesisestádirectamenterelacionadacon el grado de inervacióncoli-

nérgica(Korschinget al., 1985; Robneret al., 1997).Mientrasqueenel SNP la sínte-

sis se realizapor célulasno neuronales,en SNC la síntesistiene lugar en las neuro-

nas,encontrándoseelevadosnivelesde NGF en el hipocampoy en menormedidaen

la cortezay bulbo olfativo (Korschinget al., 1985;Ayer-Lelievreet al., 1988; Rocamo-

ra et al., 1996). Las neuronasconstituyenla fuentemayoritariade NGF enel SNC

adulto y ejercenun efectorepresorde su expresiónen astrocitos(Vigé et al., 1992),

pero duranteel desarrolloo en caso de lesión, los astrocitospuedenexpresarel NGF

de forma significativa (Chakrabartiet al., 1990; Lu et al., 1991;Arendtet al., 1995).

Page 28: ¡1ID DII IIMUllID - UCM

Introducción 22

SíntesisdeNGF “in vitro”

La síntesisde NGF iii vitro seproduceen una gran diversidadde tiposcelula-

res. Las neuronasprocedentesde distintaslocalizacionesdel SNC como hipocampo,

septo,estriadoy cortezasintetizanNGF pero con diferenteintensidad(Houlgatteet

al., 1989). Los cultivos primariosde célulasgliales son tambiéncapacesde sintetizar

NGF (Neveuet al., 1992; Jehanet al., 1995; Brodie, 1996; Boutros et al., 1997), sin

quela procedenciade los astrocitoscondicionelos nivelesde síntesis(Houlgatteet al.,

1989). Cultivos primarios de célulascardiácas,célulasmusculareslisas, célulasde

Schwann,célulasmesangiales(Plússet al., 1995; Creedony Tuttle, 1997) ademásde

macrofagosy linfocitos T CD 4~, entreotrascélulasdel sistemainmune, soncapaces

de producirNGF (Lambiaseet al., 1997).Parael estudiode la regulacióndel gen de

NGF sehan utilizado líneasderivadasde fibroblastos,L929 o 3T3 (Wion et al., 1990;

D’Mello y Heinrich, 1991b).El NGF es producidoademás,por célulasde glioma C6

(Fukumotoet al., 1994; Colangeloet al., 1996),célulasneuroendocrinas,neuroblastos

y líneasosteoblásticas(Charrasseet al., 1992; Jehanet al., 1996; Heymachet al.,

1996).

2.4 REGULACIÓNDE LA SÍNTESISDE NGF

La regulaciónde la síntesisde NGF esel principal mecanismode regulación

de los nivelesde NGF extracelulares(Carswellet al., 1993; Rackeet al., 1996) y por

ello su conocimientoresultade sumaimportanciateniendoen cuentael potencialte-

rapéuticode las neurotrofinasen generaly del NGF en particular (Carswell, 1993;

Rushet al., 1995).Dadoque el NGF no escapazde atravesarla barrerahematoence-

fálica, no esposible suinyecciónsistémicapara tratar de paliar determinadassitua-

cionesneuropatológicas(Han et al., 1997). La investigaciónaplicadaen estaáreava

encaminadaa identificar posiblesmoduladoresde la expresióndel NGF o de otras

neurotrofinasy la utilización de célulasgenéticamentemodificadasque podríanser

encapsuladasy transplantadas.

La síntesisde NGF por célulasen cultivo dependedel estadode crecimiento

celular. Así, en cultivos no confluentes,los nivelesde síntesisde NGF son elevados,

reduciéndosela síntesisconformesealcanzala confluenciadebido a una inhibición

porcontactocelular(Furukawaet al 1987;Houlgatteet al., 1989; Lu et al., 1991). En

el procesode gliosis, quesigue a un procesode lesión, seliberanfactoresmitogénicos

y citoquinaspro-inflamatoriasque explicanunainducciónde la síntesisy secreción

Page 29: ¡1ID DII IIMUllID - UCM

Introducción 23

de NGF tanto in vivo como in vitro (Arendt et al., 1995; Psenichkiny Wise, 1995;

Dekoskyet al., 1996).

Factoresproliferativos

La utilización de mediosde cultivo celular químicamentedefinidos permitió

poneren evidenciael efectoestimuladordel sueroen la síntesisde NGF. El efectodel

sueroesparcialmentedependientede proteínasU sensiblesa toxina pertusisy ha

sido observadotanto en fibroblastoscomoen astrocitos(Sprangeret al., 1990; Neveu

et al., 1992). Comoen SNC los astrocitosno estánencontactocon el plasma,el efecto

inductordel sueropodríareflejarla situacióntrasunalesiónvascular,que puedeser

imitada iii vitro porel modeloexperimentalde lesión del nervio ciático (Heumannet

al., 1987). La expresiónde c-fosprecedeal aumentode la síntesisde NGF por sueroy

por lesión del nervio ciático (Hengereret al., 1990). La inducción de la síntesisde

NGF por el sueroes dependientede la activaciónde cPKCs. En estesentidoel PMA

estambiénun potenteinductorde la síntesisde NGF, y la regulaciónpor los dos in-

ductorestiene característicascomunes(Neveuet al., 1992).Itt vivo, parecehaberun

equilibrio entrela regulaciónpositivaque ejercela PKC en la expresióndel NGF y el

efecto inhibidor que ejercenlos glucocorticoides(Neveuet al., 1992). La inducciónde

NGF dependientede PKC se inhibe por un aumentoen la concentraciónintracelular

de Ca2~, lo que sepuedeexplicarpor los distintosrequerimientosde Ca24 de las dife-

rentesisoformasde PKC, o por efecto del Ca2~ en la “downregulation” de cPKCs

(Jehanet al., 1995).Los factoresde crecimientofueron algunosde los primerosesti-

muladoresconocidosde la síntesisdel NGF y el EGF, FGFa/by el TGF[3 estimulanla

producciónde NGF porastrocitos(Yoshiday Gage, 1992).

Factoresproliferativos de astrocitoscomo la trombina y los nucleótidosde

guanina,tambiénestimulanla síntesisy secreciónde NGF (Middlemisset al., 1995;

Debeiret al., 1996). La inducciónpor trombinaes dependientede PKC y fisiológica-

mentepuedeestarrelacionadacon la exposiciónde lascélulasgliales a proteasastras

un procesotraumático.

Mediadoresde la inflamación

La IL-1[3 y el TNFa son importantescitoquinasreguladorasde la respuesta

inflamatoria.A nivel periféricoson sintetizadaspor los macrófagosactivados,y en el

SNC por la microgliay por los astrocitosreactivos(Merril y Benveniste,1996).Estas

doscitoquinaspro-inflamatoriassonpotentesestimuladoresde la síntesisy secreción

Page 30: ¡1ID DII IIMUllID - UCM

Introducción 24

de NGF. Así, la IL-l[3 esla responsablede la inducciónde NGF que ocurre itt vivo

tras la lesión del nervio ciáticoo un traumacortical (Heumannet al., 1987; Dekosky

et al., 1996).Además,la inducciónde NGF por IL-1[3 y TNFct se observatambiénin

varo en astrocitos(Carman-Krzany Wise, 1993; Psenichkiny Wise, 1995).La induc-

ción de NGF no estárestringidaa célulasgliales,habiéndoseobservadotambiénen

fibroblastosy cultivos primarios de hipocampoformadospor neuronasy célulasglia-

les (Hattori et al., 1993;1996).

La regulaciónde la producciónde NGF ejercidapor la IL-1[3 ocurrea diferen-

tes niveles:aumentode la transcripcióny estabilizaciónde los transcritosformados.

El efecto de la IL-1[3 esindependientede la actividadde cPKCs(Psenichkinet al.,

1994) y no se ve afectadopor el aumentoen los niveles intracelularesde cAMP,

(Carman-Krzany Wise, 1993;Hanet al., 1994), ni tampocopor el aumentoen la con-

centraciónintracelularde Ca2~ (Friedmanet al., 1992).Pareceque en general,la hi-

drólisis de fosfoinositidostiene poca importanciaen la regulaciónde la síntesisdel

NGF (Jehanet al., 1995), y el efectode la IL-1[3 estambiénindependientede esta

ruta de señalizacióncelular (Friedmanet al., 1992).

El efectode la IL-1[3 seatribuye ala generaciónde ácidoaraquidónicovía acti-

vaciónde PLA2, que posteriormenteesmetabolizadoa leucotrienos(Carman-Krzany

Wise, 1993).En lo que serefiere al TNFa, la inducciónde NGF pareceestarmediada

por el receptorde 55 kDa, que esel receptormayoritarioen astrocitos(Hattori et al.,

1996; Doppet al., 1997).

Lascatecolamínas

La activaciónde receptores[3-adrenérgicos,o el aumentode los nivelesintra-

celularesde cAMP, puedeejercerendeterminadascircunstanciasun efectoactivador

de la síntesisy secreciónde NGF tanto in vivo como en célulasgliales (Condorelli et

al., 1994; Fukumotoet al., 1994).Sin embargo,enotrascircunstanciascarecede efec-

to (Friedmanet al., 1992; Neveuet al., 1992), o ejerceun efectosupresorde la induc-

ción por suero,PMA o TGF-f31 (Han et al., 1994; Jehanet al., 1995).Las diferencias

en la respuestaa agonistasadrenérgicosparecenserdebidasa diferenciasen el esta-

do de crecimientodel cultivo celular(Furukawaet al., 1987; Hanet al., 1994).

Regulaciónde la síntesisde NGFpor diversosfactores

La síntesisy secreciónde NGF in vitro sepuedemodularpor multitud de fac-

tores, a continuaciónsecitan únicamentealgunosde ellos: CitoquinascomoIL-4, IL-

Page 31: ¡1ID DII IIMUllID - UCM

Introducción 25

5, IL-lO y el factor activadorde plaquetasposeenun efectoestimuladorde la síntesis

de NGF (Awatsuji et al., 1993; Brodie, 1996), sin embargoel interferóny ejerceun

efecto inhibidor de la síntesis de NGF (Awatsuji et al., 1995). El interferón [3y

PDGFBBpuedenestimularo inhibir la producciónde NGF en funciónde lascondicio-

nesy tipo de cultivo celularutilizado (Plússet al., 1995; Boutroset al., 1997; Creedon

y Tuttle, 1997).

La 1,25-dihidroxivitamina D3 ejerce un efectoestimuladorde la síntesisde

NGF en distintos modeloscelulares,entre ellos astrocitosy células de glioma C6

(Neveu et al., 1994; Jehanet al., 1996; Hanet al., 1997). La vitamina D3 poseeun

efectoaditivo en la inducciónde NGF por IL-1[3, sinérgicocon el TGF-[31 y contrarres-

ta el efectosupresorque ejercela corticosterona(Pshenichkinet al., 1994; Hanet al.,

1997).La activaciónde la microglia en un procesotraumáticodel SNCpodríaexplicar

un aumentolocal en los nivelesde vitamina D3 que estimularíala síntesisde NGF

por los astrocitos(Neveuet al., 1994).Los glucocorticoidesregulanla síntesisde NGF

de modo complejoy específicodel tipo celular.Enastrocitos,los glucocorticoidesinhi-

ben la secreciónbasale inducida por PMA, suero,vitamina D3, o citoquinaspro-

inflamatorias(Neveuet al., 1992; Psenichkinet al., 1994;Hanet al., 1997>.

La expresióndel gende NGF estácontroladaademáspor el neurotransmisor

glutamatoa travésde la inducciónde NO, la organizacióndel citoesqueletoy el estrés

oxidativo (Naveilhanet al., 1994; Persichiniet al., 1994;Baudetet al., 1995).

3. LOS ASTROCITOS Y OTRAS CELULAS GLIALES

Los astrocitosson lascélulasno neuronalesmayoritariasdel SNC, y se agru-

pan junto con los oligodendrocitosy la microglía en el término general de células

gliales (revisadopor Portery McCarthy, 1997>. Existendos tipos morfologicamente

diferentesde astrocitos,protoplásmicossituadosen la materiagris y astrocitosfibro-

sos fundamentalmenteenlas fibras mielinicas.

En 1983 Raff y colaboradoresdemostraronla existenciade dos tipos de astro-

citosen cultivos de nervio óptico perinatalprocedentesde dostipos celularesdiferen-

tes.Estosestudiospusierondé manifiestola existenciadeun progenitorcelularO-2A

que puedediferenciarseen oligodendrocitosy astrocitosde tipo 2. Las célulasproge-

nitorasO-2A secaracterizanpor serreconocidasporun anticuerpomonoclonalA2B5,

y se diferencianen presenciade sueromayoritariamenteen astrocitosde tipo 2,

mientras en un medio químicamentedefinido se diferencian en oligodendrocitos

(Temple y Raff, 1985). La proteínaglial fibrilar ácida (GFAP), constituyentede los

Page 32: ¡1ID DII IIMUllID - UCM
Page 33: ¡1ID DII IIMUllID - UCM

Introducción 27

1995). De estemodo en situacionesde traumatismo,lesión, infección bacterianao

viral los astrocitospuedenproteger,favorecerla regeneracióndel tejido dañadoo re-

gular el procesoinflamatorio. Los astrocitosreactivospuedenexpresarel complejo

mayor de histocompatibilidady actuarcomocélulaspresentadorasde antígenoen la

respuestainmune mediadapor linfocitos T (Hurwitz et al., 1995; Niikcevich et al.,

1997>.

Las célulasde glioma CO

LascélulasC6 de gliomaprocedende un glioma de ratainducido químicamen-

te y se caracterizanporsu naturalezaindiferenciadacon potencialastrocíticoy olido-

dendrocitario.LascélulasC6 puedenexpresarGFAPy se utilizan comomodelo enel

estudiode la regulaciónde la síntesisde NGF (Fukumotoet al., 1994; Colangeloet

al., 1996).Ademásseutilizan comomodelocelularenel estudiode los mecanismosde

transducciónde señalesen célulasgliales (Chenet al., 1995; Anciaux et al., 1997;

Yoshimuraet al., 1997a;b).

Page 34: ¡1ID DII IIMUllID - UCM

Introducción 28

4. OBJETIVOS

Del NGF, la primeraneurotrofinadescubierta,existeun conocimientoporme-

norizadosobresu funcionalidady estructura.El papeldel NGF en el normalfuncio-

namientodel sistemanervioso, y su posible utilidad terapéuticahan impulsadoel

estudiode los mecanismosde síntesisde estefactor. Estaáreade investigaciónha

permitidoidentificaragentesmoduladoresde la síntesisde NGF endistintosmodelos

experimentales.La presentetesis doctoralpretendeprofundizaren el estudiode los

mecanismosde señalizacióncelularconducentesa la activaciónde la síntesisy secre-

ción de estefactorneurotróficoencélulasgliales,estableciéndoselos siguientesobje-

tivos:

1. El estudiode mecanismosde transducciónde señalesimplicadosen

la regulaciónde la síntesisde NGF, centradoen la generaciónde men-

sajeroslipídicos intracelularesclásicosy en la recientementecaracteri-

zadaruta de lasceramidas.

2. Caracterizaciónde los posiblessistemasde fosforilación con los que

estácoordinadala generaciónde mensajeroslipídicos y de los factores

de transcripciónimplicados.

3. Establecimientodel posible papelde cadauno de los niveles ante-

riormentemencionadosen el mecanismode acciónde estimuladoresde

la expresiónde NGF.

Page 35: ¡1ID DII IIMUllID - UCM

II- RESULTADOS Y DISCUSIÓN

Page 36: ¡1ID DII IIMUllID - UCM

1. REGULACIÓN DE LA SÍNTESIS Y

SECRECIÓN DE NGF POR

MENSAJEROS LIPÍDICOS EN

CULTIVOS PRIMARIOS DE

ASTROCITOS

Page 37: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 29

Con estecapítulo se introduceel tema principal objeto de esta

tesis doctoral, el papel de mensajerosde naturalezalipídica en la

regulaciónde la síntesisde NGF porcélulasgliales. El estudiode los

mensajerosintracelularesde origen lipídico y su mecanismode

acción ha sido una de las áreas de la bioquímica que más ha

avanzado durante los últimos años, proporcionando nuevos

conocimientossobreel funcionamientocelular (Prescott,1997). Así,

se ha pasado de considerar a los lípidos de membranacomo

componentespoco másque estructuralesa importantesreguladores

de las funcionescelulares.El trabajo se centraprimeramenteen el

estudiodel efectode la adiciónexógenade PC-PLCsobrela síntesisy

secreciónde NGF en cultivos primarios de célulasgliales.La acción

estimuladorade la PC-PLCen la síntesisde NGF sugiereun posible

papelde la ruta de la SMasa-ceramida,puestoque ambossistemas

han sido directamenterelacionados(Schútzeet al., 1992; Miller et

al., 1994; Wiegman et al., 1994). Se estudia a continuaciónla

importancia de la ruta de señalización por ceramidas en la

regulaciónde la síntesisde NGF, así como los posiblessistemasde

transducción de señalesimplicados. La utilización de análogos

permeablesde ceramida,o la adición de SMasaexógenadesencadena

una cascadade procesosintracelularesque conducena un aumento

en la producciónde NGF. Los resultadosque seexponenevidencian

la existenciade una regulacióncruzadade la síntesisde NGF entre

vías de señalizaciónque involucran tanto a glicerolípidos como a

esfingolípidos.

Page 38: ¡1ID DII IIMUllID - UCM

FEHS 15486 FF55 Letters364 (1995) 301—304

Phosphatidylcholine-phospholipaseC mediatesthe induction of nervegrowth factor in cultured glial celis

InésD. Laviadaa*,Cristel Baudetb,IsmaelGalvc-Roperh5,PhilippeNaveilhanb,PhiIippe Brachetb~ dc Bioquímicay Biología Molecular, Facultad dc Biología. UniversidadC’omplutcnse.28040Madrid, Spain

bCe,,Ire Hospitalier RégionalUniversitaire. INSERM U.298,49100 Angers,France

Received30 March 1995

Abstract Add¡t¡on ofphosphat¡dylcholine-hydrolyzingphospho-upase C (PC-PLC) to cultured glial celis increased tbe leveis ofnene growth factor (NGF) mRNA and the amount of ceil-se-creted NGF. The effect of PC-PLC wns 2.5 times higher (hanthat elicited by 4¡3-phorbol 12¡3-myristate 13a-acetate. In celísin which protein kinase C (PKC) was fully inhihited or don-regulated, (he effect of PC-PLC ivas reduced — though still evi-dent — and similar to that exerted by sphingosine. Results thusindicate that PC-PLC induces the synthesis of NGF by glial celisby a PKC-dependent and PKC-independent mechanisms.

Kev ,orcls: Nervegrowth factor; phosphatidylcholine; ProteinkinaseC: Sphingos¡ne;Chal ccli; Astrocyte

1. Introduction

Nerve growth factor (NGF) is a ncurotrophic protein re-qtiired for thc development and survival of several populationsof neurons [1]. In the central ncrvous system, NGF is synthe-sized by certain neurons, but during brain devclopnient andunder diffcrent paihological alterations of ihe ncrvous system,there isa local increase in the production of NGF by astrocytes[2—5].Thus, substantial present effort is directed toward anundcrstanding of the influences that control NGF synthesis,becauseof thc possibility that increasing the endogenous syn-diesisof NGF might provide clinical advantage in degenerativediseasesof central nervous system [6]. However, little is knownabout the elTectors that induce the synthesis of NGE by thosecelís and about how this synthetic process is up-regulated. Itseernstlíat several NGF-inducing agents act through differentpatlíways. One of them is the signalling network involving theactivation of protein kinase C (PKC>. Studies performed withcultured astrocytesand fibroblasts have shown that 4/3-phorbol12/3-myristate lh-acetate(PMA>, a welI-documented PKC ac-tivator, induces dic synthesis and secretion of NGF, and thiseffect is counteracted by PKC inhibitors like H-7 or H-9 [7,9].PMA induces the expression of c-fos, the product of whichenhancesNGF synthesisby the same route as PMA [5,9,10].

PKC is physiologically activated by diacylglycerol (DAG)resulting from agonist-induced hydrolysis of inositol phosphol-ipids [II]. However, this DAG rapidly disappears and seenis tobe responsible for a transient activation of PKC [12]. In con-trast,hydrolysisof othermembrane phospholipids, particularlyphosphatidylcholine(PC), produces DAG at a relatively laterphase.This DAG may be the responsible for the sustainedactivation of PKC that leads to long-term cellular responses

*Correspondingauthor.

[13]. Mechanisms of cellular responseto PC hydrolysis havebeen demonstrated to occur ja many cdl types (reviewed in[12,141).Despiteextensivestudies, the biocheniical mechanisnisunderlying signal-induced activation of PC breakdown are stillpoorly defined.PhospholipaseC (PLC)-catalyzedhydrolysisofPC has been shown to be activated in response to a number ofagonists [15],in transiormed celís [161and iii signalling cascadestriggeredby growth factors [17]. PC-PLC provides a positivesignal for PKC by inducing its translocation to membranethough not its down-regulation [161.It has also been shown thatPC hydrolysis by a PC-PLC mimics the ability of carbachol toinhibit adenylyl cyclase [18].Furthermore, a role of PC-specif’cphospholipase O (PLO) in signal transduction has been de-scribed [13,19].

In the present study we investigated thc possible relationshipbctwecn PC hydrolysis and PKC activation in the control ofNGF synthcsis by astrocytcs. Previous experimental evidenceshowed that activation of PKC with PMA stiniulated NGFsynthesis by glial celís [7]while exogenously added PC-PLC wasable to activate PKC in fibroblasts [18]. This provinded us atool to investigate whether NGF synthesis by glial celís dependson PC breakdown,

2. Experimental

2. 1. Culture con~li¡ionsPrimary cultures of rat brain glial celís werc prepared from cerebral

hemispheresof l—2-day-old rat pups. Cerebral hemisphcres wcre dis-sected in phosphate buffered satine (PBS> supplcmcnted with 0.33%glucose and treated with trypsin (5 mg/mI, 30 mm at 37’C). Trypsin wassubsequently inhibited by Ihe addition of [0%foetal calf serum (FCS),before treatment with DNase 1 (lOpglml, 5 mm at 370C). Brain celíswere dissociated by fluxation with a Pasteur pipcttc and ncxt sedi-mented by low speed centrifugation (1000 xg, 5 mm). The pellet wasgently resuspended, and celís were seeded at a density of 3 x lo4 cellslcml. AII plasdc supports were previously coated with 5 pghnl poly-L-ornithine in water. Celís were cultured for 3 weeks in basal mediumcontaining a mixture of Dulbeccos modilied Fagle medium and Ham’sFI? (1/1, vlv), supplemented withO.66% glucose, Spglml streptomycin,5 U/ml penicillin and 10% FCS. Three days before the experiment, FCSwas removed and celís were transferred to a chemically defined mediumconsisting of basal medium supplemented with 25 pg/ml insulin, lOOpg/ml human transferrin, 20 nM progesterone, 5OpM putrescine and30 nM sodiumselenite. Immunocytochemical studies showed that 90%of cultured celís were positive for glial fibrillary acidic protein, indicat-ing that cultures were largely enriched in astrocytes.

2.2. Assayof NGFaud NGF,,,RNACdl supernatants were collected 24 h after the different treatments

described iii the text and diluted la 1 volume of PBS containing 0.1%Tween-20 and 0.5% gelatin. NOF released by the celís was assayed intriplicate. with a double-site-ELISA, using a monoclonal anti-NGFantibody, coupled or not to t-galactosidase (Boehringer Manheim),according to [20].Northern blot analysis was performed by standardprocedures [~1~After 6 h of treatment, total RNA was extracted from

AII rights reserved.0014-5793195/S9.50© 1995 Federationof EuropeanBiochemicalSocieties.SSDI 0014-5793(95)00414-9

Page 39: ¡1ID DII IIMUllID - UCM

ÍD. Laviada el at/FERSLeuers364 (/995) 301—304

celísby the LiCI/urea method. Glyoxal-treated RNAs were fractionated‘o agarose gel, transíerred to a nylon membrane by capillary blotting,and hybridized with a “P-Iabelled NGF cDNA and a amyloid precur-sor protein (API’) cONA, used to verify the loading of the geis.

2.3. Idení/ficatio,, of PKC by innnunobloti~igGlial celís (treated as described in the legeod to Fig. 3) were scraped

oto 0.5 ml of ice-cold 50 mM Tris-bICI, pH 7.4,5mM EDTA, lO mM2-mercaptoethanolcontaining 1 /ig]ml leupeptin, ¡ pg/ml aprotinin, lOpg/ml benzamidin, 5 pg/ml soybean tripsin inhibitor and 0.1 mMPMSE, and rapidly centr¡fuged at 5.000xg br 5 mio to eliminatedebries. Following denaturation in SOS sample bulfer, proteins wereresolved in a 8% SOS-PAGE and transferred electrophoretically ontonitrocellulose membranes (Bio-Rad). Membranes were blocked with5% of fat-free dried milk and incubated with 2 pg/ml of specific anti-PKC antiserum (done MC5, Amersham International). Following jo-cubation with horseradish conjugated anti-mouse antibody, the blotswere developed with an enhanced chemiluminescence detection kit(Amersham International).

2.4. Ot/er c/,e,niealsTissueculture plastic wares were purchased from Nunc (Denmark),

culture media from Gibco (France) and FCS fron, Purobio (France).PC-PLC and bisindolylmaleimide (OF l09203X) were fron, Calbio-chem (USA). Sphingosine and most other reagents were obtained fromSigma Chemicals (USA).

3. 1{esults

3.]. PC-PLC enhancesMe synthesisof NGFCultured glial celís were treated for 24 E with different doses

of exogenously added PC-PLC from Bacillus cereusand NGFlevels were determined in the supernatant media 24 h later.Results presented in Fig. 1 show a dose-dependent and satura-ble increase in the extracellular levels of NGF, which becomemaximal at 0.5 U/mI of PC-PLC. Dosesover ¡ U/mI were toxicto celís. Stimulation of celís with lOO nM of PMA was quantí-tatively lower than that induced by PC-PLC(Fig. 1).

In order to determine whether PC-PLC Fiad a correspondingon the pool ofNGF transcripts, total RNAwas extracted fromcelís pretreated with or without the enzyme. Northern blotanalysis showed that PC-PLC produced a marked increase in

400 -

o,o-LA-oz 200 -

o No PMA

Ápc—PLC pc—puc Pc—PLC Pc—PLc

odd¡tion ~O0nM O.IU/rnl O.25U/rnl O.5U/mI Iu/mIFig. 1. Effect of increasing concentrations of PC-PLC on the produc-tion of NGF. Glial celis were incubated with no additions, PMA (lOOnM), or PC-PLC (0.1 U/mí, 0.25 U/mI, 0.5 U/mI and t U/mí). Themedium was collected after 24 h and NGF was quantitied by donhie-site ELISA. Values are means ±S.D. of 3 independent experimentsassayed in triplicate.

NG F

A PP

1 2 3 4 5

Fig. 2. Accumulation ofNGF mRNA in astrocytes. Constant aniountsof total RNAs were fractionated on ari agarose gel, blotted and hybrid-ized with a radiolabelled NGF cDNA probe. Lane 1: control; lane 2:EMA lOO nM; lane 3: PC-PLCO.5 U/mí; lane4: celis treated with EMA500 nM for 48 h and te last 24 h with EMA lOO nM; and lane 5: cellstreated with EMA 500 nM for 48 h and Pie Iast 24 h with PC-PLC0.5U/ml. Essentially identical results were obtained in two independentexperiments.

NGF niRNA, ascomparedto controls, indicating that PC-PLCis able to promote NGF synthesis (Fig. 2, lanes 1 and 3). Thisetfect is more potent than that elicited by PMA (Fig. 2, lane 2).

3.2. The induction of NGFsyníhesisby PC-PLC is pací/oíl>’dependeníon PKC

To investigate whether PKC activation is required for thePC-PLC-triggered induction of NGF synthesis, PKC wasdown-regulated in glial celis by pretreating the cdl cultures witha supramaximal dose ofPMA (500 nM) for 48 E. This treatmentcompletely removed PKC from astrocytes as determined byWestern blot analysis with a specific monoclonal anti-PKCantibody (Fig. 3). Interestingly, induction of NGF synthesis byPC-PLC emerged reduced but not abolished, in celis in whichPKC wasdown-regulated (Table I), whereas NGF induction

Table 1EffectofPKC inhibitionanddown-regulationandeffectofsphingosineon the levels of ceIl-secreted NGF measured by ELISA

Additions NGF pg./ml

None 34.68±lOEMA lOO nM 196.51 ±90PC-PLC 0.5 U/mI 490.54±119EMA lOO nM + SIM 2pM 3141±3PC-PLC 0.5 U/ml + BlM 2pM 130.30±23EMA 500 nM (48 h) + EMA lOO nM 32.87±2EMA 500 nM (48 h) + PC-PLC 0.5 U/ml 171.50±27Sphingosine lo pM 164.80±l2

The values represent the means ±S.E.M. of 2 independent experi-ments assayed in triplicate.

302

Page 40: ¡1ID DII IIMUllID - UCM

ID. Laviada ev al. IFEBSLeliers 364 (1995)301—304 303

1 2 3 4

97.4K >

69K h-

Fig. 3. Western blot analysis of PKC levels in cdl lysates. Lane 1:control; lime 2: PMA lOO nM; lane 3: celís treated with PMA 500 nMfor 48 h and the last 24 h with PMA 100 nM; and lane 4: cells treatedwith PMA 500 nM for 48 h and the last 24 h with PC-PLC 0.5 U/nl.

as elicited by PMA was completely abolished in down-regu-lated celís. This effect was also observed at the niRNA leveis,as determined by Northern blot analysis (Fig. 2, lanes 4 and 5).

Further experimental evidence to support these data wasobtained by thc use of bisindolylmaleimide (BlM), a potent andhiglyspecific inhibitorofPKC[21]. Inhibition ofPKCby BlMcomplctcly abolished the Increase ni NGF levels induced byPMA, whcrcas treatrncnt olcelís with BlM only reduced in partthe increase in NOF levels produced by PC-PLC (Table 1).Hence, PKC seems to be only partially involved in the NGFinducing response elicited by PC-PLC.

3.3. Splz/ugosine mercases l/w producílon of NGFIn order to study whether another mechanism of signal

transduction could be involved in the synthesis of NGF, wedetermined the effect of sphyngosine on NGF secretion by glialcelís. Results reported in Table 1 show that sphingosine in-creases the extracellular levels of NGF to ¡he same extent asPC-PLC does in PKC down-regulated celís.

4. Discuss¡on

Despite the recent efforts performed to unravel the mecha-nismsof NGF induction, the signal-transducing pathways lead-¡ng to the synthesis of this neurotrophic protein remain largelyunknown. Many ofIhe agents which are able to stimulatc NGFsynthesis are dependent on PKC activation [9]. Howcvcr, ster-oids and 1 ,25-dihydroxyvitamin D3 have been shown to induceNGF protein and mRNA by a mechanism difYerent to serun,and PMA, and independent of PKC and c-fos gene activation[22,24].Although this indicates ¡bat the the control of NGFsynthesis does not depend on a uniquc pathway, the diffcrentputative mechanisms up-regulating NGF synthesis operate byincreasing the steady-statc levels of intracellular NGF mRNA.

in this repor¡ wc demonstrate that a PC-PLC induces thesynthesis of NGFby glial celís by a mechanism ¡bat is partiallydependent on PKC activation. Thc fact that PC-PLC is able toproduce an accumulation of NGF transcripts indicates that atleast part of the stimulatory etTect takes place at ¡he pre-trans-lational level. One of the particular features of thc action ofPC-PLC, alone or in combination with phosphatidatephosphohydrolase, is that ¡he increase in intracellular DAGconcentration is prolonged, indicating that it may be responsi-ble for long-term cellular responses [13]. Our results are inagreement with this notion since NGF is generalíy considered

to becoded by a late expression gene. Results also indicate thatPC-PLC acts by at least two difl’erent pathways, one dependenton PKC and another independent of PKC. Wc and othcrs havepreviously found that PC-PLC triggers sorne cellular responses,namely induction of DNA synthesis or activation of nucleartranscription factor systems by a PKC-independcnt mechanism[17,24]. It has been described that PC-PLC is coupícd ¡o asphingomyelinasc that catalyzes the breakdown of sphingomy-clin into ceramide [24]. A second messenger function for thesphingomyelin cycle and ceramide in the control of ccli growth,differentiation and apoptosis has beenrecently proposed [25].Our data show that sphingosine induces NGF synthesis ¡o asimilar extent than the PKC-independent mechanism elicitedby PC-PLC. TEe effect exerted by sphyngosine may be medi-ated by its conversion to ceramide, as it has been suggested forother biological responses mediated by sphingosine [26].On theother hand, vitamin D3, which induces NGF by a PKC-inde-pendent mcchanism, has been shown to elicit an early andreversible hydrolisis of sphingomyelin with a concomitant gen-eration of ceramide [27]. Two mechanisnis may be thereforeinvolved in the generation of NGF by astrocytes, one repre-sented by serum and DAG acting through PKC, and anoiherone induced by vitamin D3 acting through the sphingomyelincycle. Our results suggest that thc breakdown of PC by a PLCmay trigger both mechanisms.

Áck,,oiíledg>,w~,is.The authors thank Drs. M. Guzmán and D. Wionbr Iruitful discussions and critical reading of the manuscript. This warkhas been supported by a coopcration program betwecn INSERM(France) and CSIC (Spain).

References

[1] Levi-Montalcini, R., Abc, L. and Alleva, E. (1990) Prog. Neuro-Endocrinímmunol. 3,1—10.

[21Bakhit, C., Armanini, M., Bennett, G.L., Wong, W.L.T.. Hansen,SE. and Taylor, R. (1991) Brain Res. 560, 76—83.

[3] Lu, B., Yokoyama, M.. Dreyfus, CF. and Black, IB. (1991)J. Neurosci. II, 318—326.

[4] Alter, CA., Armanini, M., Dugich-Djordjevic. M., Bcnnett, OL.,Williams, R., Fcinglass, 5., Anicetti. y., Sinicropi, D. and Babbit,C. (1992)3. Neurochen,. 59, 2167—2177.

[5] Hengerer, B., Lindholm, D., Heurnann, R., Ruther, U,. Wagner,EF. and Thoenen, H. (1990) Proc. Natí. Acad. Sci. USA 87,3899—3903.

[6] Carswell 5. (1993) Exp. Neurol. 124, 36—42.[7] Neveu, 1., Jehan, F.. Houlgatte, R., Wion, D. and Brachet, P.

(1992) Brain Res. 570, 316—322.[8] Wion, D., Mac Grogan, D., Houlgatte, R. and Brachet, P. (1990)

FEBS Lett. 262, 42-44.[9] D’MeIlo, SR. and Heinrich, 0. (1990)3. Neurochem. 55, 718—721.

[¡O]Mocchetti, L., De Bernardi, MA., Szekely, AM., Albo, H.,Brooker, 0. and Costa, E. (1989) Proc. Natí. Acad. Sci. USA 86,3891—3895.

[II] Dennis, EA., Rhee, SG., Billah. M.M. and Hannum, YA. (1991)FASEB 3. 5, 2068—2077.

[12]Nishizuka, Y. (1992) Science 258, 607—614.[13]Exton, J.H. (1990)3. Biol. Chem. 265, 1-4.[14]Exton, J.H. (1994) Biochin,. Biophys. Acta 1212, 26—42.[15]Diaz-Meco, MT., Larrodera, P., Lopez-Barahona, M., Cornet,

ME., Barreno, P.G. and Moscat, 3. (1989) Biochen,. 3.263,115—120.

[16]Diaz-Laviada, 1., Larrodera, 1’., Diaz-Meco, M.T., Cornet ME.,Guddal PH., Johansen, T. and Moscat 3. (1990) EMBO 3. ¡2,3907—3912.

[17]Larrodera P., Cornet ME., Diaz-Meco MT., Lopez-Barahona,M., Diaz-Laviada 1., Guddal PH., Johansen T. and Moscat 3.(1990) Cdl 61, 1113—1120.

Page 41: ¡1ID DII IIMUllID - UCM

ID. Laviada er a! IFEBS Leuers364 (¡995) 301—304

[18] Diaz-Laviada, 1., Larrodera, P.. Nieto, J.L., Cornet ME., Diaz-Meco, MT.. Sanchez,M.J., Guddal, PH., Johansen, T., Haro, A.and Moscat, J. (1991) J. Biol. Chem. 266, 1170—1176.

[19] Nakamura, S. and Nishizuka, Y. (1994) J. Biochem. 115,1029—1034.

[20] Houlgatte, R., Mallat, M., Brachet, P. and Prochianta, A. (1989)J. Neurosci. Res. 24, 143—152.

[21] Toullec, D., Pianetti, P., Coste, H. Bellevergue P., Grand-Perret,T., Ajakane. M., Baudet, V., Boissin, P., Boursier, E., Loriolle, F.,Duhamel, L., Charon, D. and Kirilovsky J. (1991) J. Biol. Chem.266. 15771—15781.

[22] Wion, D., Mac Grogan, D.. Neveu, 1., Jehan, F., Houlgatte, R.and Brachet, P. (1991) J. Neurosci. Res. 28, 110—114.

[23] Saporito, MS., Brown, BR., Hartpence, K.C., Wilcox HM.,Vaught J.L. and Carswell, 5. <1994) Brain Res. 633, 189—196.

[24]Schútze, 5., Pottholf, K., Machleidt. T., Berkovic, D., Wiegmann,K. and Krónke, M. (1992) Cdl 71, 765—776.

[25]Hannun, YA. and Obeid L.M. (1995) Trends Biochem. Sci. 20,73—77.

[26]Goldkorn, T., Dressler, KA., Muindi, J., Radio. NS., Mendel-soho, 1, Menaldino, D., Liotta, D. and Kolesnik, R.N. (1991)J. Biol. Chem. 266, 16092—16097.

[27]Okazaki, T., Belí, R.M. and Hannun, Y.A. (1989) 1. Biol. Chem.264, 19076—19080.

304

Page 42: ¡1ID DII IIMUllID - UCM

ResearchreportInduction of nervegrowth factor synthesisby sphingomyelinaseand

ceramidein primary astrocytecultures

IsmaelGalve~Roperh~,Amador Haro~, andInés Díaz.Laviadab

“Opto. BioquímicayBiologíaMolecularL FacultaddeBiología, UniversidadComplutense, 28040 Madrid, SpainOpto Bioqubuica y Biología Molecular,FacultaddeMedicina, UniversidaddeAlcalá deHenares,28871 Alcalá deHenares,

Madrid, Spain

Astrocytessynthesizenenegrowthfactor (NGF) iri responseto pro-inflammatory cytokines.To further study

the signalingmechanisminvolvedin this induction of NEW production,the sphingomyelin(SM) pathwaywasstuclied.Addition of exogenousneutralSMase(Staphylococcusaureus)or C2-ceramideto primary cultures ofnewbornrat corticalastrocyteselicited adose-responseincreaseof NGF synthesis,with maximal effect at 1U/ml anil 25 ~tM,respectively. Induction of NGF synthesis by SMase and ceramidewas shown to beindependentof classicalPKC activity. Intracellular cAMP-raisingagents,such asforskolin and 3-isobutyl-1-methylxanthine,partially preventedthe SMase- and C2-ceramide-inducedsecretionof NEW to the cclisupernatant.PD098059andapigenin, inbibitors of the mitogen-activatedprotein (MAP) kinasepathway,produceda dose-responseinhibition of the SMase-andC2-cer-inducedreleaseof NGF. Thisobservationpointste the possibility that regulation of NGF synthesisandsecretionby the SMasepathwaymay be mecliateddownstreamby the MAP kinasecascade.As a matterof fact, pretreatmentof astrocyteswith SMaseor Ca-ceramide led to an increasedphosphorylationof raf-1. Moreover, MAP kinase activity was enhanceclinastrocytestreatedwith SMaseor both ceramiclesIn conclusion,resultasuggestthat the SMasepathwaymaycontrol NGF synthesisin the centralnervoussystem,andraisethe possibilityof aninvolvementof the MAPkinasecascadein thisprocesa.Copyright1997 ElsevierScienceB.V.

Keywords:Astrocyte,Cerarnide,Mitogen-activatedproteinkinase,Nenegrnwthfactor,Rol- 1,Sphingomyelinase.Abbreviations:BlM, bisindolylmaleum , cAMP, cyclic AMP; C2-cer, N-acetylsphingosine;FK forskolin; IBMX, 3-isobutyl-1-methylxantliine;IL, interleulún;MAP kinase,mitogen-activatedproteinldnase;NGF, nenegrowthfactor;PMA, 4~-phorhol12¡3-myristate;SM, sphingomyelin;TNF, tumornecrosisfactor.

1. IntroductionWithin the last decadesphingolipidshave emergedas activeparticipantsin the regulationof a wide

rangeof cellular responses.In particular, sphingomyelin(SM) breakdownhasbeenimplicated in theregulation of celí growth, diflerentiation, transformation and apoptosis. SM is hydrolyzed bysphingomyelinase(SMase), releasing diffusible ceramidesthat function as second messengersinsignaling pathways [reviewed in 12, 13, 33, 34]. Ceramidesmay modulate the activity of differentserine/threonineproteinkinasesasceramide-activatedprotein kinase (CAPK) andprotein kinaseC ~,

aswell asceramide-activatedprotein phosphatase(CAPP) [13]. Downstreamsignalingoccuraat least inpart through the mitogen-activatedprotein (MAP) kinasecascadeand NFKB translocation[2, 13, 29, 33,38]. An increasing number of ceil-surface receptorsare currently being show to generatesignals thattrigger SM breakdown.Accumulationof ceramidesderived from SM hydrolysishasbeendescribedtooccurin responseto different extracellular agentsincluding la,25-dihydroxyvitamin D3, tumor necrosisfactora (TNFa), interleukin-1[3 (IL-1[3), IL-2, andinterferon-y [13, 33, 34].

Correspondingauthor. Fax: +34 1 885 45 85 E-mail: bqidm~bioqui.alcala.es

Page 43: ¡1ID DII IIMUllID - UCM

1. Galve Roperhet al.

TNFa and ILs are pivotal mediatorsof inflammation and immuneresponsesin the central nervoussystem(CNS). Such responsesare followed by the rapid activationof brain residentmacrophagesandsubsequentactivationof astrocytes,that constitutethe mostabundantnon-neuralcelísin the CNS [23].Astrocytes play an important role in a wide range of functions which are essentialfor adequatedevelopment,functionality, and pathologicalprocessof the CNS [3]. It is now well establishedthatastrocytesareinvolved in theinflammatoryresponsein the brainlike that occuringin multiple sclerosisand septicshock [22]. Oneof the responsesof reactiveastrocytesduring inflammatoryprocessand afterinjury is the synthesisand releaseof neurotrophicfactorssuch asnerve growth factor (NGF) [4, 6, 40].NGF production by glial celís during such circunstancesmay limit the extent of neuronalloss andpromoteregenerativeprocessesto restoreneuronalfunction [28, 39]. NGF synthesisby astrocytesis ahighly regulatedprocesswhich includescomplexinteractionsamongdifferentsignalingpathways.Pro-inflammatorycytokines,IL-113 andTNFa arewell known stimulatorsof NGF synthesis[14, 27, 28]. Onthe otherhand, lipopolysaccharide,the molecule responsiblefor the iniflammatory responseduring theseptic shock, is also a potent inducer of NGF synthesis and secretion by astrocytesand brainmacrophages[11, 21]. It has also been describedthat la,25-dihydroxyvitamin Da stimulates NQFsynthesis and release by cultured glial celis [25]. As stated aboye, both cytokines and la,25-dihydroxyvitamin D3 havebeenreportedto induce ceramideaccumulation[13, 26]. We havepreviouslydescribedthe involvementof aphosphatidylcholine-phospholipaseC (PC-PLC) in the regulationof NGFsynthesisby astrocytes[19], which in turn has been shown to mediateTNFa activation of NF-KBthrough SM breakdown [30]. Therefore, it seemsinteresting to study the possible function of SMbreakdownandceramidereleasein theregulationof NGF synthesisby astrocytes.

We reportherethe stimulatoryeffect of exogenousadditionof both, neutral SMaseandcelí-permeableceramideson NGF synthesis and secretion in primary cultures of newborn rat astrocytes.Thecharacteristicsof this NGF regulatory pathway were studiedwith specialemphasison the possibleeffectson theMAP kinasecascadeand its crosstalkwith othersignaltransductionpathways.

2. Materials andmethods2.1. MaterjaisTissue culture plastic wares and fetal calf serum(FCS) were from Nunc (Denmark). Culture media

wasfrom Biowhitakker (Belgium). NeutralSMase(5. aureus),3-isobutyl-l-methylxanthine(IBMX) and4[3-phorbol 12j3-myristate(PMA) were from Sigma Chemicals(USA). BisindolylmaleimideOF 109203X(BlM), forskolin (FK) and celí permeableceramide analogswere from Calbiochem (USA). 32Pi andDMEM Pi free were from ICN PharmaceuticalsInc. (USA). Anti-NGF monoclonalantibodieswere fromBoehringerManheim (Germany).Anti-raf-1 polyclonal antibody was from Santa Cruz Biotechnology(USA), and anti-rabbit agarose-linkedIgO from TransductionLaboratories(UK). p42/p44MAP kinasepeptidesubstrateandreagentsfor kinaseassaywerefrom Amersham(U.K.).

2.2. Pri¡nary culturesofctstroglial cellsCortical astrocyteswere derivedfrom 1-2 day oíd rats and culturedas previously described[19]. Celis

wereseededat a densityof 3x104cells/cm2on plastieplatespreviouslycoatedwith 5 gg/ml dl-polyornithine

in water. Celís were culturedfox 3 weeksin basalmediumconsistingof a mixture of DulbeccosmodifiedEagle medium (DMEM) and Ham’s F12 (1:1, y/y), with 0.66% glucose, 5 pg/ml streptomycin,5 U/mlpenicilhin, andsupplementedwith 10% (FCS).The primary culturesconsistedof 95% astrocytesasjudgedby immunocytochemicalstainingof glial fibrilary acidicprotein.

Three daysbeforethe experiment,the FCScontainingmediumwasremovedandcelísweretransferredto a chemically-definedmedium consisting of serum-freebasal medium supplemented.with 25 pg/mlinsulin, 50 gg/ml humantransferrin,20 nM progesterone,50 pM putrescine,and30 nM sodiumselenite.

2.3. RNAanalysisami enzjane-linked¿inmunosorbeníassay(ELISA)Afler the indicatedtimes of treatmentRNA extractionwas carriedout accordingte the LiC]/urea method.

Northernblot analysis was algo performedby standardprocedures.Glyoxal-treatedRNA was fractionatedinagarosegela, transferredte Hybond-Nmembranesby capillaryblotting,andhybridizedseriallywith a~P-labelledprobe of mouse NGF cDNA. The NOF probe was te 917 bp NGF DNA cloned by Scott et al. [31].

2

Page 44: ¡1ID DII IIMUllID - UCM

1 n duction of nerve growth factor synthesis by sphingomyelinase and ceramide in primary astrocyte cultures

Standardizationof RNA loading was routinely controlled by hybridization of the blots with amyloidprecursorprotein cDNA probe [32]. Densitometricanalyseswere performedwith Phosphorímager445 SI(MolecularDynamics).

Fox extracellular NGF determination, ceil supernatantswere collected 24 hours after treatmentasdescribedin the text, diluted in onevolume of phosphatebuffer salme(PBS)containing0.1%Tween20 and0.5% gelatin, andconservedfrozenuntil quantitation.NGF releasedby thecelis wasassayedin triplicate,by a double-siteELISA, usinga monoclonalanti-NGFantibody,coupledor not to ~-galactosidase accordingto anexperimentalprotocoldescribedbefore[19].

2.4. Raf-1irnrnunoprecipitationImmunoprecipitationwas performedas described previously [10]. Briefly, celís cultured in 57 cm2

dishes,were transferredto chemically definedmediumthreedays before the experiment.The mediumwas replacedby Pi-free DMEM and incubatedfor 4 hours with 100 j.tCi 32Pi. Celís were stimulatedasdescribedin the text. Lysatesweresubsequentobtainedby treatingcelíswith a buffer containing50mMTris pH 7.5, 2 mM EDTA, 1 mM EGTA, 1% Triton X-100, 1 mg/ml bovine serumalbumin, and 150 mMNaCí. Immunoprecipitation was carried out by incubation with 7.5 pg/ml of anti-raf-1 polyclonalantibody andprecipitationwith anti-rabbitagarose-linkedIgO. Phosphorylationwasdeterminedin theimmunoprecipitatesby SDS-PAGEandautoradiographyof the gels. Gelswere previously stainedwithCoomasieblue in order to verify the loading of the geis.AutorradiographicFuji-films were subjectedtodensitometricanalysisusingtheSigma-Gelprogram.

2.5. MAPkñtaseassayAstrocyteswereincubatedfor 15 mm at 370C with agentsshownin Table 2, andthereactionterminatedby washingwith ice-cold PBSand adding500 pl of lysis buffer containing10 mM Tris (pH 7.4), 150 mMNaCí, 2mM EGTA, 2 mM DTT, 40 pg/ml digitonin, 1 mM orthovanadate,1 mM PMSF, 10 pg/mlleupeptin, and 10 pg/ml aprotinin, at 40C. Cellular debriswereprecipitatedat 25000x g fox 20 mm andMAP kinaseactivity wasmeasuredin thesupernatant.Extracts(15 pl) were thenassayedby adding10pl. of the substratebuffer (containing 6 mM substratepeptide, 75 mM Hepes, 300 pM sodiumorthovanadate,and0.05% sodium azide,pH 7.4), and 5 pl of ATP buffer (containing0.3 mM [y-32P]ATP(300 pCi/mi) and90 mM MgCl2). ASter 30 mm incubationat 30~ C., reactionwasterminatedby adding10pl of 300 mM orthophosphoricacid. Thirty pl of each samplewas spottedonto phosphocellulosediscs,washedtwo times fox 2 mm in 1% acetieacid andthen twicefor 2 mm in distilled water. Radioactivityofeachdiscwasdeterminedby scintillation counting.

3. Results3.1. Enhaucedsynthesisan.d secretion.of NGF by exogeuousadd¿tionofneutral SMaseand C2-cerarnideIn orderto study the possibleinvolvement of the SMasepathwayin the regulationof NGF synthesis,

primary culturesof astrocyteswereexposedto increasingconcentrationsof neutralSMase.An increasedsecretionof NGF to thecelí supernatantwasobservedat 250 mU/ml with maximal activationat 1 U/ml(15-foldincrease)(Fig. la). Time-courseexperimentsshowedthat maximal concentrationof NGF on thesupernatantpeakedat 72 h of treatment(Fig. 2). In order to know whether the effect observedwithSMasewas dueto the releaseof the secondmessengerceramide,the syntheticcelí-permeableanalog N-acetylsphingosine(Ce-cer)was used.Treatment of celís with C2-cer also enhancedNGF synthesisandsecretionfrom celís, with maximal stimulation observedat 25 pM C2-cer (Fig. ib). The specificity of C

2-cer effect was supportedby the fact that Ce-dihydroceramide,an inactive analog, had no effect onsecretedNGF at the sameconcentrations(Table 1).

Northernblot analyseswereusedto testwhetherthe contentof NGF mRNAin treatedcells waselicitedin concert.Fig. 3 showsthat after 24 h of treatment,NGF mRNA levelswerehigher in bothSMaseandceramide-treatedcelís.Therefore,it seemsthat ceramide-inducedNGF secretionis alsoaccompaniedby an increasein the mRNA levelsof theneurotrophicfactor.In fact, treatmentof celís inthe presenceof actinomycinO andcycloheximide,inhibitora of DNA transcriptionandproteinsynthesis,respectively,abrogatedincreasedlevelsof NGF in thecelí supernatantelicited by SMaseandceramide(datanot show).

3

Page 45: ¡1ID DII IIMUllID - UCM

1. Oalve-Roperhetat.

fico

700

000

~ 500

•O0

~ ,oo

200

loo

‘1

~oo

t,o

100

:100

250

0,ez -0. ~5o

10<3

Jo

o

Fig. 1 Dose-responseinduction of secretedNGF by exogenousneutral sphingomyelinaseaud C2-ceramide.Primary cultures ofastrocytes were stimulated with increasing concentrations of SMase (Fig. la) and N-acetylsphingosine (Fig. ib) for 24 h.Extracellular NGF was assayed with a double-siteELISA. Dataare meana±S.D. from threeindependent experiments. Asterisksindicate significant differences from the corresponding controis (* P<0.05, ** P<O.Ol, by Studentst-test>.

3.2. Signalingpathwaysresponsiblefor tire induction.of NGFsecretionby cerarnide

To further investigatethe mechanismmediatingceramideregulationof NGF synthesis,we investigatedif Ca2~ and diacylglycerol-dependentPKC was required for ceramide action. We have previouslydescribed that the use of bisindolylmaleimide (BlM), a potent and highly specific PKC inhibitor,completelyabolished4~-phorbol12~3-myristate(PMA) inducedincreaseof secretedNGF [19]. Treatmentof culturedastrocyteswith 2 MM BlM slightly inhibited SMase-inductionof NGF secretion,whereasC

2-cer-induction of NOF secretionwas unaffected (Table 1). This observationpoints to a mainly PKC-independentmechanismfor inductionof NEW by ceramide.

The study of a possible involvement of the cAMP signaling pathway was undertakenusing thediterpene forskolin (FR), a well known activator of adenylyl cyclase, and 3-isobutyl-l-methylxantine(IBMX), a phosphodiesteraseinhibitor. FR and IBMX alone failed to increaseNGF secretion(data notshown),whereasin the presenceof SMaseor CQ-certhey partially antagonizedthe stimulatory effect ofthe latter (40% and 60%inhibition respectively)(Table 1). Thusa regulatorycrosstalkamongthe SMaseand cAIVIP pathwaysseemsto exist. The factthat intracellular cAMP raising agentshavebeendescribedas inhibitors of the MAP kinasecascade[18, 35, 37], and the possibleinvolvementof tIte MAP kinasecascadeon the ceramide-activatedsignal transductionprocess[29], promptedus to investigatetIte roleof the MAP kinasecascadeon the ceramide-inductedstimulationof NOF production.

000 005 020 025 0.50 1.00

SMcseti/ini

0 1 ¡0 26 50

C2.eer hM

4

Page 46: ¡1ID DII IIMUllID - UCM

1nductionof nenegrowth factor synthesisby sphingomyelinaseandceramidein primaryastrocytecultures

3000 600

2500400

2000

300eje isco2ha 200a

1000

100500

o150

Fig. 2 Time-courseof NGF secretionafter treatment with exogenousneutral sphingomyelinaseand C2-ceraniide. Primarycultures of astrocyteswere treated with vehicle alone(e), maximal dose 1 U/ml of SMase(U)(Ieft axis) and25gM C2-cer(V)(rightaxis). At the indicate times ceil-secreted NGF was assayed.Data are the means± S.E.M of two independentexperinientswithdeterminations in triplicate.

3.3. Involvernen,toftire MA.P kinasecascadeiii tire induct¿on.of NGFsecretion,by cerarnideTo investigate tIte poasible role of the MAP kinase cascadein ceramide action, experimentswith

PD098059or apigenin were conducted.PD098059has beendescribedas a selectiveinhibitor of MAPkinasekinase(MEK) [8]. It binds to unactivatedMEK preventingita activationby raf-1 or MEK kinase[1]. Apigenin is aninhibitor of tIte MAP kinasecascade,probablyby acting at tIte raf-1 kinaselevel [17].Treatmentof primary astrocyteswith 100 ±MPD098059abolishedtIte induction of NGF secretionelicitedby SMaseand C2-cer (Table 1). TIte dose-responsecurve of inhibition showedan ICsoaround20pM (Fig. 4A). Treatmentof celíswith 25 pM apigeninpreventedtheSMaseandC2-cerinductedsecretionof NOF (65% and 85% inhibition respectively)(Table 1), the ICsovalue is approximately10 ¡.tM (Fig. 4B).Therefore, data indicate that the IVIAP kinase cascademay be implicated in the regulationof NGFsynthesisby SM hydrolysis.

3.4. Cera,nideincreasestirepirospirorylation extentofraf 1 anáMAPk¿naseactiuityTo further study tIte intracellular effects of ceramide, experimentswere undertakento study the

phosphorylationstateof raf-1. Immunoprecipitationof raf-1 from 32P-labelledcefls is shown in Fig. 5.Short treatmentof astrocyteswith SMaselead to an increasedphosphorylationof raf-1, whereasC2-cerfailed to induce raf-1 phosphorylation.In order to asaesthe role of endogenousceramidesin raf-lregulation we employed the more physiologicalceramide analog N-octanoylceramide(Ca-cer).Ca-certreatmentof celís resultedin an enhancedphosphorylationof raf-1, similar to that elicited by SMase(Fig. 5). SMaseand Cs-cer-inducedphosphorylationwasstill detectableafter 30 minutesof atimulation(datanotshown).Changesin thephosphorylationstateof raf-1 will result changesin ita kinaseactivity.Thisobservationthusconfirma previousreportsabouttIte role of ceramidein raf-1 phosphorylation[2,38]

MAP kinaseactivity was meassuredasphosphorylationlevelsof a highly selectivepeptidesubstratefox p42/p44MAP kinase [5]. Astrocyte treatmentwith C2-cer, Cs-cer and SMase evokedMAP kinaseactivation (Table 2). Activation elicited by SMase was luigher tItan that elicited by both ceramideanalogs.Specificity of MAP kinase activationwas corroboratedby the lack of effect of the inactive C

2-dihydroceramide(Table2). Moreoverpretreatmentwith the IVIAP kinasecascadeinhibitor

0 20 40 60 50 100 120 140

time Cicure)

5

Page 47: ¡1ID DII IIMUllID - UCM

1. Gatve-Roperhet al

Table 1

Addition pg NGF/mlNone 31.7 ± 8.9SMase 588.0 ± 66.4 (n5> aBlM + SMase 509.4 ± 43.5 (n3) aFR + SMase 369.3 ± 87.0 (n3) a, bIBMX + Smase 355.7 ± 34.7 (n3) a, 1,API + SMase 205.5 ± 32.7 (n3) a, bPD 098059+ Smase 60.7 ± 17.0 (n3) b02-cer 383.0 ± 46.8 (n4) aBlM + C2-cer 363.2 ± 40.3 (n=3)aFK + C2-Cer 154.7 ± 67.8 (n4) a, cIBMX + C2-Cer 157.4 ± 44.4 (n4) a, cAPI + C2-Cer 62.8 ± 19.9 (n4) cPD 098059+ C2-Cer 43.8 ± 5.6 (n3) cC2-dihydrocer 35.0 ± 17.0 (n3)

Table 1. Effect of different agentajo sphingomyelinaseand C2-cerinduction of NGFsecretion.Primaryculturesof astrocyteswereincubatedwith the indicatedagentsfor 24h. 2 kM BlM, 10 gM FK, 100 gM IBMX, 25 pM API and 100 pM PD 098059wereadded 1hourprior to 1 U/mI SMaseor 25 ~íM C2-cerstimulation. Data are the means±5.D. ofthe numberof independentexperimentaindicated in eachcase.Statistical analysiswasperformed by Studentst-test, significant differences are indicated: a, P.c0.01 versusincubationswith no addition; b, P<o.01,versusincubationswith SMasealone;c, P.c 0.01,versusincubationswith Ctcer alone).

1 2 3

NQP e e

APP~~S fl

Fig. 3 Northernblot anatysisof NGF mRNA accumulation.Lane1, untreatedcelís;lane 2,1 U/ml SMase;lane 3, 25 ~tMC2-cer,After 24 h incubationof Northern blot wasperformedas describedin Matherial and Methodawith NGF and API’ cDNA probes.Essentially identical results were obtainedlo threeindependentexperiments.

PD098059,.counteractedceramideinduction of MAP kinaseactivity (Table 2). Theseresults supportthe notion that signaltransductiontriggeredby SM hydrolysismay activateMAP kinaseandpoint toarole of tIte MAP kinasecascadein tIte regulationof NGF secretionby the SM pathway.

4. Discussion

The presentreportshowsthat exogenousadditionof neutralSMaseor C2-cer,a celípermeableanalogof ceramide,inducesa dose-responseandtime-dependentstimulation of NGF synthesisand secretion.The effect of addedSMaseindicatesthat endogenouslyproducedceramidesmay also be able to induceNGF synthesisandcorroboratesthe specificityof the ceramideanalogaction. Thefact that increased

6

Page 48: ¡1ID DII IIMUllID - UCM

Induction of nervegrowth factorsynthesisby sphingomyelinaseandceramidejo primary astrocytecultures

700

con

500

1 soóir;az— 300

200

100

o

‘ca

600-

500-

~ 4000-a— 200•

200

‘Co

o

Fig. 4 Dose-response inhibition by PD 095059 and apigenin of sphingomyelinaseand C2-ceramide induction of NGF secretion.Primar>’ cultures of astrocytes were incubatedwith 1 U/ml SMase (@) and 25 gM C2-cer (O) andthe indicateddosesof PD098059 (A) or apigenin(13) for 24 h., nadsecretedNGF subsequentassayed.Data are the meana±S.E.M. of two independentexperimenta, with determinations in triplicate.

NGF protein secretionto the celí supernatantwasaccompaniedby an increasein NGF mRNA levels,togetherwith the dataobtainedwith transcriptionand transíationinhibitors, supportsthe notion thatincreasedNGF outputis tIte result of an augmentedsynthesisof NGF.

Regulationof NGF production by a numberof agentsin primary astrocyteshasbeen shown to bedependenton PKC activation [7, 24]. However, IL-143 and vitamin Da induce NGF production bymechanismsindependentof PKC activity [25, 28]. Theseagentsare also well known to exert someoftheir effectsthroughtIte SM pathwayand tIte generationof ceramide[13, 26, 33]. It is wortIt noting thatlipopolysaccharide,which is able to mimic sorne of the effects of ceramide [16, 36] is also a PKC-independentinductor of NGF secretion [11]. We Itave previously reported that PC-PLC is able toenhanceNGF synthesisby primary astrocytesby a signaling mechanismwhich is only partiallydependentof PKC [19]. PC-PLCaction, may in turn be coupledto ceramidegeneration[30]. In fact,recentresults show that short treatmentof CG glioma celís with PC-PLClead to tIte translocationandphosphorylationof PKC ~ [10], which is one of the molecular targets of ceramide [20]. Orn- resultsindicatethat ceramideinductionof NGF in primary astrocyteculturesis independentof PKC. HencetheSM pathway may representone of tIte main PKC-independentsignaling pathwaysleading to theregulation of NGF production by glial celís. TItis is in line with previous reports showing tIternvolvementof the SM pathwayin the inductionof IL-6 synthesis,inhuman astrocytomacelís [9]. Raf-1is a memberof tIte MAP kinasecascadethat is activatedupon cellular stimulation with a numberofeffectorsaspro-inflammatorycytokines[2]. The precisernechanismby which raf-1 is

0 20 .40 00 00 tOD

PO 090059 I~JM]

H

0 5 lO 15 20 25

[API) iM

7

Page 49: ¡1ID DII IIMUllID - UCM

1 Galve-Roperhet al.

3

a

o

½

1%Y

Fig. 5 Immunoprecipitation of raf- 1.32Plabelledcelia were atimulatedfor 15 minuteswith the indicatedagentsand raf-l was,

subsequently immunoprecipitatedwith a polyclonal anti-raf-1 antibod>’. Immunoprecipitates were subjectedto SDS-PAGE andautoradiograph>’. Densitometrie dataare means±S.E.M. of two independent experiments.

Table 2

Addition pmol/min/mgNone 98.6 ± 22.6SMase 555.5 ± 17.7 aC2-cer 282.9 ± 11.5 aCa-cer 290.1 ± 2.0 aC

2-dihydrocer 103.6 ± 5.9PD 098059 + C2-cer 125.3 ± 9.6 bPD 098059+ Cs-cer 155.9 ± 8.4 c

Table 2. Effect of ceramideanalogaand sphingomyelinaseon MAP kinaseactivity. Primar>’ cultures of astrocyteswere incubatod with 1 U/mI SMase,25 vM C2-cer,or 25 ~tM C5-cerfor 15 mm. 100 ~M PD 098059was added 1 hourprior to stirnulation. Data, expressed as pmol phosphatetransferred/min/mg prutein, are the means±S.D. of threeindependent experimenta performed in triplicate. Statistical analysiswas performed by Studentst-tost, significantdifferences are indicated: a, P.cO.O1 versus incubationawith no addition; b, P.co.O1,versus incubationawith C2-ceralone; c, P.c 0.01, versus incubatinas with Cs-cer alone).

activated is as yet uncertain, but it is generally agreedthat changesin its stateof phosphorylationproducechangesin its kinaseactivity. Recentreportsindicatethat raf-1maybe phosphorylatedby TNF-activated CAPK, increasingita activity towards MEK [38]. Thereforeit seemathat the SM pathwaycould be linked with the MAP kinasecascade,probablyat tIte levelof raf-1,through tIte activationof theCAPK [2, 29, 38]. Our resultaindicatethat tIte regulationof NGF syntItesisby SMaseandceramidemaydependon the activationof theMAP kinasecascade.It shouldbe notedthat SMase-

8

v~ u:

Page 50: ¡1ID DII IIMUllID - UCM

Jaduction of nerve growth factor synthesis by sphingomyelinase and ceramide fa primar>’astrocytecultures

inductionof NGF secretionwasless sensitiveto MAP lcinaseinhibition tItan C2-cer-inductionof NGFsecretion,in concordancewith its greatereffect on MAP kinaseactivity.

It hasbeendescribedthat hyperphosphorylationof raf-1 inducedby intracellular cAMP-raisingagentsleads to the blockade of tIte MAP kinase cascade[37]. A similar inhibitory effect of tIte MAP kinasecascadeby cAMP-increasingagentshas also beendescribedin astroglial celís stimulatedwith growthfactorsandLPS [18, 35]. Resultsin tIte presentreportshowthat treatmentwith FK andIBMX abolisheshalf of the ceramideaction on NGF production by astrocytes.Thus, tIte existenceof an inhibitorycrosstalkbetweenthe SM and the cA1VIP pathwaysappearsto exist also in the regulation of NGFsynthesisby ceramide.

The possibleinvolvementof tIte IvIAP kinasecascadeasthe signalingmechanismunderlyingceramidegenerationis enforcedby the observedincreasein raf-1 phosphorylationandMAP kinaseactivity astheresult of short-term treatmentwith SMase or ceramide analogs. Short-chain ceramideanalogs aresupposedto be biologically more active than their long chain equivalentslikely due to the increasedsolubility of the former. However, long chain ceramideshavebeen describedto be more potent thanshort chain ceramidesin activating raf-1 [15].This is in concordancewith our results showing anrncreasedphosphorylationstateof raf-1 from Cs-cer-stimulatedtreatmentof cells,whereasC2-cerfailedto induce such effect. Phosphorylationof raf-1 by the ceramideanalogCa-cerhas beendescribedalsopreviouslyby otherauthors[38]. Thus,it seemsplausible that ceramideactionon NGF expressionmaybe mediatedby activationof theMAP kinasecascadeat the levelof raf-1 andp42/p44MAP kinase.

In conclusion, we report here tIte role of the SM pathway in tIte regulationof NGF synthesisandsecretionby cultured rat astrocytes.The action of ceramideon NGF production seemsto be partiallymediatedby activationof the MAP kinasecascade.The regulatoryaction of ceramidemay be relatedtopreviouslydescribedeffectsof pro-inflammatory cytokinessuch as IL-ljB andTNFa, aud is thereforeofmaximal importancein our understandingof the processesoccurring during inflammatorybrain lesionsandcertainneuropathologicaldisorders.

AcknowledgmentsThe authors wisIt to thank Dr. P. Brachet, and members of his laboratory for sharing their

methodologiesfor Northern blot, Dr. M. Guzmánand TAS. Branton for their advice and valuableassistance.Measurement of ELISA were performed at the Plan Nacional de Prevención de laMinusvalía, Hospital Gregorio Marañón, under the supervision of Dr. E. Dulín. This work wasfinancially supported by Comisión Interministerial Ciencia y Tecnología (SAF 96-0113), Fondo deInvestigacionesSanitarias(FIS 97/0039-01),andAcción IntegradaHispano-Francesa(N 96/154).

References[1] Alessi DR., CuendaA., CohenP., DudleyD.T., andSaltielAR. Fn 098059is a specificinhibitor of theactivationof niitogen-activatedprotein kinaselii vitro anáin vivo. J. Rio?. Client. 270 <1995)27489-27494.[2] Belka C., Wiegmann1<., Adam U., HollandR., NeulohM., HerrmannF., KronkeM. audBrachMA. Tumornecrosisfactor(TNlD-a activatesc-raf-1 kinasevia the p55 TN?F receptorengagingneutralsphingomyelinaseEMBOJ. 14(1995)1156-1165.[3] BhatNR. Signal transductionmechanismsin glial celis. fleo. Neurosci.17 (1995) 267-284.[4] Brodie C. Differentialeffectsof TItí andTh2 derivedcytokineson NGF synthesisby nxouseastrocytes.FIJESLetters394 <1996)117-120.[5] Clark-Lewis1., SangheraJ.S.andPelechS.L.Definition of a consensussequencebr peptidesubstraterecognitionby p44mpk,tIte meiosisactivatedmyelinbasicproteinkinase.J.Rio?. Chem.266 (1991)15180-15184.[6] Dekosky ST., GossJ.R., Miller P.D., StyrenSO.,KochanekF.M., andMarion O. Upregulationof nervegrowthfactorfollowing corticaltrauma.ExperimentalNeurology130 (1994) 173-177.[7] D’Mello SR.audHeinrichO. Inductionof nervegrowthfactorgeneexpressionby 12-O-tetradecanoylphorbol13-acetate.J. Neurochem.55 (1990)718-721.[8] DudleyD.T., PangL., DeckerS.J.,BridgesAS. andSaltiel AR. A syntheticinhibitor of the mitogen-activatedproteincascadeProc. Natí.Acad. Sci.USA 92 (1995)7686-7689.[9] FiebichHL., Lieh It, BergerM. andBauer5. Stimulationof the sphingomyelinpathwayinducesinterleukin-6geneexpressioninhumanastrocytomacelís.J. Neuroi,n,nuno?. 63(1995)207-211.

9

Page 51: ¡1ID DII IIMUllID - UCM

1. Galve-Roperhet al.

[10] Galve-Roperh1., MalpartidaJ.M.,HaroA. and Diaz-Laviada1. Addition of phosphatidylcholine-phospholipaseC inducescellularredistributionandphosphorylationof proteinkinaseC 4 in CG glialcelís.Neurosci.Letters219(1996)68-70.[11] Galve-Roperh1., MalpartidaJ.M., HaroA. BrachetP.and Ojaz-Laviada1. Regulationof nervegrowth factorsecretionandmRNA expressionby bacteriallipopolysaccharidein primaryculturesof ratastrocytes.J.Neurosa.Res.(in press).[12]HannunY. A., ObeidL. andObaibo0.5. Ceramide.A Novel secondmessengerandlipid mediator.In Belí R.B.et al. (Eds)Handbookoflipid research,uo?.8:Lipid second ~nessengers.PlenummPress,NewYork, 1996,Pp 177-204.[13]HannunY. A. Functionsof ceramidein coordinatingcellularresponsesto stress.Science274 (1996) 1855-1859.[14]Hattori A., HayashiE andKohnoM. Tumor necrosisfactor (TNF) stimulatestheproductionof nenegrowthfactor in fibroblastsvia the 5S-kOatype 1 TNF receptor.FIJESLetters379 (1996)157-160.[15]Huwiler A., BrunnerJ.,Hummel R., VervoordeldonkM., Stabel5., Van derBoshH. andPfeilschifterJ.Ceramide-bindingandactivationdefinesproteinkinasec-rafas a ceramide-activatedproteinkinase.Proc.Nat?.Acad. Sci. USA93 (1996)6959-6963.[16]JosephC.K., Wright SO.,BornmannW.G., RandolphJ.T. KumarER.,BittmanR., Liu it andKolesnickR.Bacteriallipopolysaccharidehasstructuralsimilarity to ceramideaudstimulatesceramide-activatedproteinkinasein myeloidcelís.J. Rio?. Client. 269 (1994)17606-17610.[17]Kuo M. andYang N. Reversionof v-H-ras-transformedMII 3T3 celís by apigeninthroughinhibiting mitogenactivatedprotein kinaseandits downstreamoncogenes.Biochirn. Biophys.Res.Comrnun..212 (1995)767-775.[18]KurinoM., FukunagaK., UshioY audMiyamoto E. Cyclic AiMP inhibits activationof mitogen-activatedproteinkinaseandcelí proliferationin responseto growth factorsin culturedrat cortical astrocytes.J.Neurochem.67(1996)2246-2255.[19]Laviada1.0., BaudetC., Galve-Roperh1., NaveilhanP. andBrachetP. Phosphatidylcholine-phospholipaseCmetliatesthe inductionof nervegrowthfactorin culturedglial celís.PEESLetters364 (1995)301-304.[20]Lozanoit, BerraE., MunicioMM., Diaz-MecoMT., Oominguez1., SanzL., andMoscatJ.ProteinkinaseC 4isoform is critical fox KB-dependentpromoteractivationby sphingomyelinase.J. Biol. Chein.269 <1994)19200-19202.[21]Mallat M., HoulgatteR., BrachetP. andProchiantzA. Lipopolysaccharide-stimulatedratbrainmacrophagesreleaseNGF in Vitro. Deueloprnenta?Bio?ogy133 (1989)309-311.[22]Merrilí SE. andBenvenisteEN. Cytokinesin infiammatorybrain lesions:helpful andharniful TrendsinNeuroscience19<1996)331-338.[23]Montero-Menei C.N., Sindji L., GarcionE., MegoM., CouezO., GamelinE. andDarcyF., Earlyeventaof theinfiammatoryreactioninducedin ratbrainby lipopolysaccharideintracerebralinjection:relativecontributionofperipheralmonocytesandactivatedmicroglia.Brain Res.724 (1996)55-66.[24]Neveu1., JehanP., HoulgatteR., Wion O. andBrachetP. Activation of nerve growthfactorsynthesisbyphorbol 12-myristate13-acetate:role of proteinkinaseC BrainRes.570 (1992)316-322.[25]Neven 1., NavejihanP., JehanF., Baudet C., Wion O., De LucaH.P. andBrachet1’. 1,25-Dihydroxyvitamin03regulatesthe synthesisof nervegrowth factorin primar>’ culturesof glial celís.Mo?. Brain Res.24(1994)70-76.[26] OkazakiT., BielawskaA., OomaeN., Belí R.M. andHannunYA. Characteristicsandpartialpurificationof anovel cytosolic,magnesiumindependent,neutralsphingomyelinaseactivatedin the earlysignaltransductionofla,25-dihydroxyvitaminDa-inducedHL-Go celí differentiation.J. Rio?. Client. 269 <1994)4070-4077.[27]PlússKM., Pfeilschifter5., Múhí H., Huwiler A., BoeckhC. andOtten U. Modulatoryroleof platelet-derivedgrowthfactor on cytokine-inducednenegrowth factorsynthesisin rat glomerularmesangialcelís.Rioche,n.eJ. 312(1996)707-711.[28]Pshenichkin5.?.,SzekelyAM., andWiseB.C. Transcriptionalandposttranscriptionalmechanismsinvolvedin theinterleukin-1,steroid,andproteinkinaseC regulationof nervegrowthfactorin corticalastrocytesel.Neurochern.63 (1994)419-428.[29] RainesMA., Kolesnick R.N. andGoldeD.W. Sphingomyelinaseandceramideactivatemitogen-activatedproteinkinasein mnyeloidHL-GO cells. el. Rio?. Client. 268 (1993)14572-14575.[30]Schutze5., PotthoffK., MachleidtT., BerkovicO., WiegmannK. andKronke M. TNF activatesNF-KB byphosphatidylcholine-specfficphospholipaseC-induced“acidic’ sphingomyelinbreakdownCeIl 11<1992)765-776.[31]ScottJ.,SelbyM., Urdea M., Belí 0., QuirogaM., andRutterW.J.Isolation andnucleotidesequenceof acDNA encodingtheprecursorof mousenenegrowthfactor.Nature 302 (1983)538-540.[32]Shivers BO. Hilbich C., Multhaup0., SalbaumM., BeyreutherK., anáSeebergPH. Alzheimersdiseaseamyloidogenicglycoprotein:expressionpatternin ratbrainsuggestsa role in cdl contact.EMROJ. 7 (1988)1365-1370.[33]Spiegel5., FosterO. andKolesnickR. Signaltransductionthroughlipid secondmessengers.Current Opinionin Cel? Bio?ogy8(1996)159-167.

10

Page 52: ¡1ID DII IIMUllID - UCM

Inductionof nervegrowthfactorsynthesisby sphingomyelinaseandceramidefa primaryastrocytecultures

[34] Testi R. Sphingomyelinbreakdownandcelí fate.TrendsBiochern.Sci. 21<1996)468-471.[35] Willis SA. andNisenP.D. Oifferential induction of themitogenactivatedprotein kinasepathwayby bacterial[ipopolysaccharide in culturedmonocytesandastrocytes.Bioche,n.eJ. 313 <1996) 519-524.[36] Wright S.D. andKolesnick R.N. Doesendotoxinstimulatecelísby mimicking ceramide? Imrnuno?ogyToday 16(1995)297-302.[37] Wu J., OentP.,JelinekT., WolfmanA., WeberM.J. andSturgill T.W. Inhibition of theEFO-activatedTvIAPkinasesignalingpathwayby adenosine3,5-monophosphate.Science262(1993)1065-1069.[381YaoB., ZhangY., Oelikat5., Mathias5., Basu 5. andKolesnickR. Phosphorylationof Raf by ceramide-activatedprotein kinaseNature 378 <1995)307-310.[39]YoshidaK. andGageF.H..Fibroblastgrowth factorsstimulatenenegrowth factorsyntbesisandsecretionbyastrocytes.Brain Res.538 (1991) 118-126.[40]Yu J.,Wiley R.G., andPerez-PoloR.J.AlteredNGF proteinlevelsin differentbrain areasafter immunolesion.~I.Neuroscí.Res.43(1996)213-223.

11

Page 53: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 45

RESULTADOS Y DISCUSIÓN

Regulaciónde la secrecióndeNGFpor la PC.PLC

El estudiode la acciónde la PC-PLCen la regulaciónde la síntesisde NGF se

justifica por dos importantes razones. Resultados preliminares pusieron de

manifiesto la importancia de la acción de esta fosfolipasa C en relación a otras de

diferenteespecificidadpor el substrato.Así, aunquela PI-PLCy PLD tienenun efecto

inductoren la secreciónde NGF, esteescincovecesmenorque el mostradopor la PC-

PLC. En estesentido,el sistemade transducciónde señalesacopladoa la hidrólisis

de fosfoinosítidos,presenteen astrocitosencultivo primario, no pareceseruno de los

mecanismosde regulación de expresión del NGF (Jehan et al., 1995). A estas

observacionesse suma el hechode quela hidrólisis de PC podríaser importante en la

generaciónde un aumentode larga duración en los niveles intracelularesde DAG

(Asaoka et al., 1996; Nakamura et al., 1996). Este efecto de la hidrólisis de PC

permitiría explicar ciertos mecanismosde regulación celular a largo plazo como el

crecimiento,la diferenciacióncelular, o la expresióndel gen de NGF, consideradode

expresióntardía.

La inducción de NGF por la acción de la PC-PLC exógenaes parcialmente

dependientede la actividad de cPKCs, dependientesde Ca2~ y DAG, como pone de

manifiesto el efecto inhibidor de la bisindoleilmaleimidaOF 109203X (BlM). Este

efecto coincide con el observado al disminuir los niveles de PKC por exposición

prolongadade los astrocitos a ésteresde forbol (“downregulation”). Se observa

ademásque la SF, productodel metabolismode las ceramidaspor una ceramidasa

(Nikolova-Karakashianet al., 1997), escapazde inducir la secreciónde NOF en igual

extensiónque la PC-PLC en célulaspreincubadascon BlM o con los niveles de PKC

disminuidos por el efecto de “downregulation” causadopor ésteresde forbol. Estas

observacionescoincidencon evidenciasexperimentalesen otros sistemascelulares,

que implican a la PC-PLC como posible activador de la vía de señalizaciónde la

SMasa-ceramida,responsablede la generaciónde ceramidas(Schútzeet al., 1992;

Múller et al., 1994; Wiegmanet al., 1994).Se planteapor tantola hipótesisde que la

acción de la PC-PLC podría activar la síntesis de NGF por un doble mecanismo:

generaciónde DAG y activaciónde cPKCs, y por otro activaciónde la hidrólisis de

esfingolipidos.

Paraestudiarel efecto de la vía de la SMasa-ceramidaen la síntesis de NGF

utilizamos el análogopermeablede ceramida, C2-ceramiday el tratamiento con

SMasaexógenade Staphy¿ococcusaureus.La estructurade lasceramidaspermeables

Page 54: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 46

con una cadenaadiladamás corta facilita el paso de estos compuestosal interior

celular (Biewlaskaet al., 1992). Por otra parte el tratamientocon SMasaexógena

generaceramidaendógenapor la hidrólisis de la SM situadaen la caraexternade la

membranaplasmática(Olivera et al., 1992).Aunquese ha descritola existenciade

ciertasdiferenciasen las respuestasinducidaspor estosanálogosy las ceramidasde

origenendógeno(Andrieu et al., 1996; Zhanget al., 1997), la utilización de estetipo

de aproximaciónexperimentalseconsideraválidaparael estudiode la regulaciónde

numerososprocesoscelularespor la vía de señalización de la SMasa-ceramida

(Fiebichet al., 1995; Yao et al., 1995; Casaccia-Bonnefilet al., 1996; Cuvillier et al.,

1996;Zhanget al., 1997).

Regulaciónde la secrecióndeNGFpor diferentes componentesde la vía de la SMasa

Uno de los primerosinterrogantesque se planteanal estudiarel papeldeJa

vía de la SMasa-ceramidaen la regulaciónde la síntesisdel NGF esel de determinar

cual o cualesde susintermediariospuedenserresponsablesdel efectoreguladorde la

síntesisde NGE. La SF induceun aumentode aproximadamentecinco vecesen los

niveles extracelularesde NGF respectode las células control. Sin embargo, el

derivadofosforilado,SF-1-P,potencialmediadoractivo de la SE (Spiegelet al., 1997)

carecede efectoen la secreciónde NGF (resultadosno incluidos). Por otro lado, las

ceramidasson inductoressignificativamentemás potentesde la secreciónde NGF

que la SF. Estasobservacioneshacensuponerque el efecto de la SF podría estar

mediado por su pasoa ceramida(Goldkorn et al., 1991), sin descartarun efecto

directo de la propiaSE.

La diferenciaobservadaentreceramiday SE en la regulaciónde la síntesisde

NGF, suponeuna aportaciónal debatesobrela significaciónbiológica que tiene la

induccióndeNGE por los mensajerosderivadosde esfingolipidos.Así, sehapostulado

que mientrasque la generaciónde ceramidaesresponsablede respuestasbiológicas

como la diferenciacióncelular, supresióndel crecimientoo apoptosis(revisadopor

Hannun, 1996; Testi, 1996), la SE y SE-1-P parecenser inductoresde respuestas

mitogénicas(Olivera y Spiegel, 1993; Spiegel et al., 1997). En estesentido, se ha

propuestorecientementeque citoquinaspro-inflamatoriasy factoresde crecimiento

favorecenla acumulaciónde uno u otro tipo de mensajerosen función de la diferente

regulaciónque ejercensobrela actividadSMasa,ceramidasa,y SE quinasa(Coroneos

et al., 1995; Nikolova-Karakashianet al., 1997), de maneraque el balanceentrelos

dos tipos de esfingolípidospodría regularel equilibrio entrediferenciación/muerte

Page 55: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 47

celular y división/proliferación celular. Se ha demostradorecientementeque, en

efecto, la SF-1P es capazde revertir la muerte celular programadainducida por

ceramida(Cuvillier et al., 1996). Si este esquemaes válido en células gliales, la

síntesisde NGF estaríaasociadaa los procesosde diferenciacióncelulare inhibición

del crecimiento,y por tantoestimuladay coordinadacon respuestasde estréscelular.

La estimulaciónpor ceramidasno resultaaparentementecitotóxica

La generaciónde ceramidasademásde inducir apoptosisen numerosos

sistemascelulares,pareceseruno de los mecanismosresponsablesde la citotoxicidad

de citoquinaspro-inflamatoriascomo el TNFcx (llannun, 1996; Testi, 1996). Por todo

ello, es importantecomprobarque la incubaciónde las células con los diferentes

moduladoresutilizados no es citotóxica. Esto se comprobócualitativamentedadala

ausenciade célulasdespegadasdel soportede cultivo despuésde los tratamientosde

24 horas.Además,se analizóla viabilidad celular tras las incubacionesmedianteel

“ensayode MTT”, basadoen la reduccióndel anillo de tetrazolio por la actividadde

las deshidrogenasasmitocondriales.En el intervalo de concentracionesutilizado de

C2-ceramidasólo las célulastratadascon C2-ceramida 50 ~.iMpresentanuna menor

viabilidad celular, que coincide con una disminución en los niveles de NGF

extracelulares.La ausenciade efecto citotóxico de las ceramidassobre cultivos

primarios de astrocitos,concuerdancon resultadosde otros autoresque evidencian

que los astrocitosson resistentesa la muertecelular inducidaa travésde la ruta de

la SMasa-ceramida(Casaccia-Bonnefilet al., 1996a;b).

Regulación de la síntesis y secreción de NGF por el aumento en los niveles

intracelularesdeceramida

Los resultadosexpuestosponen de manifiestoun significativo aumentoen la

producciónde NGF inducido porel análogopermeablede ceramida,C2-ceramida,así

como por acción de SMasa exógena.La inducción de NGF por la generaciónde

ceramidasesindependientede la activaciónde cPKCsdependientesde Ca2~ y DAG,

como pone de manifiesto la ausenciade inhibición por BlM. La inducción de la

síntesisde NGF estimuladapor ceramidasseinhibe parcialmenteporel aumentode

los nivelesde cAMP. El efectoinhibidor del cAMP sobrela inducciónde NGF Coincide

con el observadoparaotrosinductoresde NGF comoel suero,PMA o TGF-fBl (Jehan

et al., 1993;1995;Hanet al., 1994).

Page 56: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 48

Implicaciónde la cascadadeMAPKen la síntesisdeNGF inducidapor ceramidas

Los resultadosobtenidosmuestrancomo la secreciónde NGF inducida por

ceramidasse inhibe por apigeninay el inhibidor sintéticoPD 098059, lo que sugiere

quela induccióndependede la activaciónde la cascadadeMAPK (Alessi et al., 1995).

En efecto, tanto los análogospermeablesde ceramidacomo la SMasa exógena

incrementan la actividad p42/p44 MAPK en cultivos primarios de astrocitos,

confirmándosela especificidadde esta activación por el inhibidor PD 098059. El

estudiodetalladode la cinéticade activaciónde MAPK porC2- y C8-ceramidamostró

que en todos los tiempos ensayadosla activaciónde MAPK es mayor en células

tratadas con C8-ceramida que con C2-ceramida (datos no incluidos). Estas

observacionesconfirman que los análogosde ceramidade cadenaaciladamáslarga

sonmejoresactivadoresde Raf-1 (Huwiler et al., 1996). La activación de MAPK por

ceramidassemantieneal menosdurante60 minutos,un efectosostenidoque apoya

un posiblepapelde estesistemade fosforilación en la regulacióncelular a medio y

largoplazo,comola síntesisdeNGF.

El papelde la activaciónde MAPK porceramidasparaexplicaralgunosde sus

efectosbiológicos como la apoptosis,es objeto de controversia(Sasakiet al., 1995;

Coroneoset al., 1996; Pyne et al., 1996; Brenneret al., 1997). Sin embargo,es de

destacarque los análogospermeablesde ceramida inducen un aumento de la

actividadMAPK que es del mismo orden de magnitudque la activación de MAPK

producidaporotrosinductoresde la síntesisde NGF comoTNFct o LPS (Mallat et al.,

1989; Hattoriet al., 1996).

EstudiodetalladodelposiblemecanismodeactivacióndeMAPKpor ceramidas

La activaciónde MAPK por ceramidaspuedeexplicarsea travésdel efecto

activador de estoslípidos sobreRaf-1 (Yao et al., 1995; Huwiler et al., 1996). La

estimulaciónde los astrocitoscon C8-ceramidao SMasa,produceun aumentoen los

nivelesde fosforilación de la proteínaRaf-1 inmunoprecipitada,lo que explicaríala

activaciónobservadade MIAPK. Puestoque la activaciónde Raf-1 se asociacon una

translocacióna membranaplasmática (Stokoe et al., 1994), se estudió la posible

translocaciónde Raf-1 tras la estimulaciónpor ceramidas.Como se muestraen la

figura de la siguientepágina,el tratamientocon ceramidas(SMasaexógena1 U/ml o

análogospermeables25 ¡M) durante 15 mm aumentalos nivelesde proteínaen

fracción particulada.El efectode la OS-ceramidaes de nuevo de mayor intensidad

que el obtenidocon la C2-ceramida,lo que coincide con los resultadospreviamente

Page 57: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 49

descritos.La transiocaciónde Raf-1 a membranainducida por C8-ceramidaocurre

muy rápidamente,desdelos primeros 5 minutos de estimulación,y se mantiene al

menos durante los primeros 60 mm. La translocacióny activación de Raf-1 va

acompañadade la fosforilación en tirosina y serina/treonina(Morrison y Cutíer,

1997). La fosforilación en tirosina es uno de los marcadorescaracterísticosde

activaciónde laproteínadependientedeRas(Maraiset al., 1995)y la fosforilaciónen

serina/treoninapuede estar mediada por PKC o por la propia proteína quinasa

activadapor ceramidaCAPK (Yaoet al., 1995; Morrisony Cutíer, 1997).En la figura

inferior se muestracomoel aumentode los niveles de fosforilación de Raf-1 encélulas

marcadascon 32p, también se pone de manifiestocon un anticuerpoespecíficopara

tirosina fosforilada. La especificidad del marcaje se demuestrapor la ausenciade

efecto del inhibidor H7 de serina/treoninaquinasas,mientras que el inhibidor de

tirosinaquinasa,tirfostinaAG126, revierteparcialmentela fosforilacion.

o elo —

- —

~4 ~ — O +~ — ~ O .~ O <~5 C 0 0> <3) <3) 0)

~ 2 ~ 3 00~H00000

— — — —Raf-1

— — —

Regulaciónde Raf-1 por ceramidas.1/ Translocaciónde Raf-1 a la fracción particuladaencultivosprimarios de astrocitostratadosdurante15 mm con SMasa(Saureus)1 U/mí, C8- yC2-ceramida25 pM. 2/ Cinéticade la transiocaciónde Raf-1 inducidapor C8-ceramida25 pM.3/ Inmunoprecipitaciónde la proteína Raf-1 revelada con un anticuerpopoliclonal anti-fosfotirosina.Lascélulasse estimularoncon CS-ceramida25 pM durante15 mm y dondeseindica preincubadasdurante 1 It. con H7 o tirfostina AG126 100 ~tM.Los resultadosde lafigura correspondenaun experimentorepresentativode otros 3 o 5 realizadosy se obtuvieronmediantelosprocedimientosdescritosenlas publicacionesincluidasen la presentememoria.

Page 58: ¡1ID DII IIMUllID - UCM

2. REGULACIÓN DE LA PKC ~ POR

MENSAJEROS LIPÍDICOS EN

CÉLULAS GLIALES

Page 59: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 50

En este capítulo se estudia el posible papel modulador de

diferentesmensajeroslipídicos sobre la isoforma ~ de PKC atípica.

La PKC ~ estárelacionadacon la activación de la cascadade MAPK

en diferentesmodelosexperimentales(Berraet al., 1995; Liao et al.,

1997). Por otro lado, las ceramidasejercenun efectoreguladorde la

actividad de PKC ~, queesresponsablede algunasde las respuestas

celulares de la vía de la SMasa-ceramidacomo la activación del

factor de transcripción NF-KB (Lozano et al., 1994; Múller et al.,

1995). Estasobservacionessugierenla posibilidadde que la proteína

PKC ~ este implicada en el sistema de transducción de señales

iniciado por la PC-PLC,mediandola activaciónde Raf-1 y cascadade

MAiPK por ceramidas,y regulandoen ultima instanciala síntesisde

NGF.

Primeramentese exponeel efecto de la actividad de la PC-

PLC exógenasobrela PKC ~ en la línea celular de glioma C6 y,

posteriormente,se estudia el efecto que en esta misma proteína,

PKC ~, tienen los análogos permeablesde ceramida y la SMasa

exógena.

Page 60: ¡1ID DII IIMUllID - UCM

ELSEVIER

NiDROSCIINCELITTLE

NeuroscienceLetters 219 (1996) 68—70

Addition of phosphatidylcholine-phospholipaseC inducescellularredistribution and phosphorylation of protein kinase C ~ in C 6 glial celis

IsmaelGalve-Roperh,JoseM. Malpartida, AmadorHaro, InésDiaz~Laviada*

Departamentode Bioquímica y Biología Molecular 1, Facultad de Químicas, Universidad Complutense> 28040 Madrid, Spain

Received 7 August 1996; revised version received 5 October 1996: accepted8 October1996

Abstract

Phosphatidylcholine breakdown has beeri shown ro play a critical role in signal rransduction involving generation of a number ofsecond messengers [Exton,3.13., Biochim. Hiophys. Acta, 1212 (1994) 26-421. lo the present repofl we demonstrate by immunofluor-escence Ihat short-treatment of C 6 glial celis with phosphatidylcholine-hydrolyzing phospholipase C (PC-PLC), changes the intracel-lular localization of protein kinase C (PKC) ~ from the cytoplasm to a perinuclear region. Western blol analysis also showed aredistributiori of PKC ~ aher incubation of celís with PC-PLC. To tesL whether these changes were accompaniedby an activation ofihe enzyme.we measured the extent of phosphorylationof PKC ~by immunoprecipitationfrom >2P-labelled celís.Short-treatmentwithPC-PLCresulted in enhanced phosphorylation of the higher Mr PKC r in C 6 glial celís.

Keywords: Protein kinase C fl Phosphatidylcholine-phospholipase C; Glial celís

Proteinkinase C (PKC) is oneof themajor mediatorsofsignals upon externa! stimulation of celís by hormones,neurotransmitters,and growth factors. PKC has beenfound in mosímammaliantissues,but is particular!>’abun-dant in the brain [17]. ‘PEe manmalian PKC po]ypeptidesidentified to date by cONA cloning havebeenclassifiedinto three groups basedon two criteria, namel>’ structuralfeaturesand regulationby cofactor.TEe atypical PKCs <rand tIX isoforms)are dependent un phosphatidylserine,butdo not require Ca2~ urdiacylglycerolfor activation [4,13].

lo astrocytesand glial celís the presenceof PKC a,13,7,5, e and r isoformshas been reponed[5,7,11,14].Prufilesof PKC isoformsin rat astrocytesandC 6 gliomacelisaresimilar, although a higher expressionof &, e, and riso-forms in glioma celis hasbeendetected[14]. Recently,ithas beendemonstratedthat the PKC ~ isofonn plays animportantrole in mitogenicsignal transduction[1], neuro-na! differentiation [19], and maintenanceof long-termpotentiation [15]. Huwever, the precise mechanismbywhich PKC r activity is regulatedis not fully understood.PKC ? is not activatedby diacylglycerolor phorbol esters[13,18]andin manycelí typesincluding glial celis,PKC r

* Corresponding author. Tel.: +34 1 3944668; fax: *34 1 3944159;e-mail: [email protected]

is neither transiocatedfrom cytusul to membranenurdown-regulatedin responsetu acuteur chrunictreatmentwith phorbol esters[2]. Activation of PKC r may beachievedby ceramide[10]. The secundmessengercera-mide is generatedby the action of sphingumyelinase,which is la tum functionally coupled tu phosphatidyl-hydrolyzing phospholipaseC <PC-PLC) [16].

We haverecentí>’ shown that PC-PLCenhancesnervegrowth factor synthesisin culturedgua!celisby amechan-ism which is partially independentof the classical iso-forms of PKC [8]. In the presentreponwe show thataddition of PC-PLC inducescellular redistributionandphosphurylationof PKC ~in C 6 glial celis.

Tu testwhetherPC-PLCcouldhaveaneffect un PKC rweanalyzedihe intracellularlucalizationandtheexteníofphosphorylationof this NCC isofurm. Short-term-treat-ment of C 6 cells with exogenousPC-PLCpruduced achangein the lucalizatiunuf PKC r fromn cytuplasmtu aperinuclearmembraneregion (Fig. lA,B). Non-specificlabeling was shownafter incubationwith anti-PKCtanti-bud>’ in thepresenceuf a competingpeptideusedtu rinsethe antibody (Fig. lC).

As a further proufof the effectuf PC-PLCun the loca-lization uf PKC ~, particulate,andsolublefractiunsuf celíswere separatedby centrifugation,andPKC ~wasdetected

0304.3940C6/$12.O0 © 1996 Elsevier Science lreland Ltd. AII rights reservedPl? S0304-3940(96)13165-7

6

Page 61: ¡1ID DII IIMUllID - UCM
Page 62: ¡1ID DII IIMUllID - UCM

70 1. Oal’e-Roper/t e: al. / Neuroscience Letters 219 (¡996) 68—70

97.4 kfla-

66 kDa-

4

3

‘o=a

(o.0

(<3

1 2

2

o

o9(/

Fig. 3. Phusphorylatiou lcvcl of I’KC ~. C 6 celís wcrc iucubatcd with‘i’—t,r¡ hopluospl¡inc (A u,crslMLm) :¡nd ihen citl~cr un rcmucd ( lanc ji or1 rcatctl ¡br 15 miii 1 U/u,1 PC— PLC ( lauc 2). A lcr imm uuoprccipilal ionwi(h un uí,ci-PKC ~> amihody. pcllcts wcrc rcsolvcd by clcctrophorcsisaud subjcc¡cd lo :iuloiadiography. Dcnsiíomciric aualysis was pcrlormcdjis dcscrihcd ¡br Wcslcrn blol. Thc markcrs on thc cli corrcspoud lo ihcuhigration position ol 97.4 :índ 66 kDa molecular wcighí u,,arkcrs. ¡den-

cal rcsults wcrc obíained u Il,rcc indcpeudcut cxpcrimcuts.

order to know whether transiocation of PKC ~ correlateswiíh an activation of the enzyme, we derermined the extentof phosphorylatiou of PKC tby imrnunoprecipilarion from32P-labeled C 6 cells. Thus, incubation of >2P-labeled celiswith PC-PLC lcd lo un enhanced phosphorylation of PKC~ (Fig. 3). lucreased phosphorylation of PKC ~ aflectedone form. probably corresponding lo 83 kDa, which agreeswith its observed tran.slocation. A similar effect has beendernonstrated in epidermal celís, where phorbol myristateacetate-treated celis showed an increased phosphorylationaffecting to higher-Mr PKC ~ isoform [12].

‘Paken togeiher these results indicate that treatment of C6 cells wilh PC-PLC causes a change in the intracellularlocalization of PKC ~which becomes associated to a peri-nuclear region. Redistribution of this kinase was accom-panied by an increase in the extent of phosphorylation of(he enzyme, confirming the hypothesis that PC-PLC treat-mcm of C 6 glioma celis leads to ihe translocation andconsequent activation of PKC ~ isoform.

‘Phe aurhors gratefully acknowlcdged Dr. M. Guzman forcrilical reading of (he manuscripts and Dr. P. Brachet forproviding C, glial celís. This work was suppor(ed by agrant from FIS (94/0300). 1. Galve has a fellowship fromUniversity Complutense.

II] Berra, E.. Díaz-Meco,MT., Dom<nguez.1., Municio, MM., Sanz,L., Lozano, i.. Chapkin. RS. and Moscar, J.. Protein Kinase C ~ísoforni is cricical ter miíogenic sigua! cransduction, CeIl, 74(1993)555—563.

[2] Chen, C., Protein kinase C a, 5, and ~in C 6 glioma celís. TPAinduces Iransiocation and down-regulaíion of convencional andnew PKC isoforms bu not atypical NCC ~ FEBS Lea., 332(1993) 169—173.

[31Ufaz-Laviada, t., Larrodera, P., Nieto, J.L., Cornet, ME.. ¡Maz-Meco, MT., Sánchez, Mi.. Guddal, PH.. Johansen, T., Haro, A.and Moscal, 1., Mechanism of inhibition of adenylate cyclase byphospholipase C-catalyzed hydrolysis of phosphaíidylcholine. J.Biol. Chem., 266 (1991) 1170—1176.

14] Excon, J.H., Phosphaíidylcholine breakdown anil signal Iran,-duction, Biochim. Biopl,ys. Ada. 1212 (1994> 26—42.

l~] Gott. A.L., Mellon, B.S.. Paton, A., Groome, N. aud Rumsby.MG., Ral brain glial celís in primary culture and subculturc con-tain the 8, e and ~subspccies of protein kinase C as weil as 11wconvenjional subspecies. Neurosci. Lctt., [7! (1994) 117—l’t)

[6] Kcranen, L.M., Dulil, EM. and Newton, A., Prolein kinasc C isrcgulated in vivo by thrce funclionally distinct phosphoryíalions.Curr. Biol., 5(1995)1394—1403.

171 Kumar, 1<., Kim, B.. Rupp, 1-1. aud Madl,ukar, 13., Exprcssiou ofprolein kin:íse C isozymcs in rut glial ccli Une, NeuroRcpor¡. 4(1993) 431—434.

181 Laviatla, ID., Baudct. C.. Galve-Ropcrh. 1.. Navcilhan. P. audBrachct, P., Phosphatidylcholinc-phospholipase C mediates thcintiuction of ncrvc growth factor in culturcd glial ccli,, FEHSLett., 364 (¡995) 301—304.

19] Lchrich, R.W. -md Forrest. iN., Proicin kinase C ~ is associaícdwith Ihe n,iíotic apparalus u primary ccli cultures of thc sharkrcclal glaud, J. Biol. Chcm., 269 (1994) 32446—32450.

líO] Lozano, J., Bcrra, E., Municio, MM., Diaz-Meco, MT.,Domiuguez. 1., Sanz, L. aud Moscat, 1., Prolein km-ase C ~ isoforinis critical for xB-dcpcndcut promoter activation by sphingo-myclinase, 1. Biol. Chem., 269 (1994) 19200—19202.

III] Masliah, E.. Yoshida, K.. Shimohama, 5., Gage, F.H. and Saiioh,T., D¡ffcrcuíial expression of protein kinase C isozymcs in rat gua!eclI cultures, Brain Res., 549 (1991) 106—111.

1121 Nishikawa, K.. Yamamoto, 5.. Nagumo, H.. Maruyama. K. audKaío. R., The presence of phorbol ester responsive and non-respon-<ve forms ofihe ~isozymeof prolein kinase C in mouse epidemialcdl,. Cdl. Signal.. 7(1995)491—504.

1131 Ono, Y.. Fujii, T., Ogica. K., Kikkawa, U., lgarashi, K. andNishizuka. Y., Proicin kinase C t subspecies from rat brain: utssírucíurc, cxprcssion, and propcrtics, Proc. Nalí. Acad. Sci. USA.86(1989)3099—3103.

[¡4] Roisin, M. aud Dcscheppcr, CF.. Idenlificadon and cellular loca-lizalion of prolcin kinase C isofoniis u cultures of ral type-lastrocytes, Brain Res., 701 (1995) 297—300.

lIS] Sacktor, T.C.. Osten, P., Valsamis, H., Jiang. X., Naik, MU. andSublecte, E., Persistent accivarion of (he ~isofoma, of procein kinaseC u the maintenance of long-leras potentiation, Proc. Nací. Acad.Sci. USA. 90(1993)8342—8346.

[¡6] Schtitze, 5., Polthoff, 1<., Machieidt. T.. Berkovic, D., Wiegmann,K. aud Krdnke, M., TNF activales NF-seR by phosphatidylcholine-spccilic phospholipase C-induced acidic sphingomyelinbreakdown, Cdl, 71(1992)765—776.

[171 Tanaka, C. and Nishizuka, Y., The protein kinase C family forneuronal signaling. Annu. Rey. Neurosci., 17 (1994) 551—567.

[18] Ways. D.K.. Cook, PP.. Webster, C. aud Parker. P., Effect ofphorbol esters on protein kinase C-~, J. Biol. Chem., 267 (1992)4799—4805.

[19] Wooren, MW., Zhou. O., Seibenhener, ML. aud Coleman, ES., Arole for zeta protein kinase C in nene growth factor-induced dii-ferentiation of PCI2 celís, Ccli Growth fliff., 5 (1994) 395—403.

Page 63: ¡1ID DII IIMUllID - UCM

FEBS 19133 FEBS Letters415 (¡997) 271—274

Ceramide-inducedtransiocation of protein kinase C ~ in primary culturesof astrocytes

Ismael Galve-RoperM,Amador Haroa, Inés Díaz~Laviadab,*~Depar¡níentof Riochemis:ry aud Molecular Biology ¿ Facul:y of Biology. Complutense University, 28040 Madrid. Spain

Dcpartníent of Biochemistry and Molecular hiology. Facully of Medicine, Alcalá de Henares University, 28871 Alcalá de Henares. Madrid, Spain

Received21 Jul>’ 1997

Abstract The present research was undertaken to study thepossible involvement of> the atypical protein kinase C (PKC) ~ laceramide signal transduction la priniary cultures of ral astro-cytes. As shown by Western blot analysis, transiocation ofimmunoreactive PKC4 to the particulate fraction occurred uponexposere of astrocytes to ceil-permeable ceramide analogs or toexogenous spliingomyelinase. The particulate fraction ma>’correspoad to a perinuclear area, as indicated by immunocyto-chemical techoiques. Furthermore, treatment of celís with N-octanoylsphingosine lcd fo aB increased phosphorylation ofPKC4. Results thus show that stimulation of PKC4 may beone of the intracellular events triggered by activation of thesphingomyelin pathway.

© 1997 Federation of Furopean Biochemical Societies.

Xc>’ ítords: Protein kinase C 4; Ceramide; Sphingomyelin;Astrocyte

1. Introduction

Sphingolipids are currentí>’ recognized as active participantsin the regulation of a wide range of cellular responses such asregulation of ccli growth, differentiation, transformation anddeath [1].Sphingomyelin (SM) breakdown occurs in multiplecdl typcs in response to a variety of extracellular mediatorsíncluding cytokines cg. tumor necrosis factor a (TNFa), in-terleukiii-l~ (lL-l~). nterferon-y and other agents such asnerve growth factor (NGF), la,25-dihydroxyvitamin O>,Fas ligand and ionizing radiation (reviewed iii [¡—3]).Recep-tor-mediatedhydrolysisof SM generatesceramide,which ma>’funetion as a second messenger activating sever-al serine/threo-fine protein kinascs and phosphatases [4].Among the former,one of the atypical isoforms of protein kinase C (PKC),PKC4, has been proposed as an intracellular target of ceram-ide action [5,61.These atypical PKC members (4 and ?Jt) aredependent on phosphatidylserine but are not affected by diac-ylglycerol, phorbol esters or Ca2~ [7,8]. Although PKC¿ hasbeen shown to be involved in the control of a number ofcellular functions including rnitogenic signal transduction [9],neurona] differentiation [¡01 and long-terni potentiation [II],the signal mechanisms downstream PKC4 activation are notweIl known. PKC has been suggested to play a role in theactivation of the mitogen-activated protein kinase (MAPK)

Corresponding author. Fax: +34 (1) 885 45 85.E-mail: bqidm~bioqui.alcala.es

Abbreviations: C>-ceramide, N-acetylsphingosine; C8-ceramide, 7V-

octanoylsphingosine; DHC, dihydro-N-acetylsphingosine; IL, inter-Ieukin; MAPK, mitogen-activated protein kinase; NGF, nene growthfactor; PC-PLC, phosphatidylcholine phospholipase C; PKC, proteinkinase C; SM, sphingomyelin; TNF, tumor necrosis factor

pathway [12]. PKC has also beenshown to be involved inthe activation of nuclear factor KB <NF-KB), which is a land-mark of the TNFa mechanism of action. Little is knownabout the specific signal transductionpathways linking TNFreceptorsto NF-KB. A connectiorthasbeenproposedbetweenTNFa receptor and phosphatidylcholinephospholipaseC(PC-PLC), which is coupled to sphingomyelinase(SMase),resulting in the generation of ceramide[6,13,14].We haverecentí>’ demonstratedthat PC-PLCinducescellular redistrib-ution and phosphorylationof PKC4 in glial cells [15]. Thepresentwork was thus undertakento test whether PKC4may also be a targetfor ceramide action in primaryculturesof astrocytes.

2. Materinls and n,ethuds

2.1. MaterialsAnti-PKC~ antibod>’, raised against amino acids 577—592 of rat

PKC~. was from Life Technologies Inc. (Gaithesburg. MD, USA).Fluorescein-conjugated donkey anti-rabbit IgO was from Amersham(Little Chaltfont, UK). o-erythro-N-acetylsphingosine (C2-ceramide),o-erythro-N-octanoylsphingosine (C8-ceramide) and o-erythro-dihy-dro-N-acetylsphingosine (DHC) were froro Calbiochero (La Jolla,CA, USA). Protein A-agarose was from Transduction Laboratories(Lexington, KV, USA). Neutral SMase (5. aureus) and alí other re-agenis were from Sigma Chemicals (St Louis, MO. USA).

22. .Prin,ary cultures of asírocytesCortical astrocytes were derived from ¡—2 day oíd rats and cultured

as previously described [16]. CelIs were seeded at a density of 3X ¡0’cells/cm> on plastic plates previously coated with 5 1kg/ml dl-polyor-nithine in water. The primary cultures consisted of 95% astrocytes asjudged by immunocytochemical staining of glial fibrillary acidic pro-tein.

Three days before the experiment, the serum-containing mediumwas removed and celís were transferred to a chemically defined me-dium consisting of serum-free DMEM:Hams FIZ (1:1, v:v) mediumsupplemented with 25 gg/ml insulin, 50 ¡sg/ml human transferrin, 20nM progesterone, 50 ¡iM putrescine, and 30 nM sodium selenite.

2.3. Western blol analysis of PKCCAfter stimulation, celís were washed with ice-cold PBS and subse-

quently homogenized in 50 mM Tris-UCI, pH 7.5, containing 5 mMEDTA, 1 mM EGTA, ¡OmM p-mercaptoethanol, 1 mM PMSF, 5 ¡sglml leupeptin, 2 ¡sg/ml aprotinin, ¡O ¡sg/ml soybean trypsin inhibitorand 10 ¡sg/ml benzamidine. Soluble and particulate fractions wereobtained after centrifugation for 60 mm at 40000Xg. Proteins werethen resolved by SDS-PAGE and transferred onto nitrocellulose. lm-inunodetection of PKCI was carried out by incubating membraneswith anti-PKC4 polyclonal antibody and developing with an enhancedchemiluminescence reaction kit (Amersham).

2.4. Inununocytochemical proceduresAstrocytes were grown in glass coverslips in serum-containing me-

dium and at three weeks made quiescent by serum starvation. Celíswere stimulated with different agents, washed with phosphate bufl7ersalme (PBS) asidcoverslipsimmediately immersed in 3.7% formalde-hyde/PBS for 5 mm. After washing in PBS, celís were treated with

AII rights reserved.0014-5793/97/$17.00 © 1997 Federation of European Biochemical Societies.PH SOO ¡ 4- 5 79 3(97)0098 5- x

Page 64: ¡1ID DII IIMUllID - UCM

272 L Galve-Roperh el a!¡FEAS Letters 415 (1997) 271—2 74

0.05% Triton x-íoo and subsequently incubated with 40 ¡sg/mI poíy-clonal anti-PKC~ antibod>’ for 60 mm and fluorescein-conjugated~inti-rabbitIgO for 60 additional mm. Coverslips were then mountedwith glycerol containing 0.1% p-phenylenediamine and subjected tofluorescence microscopy.

2.5. Plíosplíorylation of PKC<Phosphorylation of PKCC was performed after loading of celís with32Pi and immunoprecipitation as previously described [¡7]. Imniuno-

precipitation ws carried out by incubation with 7.5 ¡sg/ml of ant¡-PKC polyclonal antibody asid precipitation with agarose-¡inked pro-tein A. Phosphorylation was determined in the immunoprecipitates bySDS-PAGE and autoradiography. GeIs were previously stained w¡thCoomasie blue in order to verify the appropriate loading of the geis.Autoradiography Fuji films were subjected to dens¡tometric analysisusing Ihe Sigma-Gel program.

3. Results atad discussion

3.1. Transloca:ion of PKC4 and idenílficauion byinununoblo t ting

To study whether SM-ase and cerarnides may have an effectun the subcellular distribution of PKCC, primary cultures ofastroc>’tes were treated with neutral SMase or celí-permeableceramide analogs, C

2-ceram¡de and C8-ceramide. As shown inFig. 1, PKC! appcars to be expressed in primar>’ cultures ofastrocytes as a single 75 kDa isoform in both the particulateand the soluble fraction, with approximately equal amounts oftotal enz>’me in each fraction in non-stimu]ated cells (55% and45% respective!>’) [¡8]. C8- and Q-ceramide, as well as exog-enous SMase, induced a signiflcant increase in immunoreac-tive PKC ita the particulate fraction with a concomitant de-crease in the soluble fraction (Fig. 1). The time course of C8-ceramide-induced PKCC translocation to the particulate frac-

2.00

<3

ce

cd

0>

8o

e0>

~0>

1.75

1.50

1.25

1.00

0.75

particulate fracuon soluble fracecon

FKCC — — — — — — —

0.00

Fig. 1. Localintion of PKCC by immunoblotting. Astrocytes werestimukted with vehicle, ¡ U/ml SMase (S. aureus), 25 ¡4M C8-cer-anide or 25 ¡sM C>-ceramide for ¡5 mi The upper panel shows arepresentative luminogram of the immunoblots. The lower panelshows the mcans ±S.D. of densitometric analyses from three mdc-pendent experiments expressed in arbitrar>’ units referred tu densito-metric units from control celís. Statistical analysis was performed byStudent’s .t-test. Significantí>’ different vs. the corresponding subcel-lular fraction of control celís: t .P-c0.025; **: P<O.O¡.

2.00

aa

1-

‘o

uSt

0>Etee0>

1.75

1.50

1.25

1.00

0.75

0.50

Fig. 2. Time course of C8-ceramide-induced translocation of PKC~.Astrocytes were stimulated with 25 tM C1-ceramide forO, 5, ¡5, 60and ¡80 mm, The upper panel shows a representative luminogramof the inmunoblots. The lower panel shows the means±S.E.M.ofdensitometric analyses from two independent experiments expressedIn írbitrary units referred to densitometrie units from control celís.

tion is shown in Fig. 2. PKCC redistribution was airead>’evident after 5 mm treatment and was ¡siaximal after 15 mmof ceramide stimulation. These flndings indicate that activa-tion of the SM pathway induces PKC~ translocation to theparticulate fraction of rat astrocytes.

3.2. Redistribuí ion of PXC0 itt primary astrocytesTo further stud>’ the intracellular localization of PKC.

ummunocytochemical analyses were perfornied. As shown inFig. 3, exposure of celís to eithcr SMase or ceramide analogsinduced PKC¿ translocation to a perinuclear area. The elTectof added SMase indicates that endogesiously produced ceram-¡des are also able to induce PKC! cellular redistribution,therefore corroborating the specificity of ceramide analog ac-tion. Perinuclear signal was stronger in SMase-treated and C5-ceramide-treated celís (Fig. 3C and D) thasi in C2-ceramide(Fig. 3E). Ihis may be probabí>’ due to the longer alkyl chainof the former, which makes it more similar to natural occur-ring ceramides. Like ¡si Western blot asial>’sis (see aboye), C8-ceramide asid SMase-generated ceramides produced a greateretlect thasi the short chain Crceramide. Therefore alkyl chainlength may pía>’ an important role in ceramide action. Thiseffect has also been observed in raf-l activation by ceramides[19]. Ihe emerging h>’pothesis from this observatiosis is thatsuch structural requirements may explain divergesit effects ofdifferesit ceramides as a consequence of its subcellular origin,and the specific SM pool involved [20]. ¡si this context, adifferent action of intracellularí>’ generated ceramides asidexogenously added ceramides in the induction of apoptosishas been recentí>’ reported [21].

The speciflcity of tbe effectof ceramides is supported by thefact that inactive ceranuide analog DHC did not induce an>’chasige in the subcellular localization of PKC~ (Fig. 3B).

0 5 15 60 180 0 5 15 60 180mm

Page 65: ¡1ID DII IIMUllID - UCM
Page 66: ¡1ID DII IIMUllID - UCM

274 1. Galve-Roperh et al/FEBS Letrer, 415 (1997) 2 71—274

assistance in cdl culturing. This work was supported by grants froniComisión Interministerial de Ciencia y Tecnología (SAF 96/0113) andFondo de ¡nevestigaciosies Sanitarias (97/0039-01).

References

[II Spicgcl, 5.. Foster, D. asid Kolesnick, R. (1997) Curr. Opin. CdlBiol. 8,159—167.

[2] Hannun, Y. (1996) Scicnce 274, 1855—1859.[3] Testi, R. (1996) Trends Biocbem. Sci. 21, 468—471.[4] BalIou, L.R., Lauderkind, S.J.!’., Roslosiiec, E. and Raghow, R.

(1996) Biochim. Biophys. Acta 1301, 273—287.[5] Lozasio, J., Berra, E.. Municio, MM., Diaz-Meco, M.T., Dom-

inguez. 1., Sasiz, L. and Mosca!, J. (¡994) J. RbI. Chem. 269,19200—19202.

[6] MíjIler. O., Ayoub. M.. Storz, P., Rennecke. J., Fabbro. D. andPflzenmaier, K. (¡995) EMBO J. 14, 1961—1969.

[7] Jaken, 5. (¡996) Curr. Opin. Biol. 8, 168—173.[8] Newton, A.C. (¡996) Curr. Biol. 6, 806—809.[9] Rerra, E., Obsa-Meco, MT., Dominguez, 1., Musilcio, MM.,

Sanz, L., Lozano, J., Chapkin. RS. and Moscat, J. (¡993) Ccli74, 555—563.

[¡0] Colcm~,n, ES. atad Wooten, M.W. (1994) J. Mol. Neurosci. 5,39—5 7.

[II] Hrabctova, 5. atad Sacktor, T. (1996) J. Neurosci. ¡6, 5324—5333.[¡2] Berra, E.. Diaz-Meco, MT., Lozano, J.. Frutos, 5., Municio,

MM., Sánchez. P., Sanz, L. and Moscat, i. (¡995) EMBO 1.¡4, 6157—6163.

[¡3] Schuitzc, 5., Potíhofl, 1<., Machlcidt, T.. Berkovic, D., Wieg-mann. K. atad Krénke, M. (1992) CeIl 71, 765—776.

[¡4] Machleidt, T., KrÉimcr, B., Adm, D.. Ncumann, 8., Schiitze, 5.,Wiegmann, K. and Krénke, M. (¡996) J. Exp. Mcd. 184, 725—733-

[¡5] Galve-Ropcrh, 1., Mlpartida, J.M., Haro, A. asid Diaz-Laviada,1. (¡996) Neurosci. Lett. 219, 68—70.

[16] Laviada, 1.0., Baudet, C., Galve-Roperh, 1., Naveilhan, P. andBrachet, P. (¡995) FEBS Lett. 364, 301—304.

[17]Galve-Roperh,1., Haro, A. asid Diaz-Laviada, 1. (1997) Mol.Brain Res. (in press).

[¡8] Chen, C.C., Chang, 3. asid Chen, wc. (1995) Mol. Plnrsiiacol.48, 39—47.

[19]Huwiler, A., Brusisier, 1., Hummel, R., vervoordeldosik, M., Sta-bel, 5., Van Den Bosch, H. atad Pfeilschifter, J. (1996) Proc. Natí.Acad. Sci. USA 93, 6959—6963.

[20] Asidrieu, N., Salvayre, R. and Levade, T. (1996) Eur. 1. Biochem.236, 738—745.

[21]Zhang, P., Lio, B., Jenkins, G.M., Hannun, Y. asid Obeid, L.M.(1997) 3. Biol. Chem. 272, 9609—9612.

[22]Lehrich, R.W. and Forrest, J.N. (¡994) 3. Biol. Ches,. 269,32446-32450.

[23]G~,rcia-Rocha, M., Avila, J. and Lozasio, 3. (1997) Exp. Cdl.Res. 230, 1—8.

[24]Westermann, P., Ksioblich, M., Maier, O., Lindschau, C. asidHaller, H. (1996) Biochero. 3. 320. 651—658.

[25]Kerancsi, L.M., Dutil, EM. and Newton, A.C. (¡995) Curr. Riol.5, ¡394—1403.

[261Gomez, J.. Martinez dc Aragon, A., Rosiay, P., Pitton, C., Gar-cia, A., Silva, A., Fressio, M., Alvarez, F. and Rebollo, A. (1995)Eur. 1. Imniunol. 25. 2673—2678.

[27]Yavin. E., Inserte-Igual, 3. iind Gil, 5. (1995) J. Neurochen,. 65,2594—2602.

[28]Wootcn, MR., Seibenhener, L.M., M~,tthews, L.H., Zhou, O.and Coleman, ES. (¡996) J. Neurochem. 67, 1023—1031.

[29]PuIs, A., Schmidt, 5., Grawe. F. atad SIabel, 5. (¡997) Proc. N:stl.Acad. Sci. USA 94, 6191—6196.

Page 67: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 58

RESULTADOSYDISCUSIÓN

El efecto de la PC-PLC en la síntesisy secreciónde NGF en cultivos primarios

de astrocitostiene un componentedependientey otro independientede la actividad

de cPKCs, sensible a Ca2~ y DAG. Como aproximaciónal estudio de uno de los

posibles sistemasde transducciónde señalesindependientede cPKCs, estudiamos

uno de los componentesdel grupo de las PKCs atípicas,la PKC 4 (Hoffman, 1997).

Los nivelesde PKC 4, no disminuyenpor exposiciónprolongadaaésteresde forbol, es

decir no experimentan“downregulation’, tanto en astrocitos, como en la línea de

glioma C6 (Ballestasy Benveniste, 1995; Chen et al., 1995). Los datos obtenidos,

muestrancomo la PC-PLC induce un cambioen la localización subcelularde PKC 4,acompañadode un aumentodel estadode fosforilación de la enzimaen la línea de

glioma C6. Lasvariacionesenel estadode fosforilaciónpuedenreflejar cambiosen el

estado de activación de la isoforma de PKC estudiada (Jaken, 1996). Estas

observacionesson compatiblescon quela PKC 4 puedadesempeñarun papel en la

regulación de la producción de NGF por células gliales inducida por PC-PLC

resistentea BlM y “downregulation” de PKC.

La estimulación de la producción de NGF promovida por ceramidas en

astrocitospresentacoincidenciascon la regulación por la PC-PLC que sugierenque

podríanactuarpor rutas comunesde señalizacióncelular.En efecto,la estimulación

de astrocitospor análogospermeablesde ceramiday SMasaexógenaafectana la

PKC 4 de manerasemejantea lo observadoconla PC-PLC.El aumentoen los niveles

intracelularesde ceramidainduce unaredistribuciónde la PKC 4, quepasade una

localizaciónhomogéneaen la célula a estarconcentradaen una región perinuclear.

Paralelamentea la translocaciónde PKC4 inducidapor las ceramidas,se produceun

aumentoen los niveles de fosforilación de la enzima.Recientemente,estudios más

detallados utilizando microscopia electrónica han permitido observar que en la

activaciónde célulasPC12se induce la translocaciónde PKC 4 al núcleo, dondees

capazde unirsea la cromatina(Wootenet al., 1997). Estasobservaciones,junto conel

papel de la PKC 4 en la activación de NF-KB por la SMasa(Lozano et al., 1994),

apuntanun posible papel de la PKC 4 en los efectosde regulaciónde la expresión

génica inducidos por los sistemasde transducciónde señalesque involucran a esta

qrnnasa.

Page 68: ¡1ID DII IIMUllID - UCM

3. REGULACIÓN DE LA SÍNTESIS Y

SECRECIÓN DE NGF POR TNFot Y

LPS EN ASTROCITOS EN

CULTIVO PRIMARIO

Page 69: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 59

Este apartado se refiere al estudio de la regulación de la

producción de NGF por la citoquina pro-inflamatoria TNFcz y el

efecto del lipopolisacáridobacteriano(Eseherichiacoli). Algunos de

los efectos biológicos de las citoquinas proinflamatorias,como el

TNFct y la IL-113 están mediadospor la vía de transducción de la

SMasay consiguientegeneraciónde ceramidas(Hannun, 1996). Por

otro lado TNFcx e IL-1~ son potentesinductores de la síntesisde

NGF (Carman-Krzanet al., 1991; Hattori et al., 1993; Pshenichkin

et al., 1994). Por ello resulta de gran interés estudiar la posible

implicaciónde la ruta de las ceramidasen la inducciónde la síntesis

de NGF por el TNFa, uno de los principales reguladoresfisiológicos

del proceso de gliosis (Hurwizt et al., 1995; Merril y Benveniste,

1996). La segundapartedel capítulo abordael efecto inductor en la

síntesisde NGF de la exposiciónal LPS de los astrocitosen cultivo

primario.

Por último, se estudiael papelregulador del factornuclearde

transcripciónNF-KB en la expresióndel gen de NGF. Estefactor de

transcripción está relacionado con algunas de las respuestas

celulares inducidas por TNFa y LPS, así como con la vía de

generaciónde ceramidas(Yang et al., 1993; Machleidt et al., 1994;

Wiegman et al., 1994; Kohler y Joly, 1997) y podría por tanto

explicar su efecto activador de la síntesis de NGF.

Page 70: ¡1ID DII IIMUllID - UCM

Evidencefor the lackofinvolvementofsphingomyeinhydrolysisin thetumor

necrosisfactor-inducedsecretionofNGFin primaryastrocytecultures

IsmaelGalve.Roperha>,CristinaSánchez’,Bruno Séguib,AmadorHaro’, InésDíaz.Laviadac,Thierry

Levade5

Departa~nento de Bioquímica y Biología Molecular L Facultad deBiología, Universidad Complutense, 28040 Madrid,

Spain. b Laboratoire de Biochintie “Maladies Métaboliques’-INSEBM U. 466. Instituí Louis Rugnard, 31408 Toulouse,

France r Departamento deRioquintica y Biología Moleeula,-, Facultad deMedicina,,Universidad de Alcalá de Henares,

28871 Alcalá de Henares, Spain

The signal mechanismunderlying tumor necrosisfactor a <TNFa) upregulationof nenegrowth factor (NGF) productionwas studied in primary rat astrocytes.Since ceramide is

also able to induce NGF secretion and becauseTNFa is a known agonist of the

sphingomyelin-ceramidepathway, we investigated whether the TN?Fcz-induced NGFsecretion b>’ primary astrocytesis mediatedby ceramide. TNFa stimulation of NGFsecretionwas shown to be independentof protein kinase C, abrogatedby the tyrosinephosphoproteinphosphataseinhibitor phenylarsineoxide (PAO), and independentof the

activationof the mitogenactivatedprotein kinasecascade.In markedcontrast,inhibition of

MAP kinasecounteractedthe NGF secretioninducedby ceramide.TNFa stimulation of the

nucleartranseriptionfactorNF-KB waspreventedby celí pretreatmentwith PAO, whereasceramideand sphingomyelinasehad a marginal effect on NF-KB activation. Moreover,TNFa failed to activate the sphingomyelinpathwas’, as indicated by the lack of 5PMdegradationandthe absenceof cerarnidegeneration.To further clarifr the roleof NF-KB inNGF synthesis,EMSA were performedwith a NF-KB site from the NGF proanoter.The

absenceof signfficantbindingof NF-KB to theNGF genepromoterindicatestheexistenceofan indirect mechanisanfor NF-KB regulation of NGF synthesis. Altogether, our datastrongly suggest that TNFcz-mediatedupregulation of NGF occurs independentlyofceramidegeneration.

Key words: astrocytes,ceramide, Nerve growth factor, NF-ícB, sphisigomyein, tumor necrosis factor.Abbreviationsused:BlM, bisindolylmaleimide0F109203X;DAG, diacy’lgl>’cerol; db-cAMP, dibut>’ryl cyclicAMP; EMSA, electrophoreticmobility shift assay;FK. forskolin: MAPK, mitogen-ctivatedprotein kinase;NGF, nervegrowth factor; PAO, phen>’larsineoxide; PC, phosphatidyleholine;PKC, protein kinaseC; 5PM,sphingomyelin;TNF, tumornecrosisfactor

1. IntroductionPro-inflammatorycytokinessuchastumornecrosisfactora (TNFa)andinterleukin 13

(IL-1j3) areimportantmediatorsof inflammationandimmuneresponsesin the CNS.Such responsesare followed by the rapid activation of brain resident macrophagesandsubsequentactivationof astrocytes(Merrilí andBenveniste,1996).Oneof theresponsesofreactiveastrocytesis the synthesis and releaseof neurotrophicfactors such as nenegrowthfactor (NGF) (Brodie, 1996; Yu et al., 1996). NGF production by glial celis during suchcircumstancesmay limit the extent of neuronalloss and promote regenerativeprocessestorestoreneuronalfunction (Pshenichkinet al., 1994).

~ outhor. Ismael Galve-Roperh, Departamento de Bioquímica y Biología Molecular 1, Facultad de

Biología, Universidad Complutense, 28040 Madrid, Spain. ig’-u•solea.quim.ucm.es Tel: (1) 394 46 68 Fax> (1) 894 46 72

Page 71: ¡1ID DII IIMUllID - UCM

NGF synthesis by astrocytesis a finely regulated processwhich includes complexinteractionsamongdifferent signalingpathways.Pro-inflammatorycytokines such as TNFaare well known stimulatorsof NGF synthesis(Hattori et al., 1993;Pshenichkinet al., 1994).TNFa is a pleiotropic cytokine which exerts most of its biological effects, including NGFinduction, throughthe 55 kDa TNFct receptor(Hattori et al., 1996),which is the TNFareceptorpredominantlyexpressedin astrocytes(Dopp et al., 1997). Someof the early eventstriggeredby TNFa include the activation of phospholipaseAz (Jayadevet al., 1994), neutral and acidicsphingomyelinases(SPMases) as well as phosphatidylcholine-phospholipaseC (PC-PLC)(Schtttze et al., 1992; Andrieu et al., 1995; Wiegman et al., 1994). The signaling cascadeanvolving sphingomyelin(5PM) hydrolysis andsubsequentceramidegenerationconstitutestheso-calledsphingomyelin-ceramidepathway(Hannun,1996;Spiegelet al., 1996).

We have recently demonstratedthat N-aeetylsphingosine (C2-ceramide), a celí-permeantceramide analog, and exogenousbacterial SPMase,which elevatesintracellularceramide, are potent inducersof NGF synthesisby primary astrocytes(Galve-Roperhet al.,1997a). Ceramideaction as secondmessengermay involve stimulation of different moleculartargets as ceramide-activatedprotein kinase, ceramide-activatedprotein phosphatase,andatypicalPKC 4 (Hannun, 1996;Spiegelet al., 1996).As a matterof fact, ceramidesareabletotrigger PKC 4 transiocationandphosphorylationin primary astrocytecultures(Galve-Roperhet al., 1997c). Activation of the MAPK cascadeby the stimulation of SPM-ceramidepathwayhas also beenreported,and may be related to Raf-1 activation (Huwiler et al., 1996), whichmay in turn be activatedby direct interactionwith PKC 4 (Van Dijk et al., 1997).

Another characteristieintracellular action induced by TNFx is the early activationofthe nuclear transcription factor NF-KB (Schútzeet al., 1992). The exact role of ceramidegeneration in TNFct-activationof NF-KB 15 still controversial (Hannun, 1996). Thus, somereportsindicatethat ceramidegenerationthroughacidicSEMasemay be responsiblefor NF-KBactivation (Machleidt et al., 1994; Wiegman et al., 1994), whereasothers have not foundevidencefor the role of ceramidein NF-KB stimulation (Betts et al., 1993;Andrieu et al., 1995;Gamardet al., 1997;ZumbansenandStoffel, 1997).

Thiswork wasthereforeundertakenin order to further studythe role of ceramideandother signal transductionpathwaysinvolved in TNFa-mediatedNGF synthesisand secretionby primary astrocytes.The role of nuclear transcription factor NF-KB in NOF generegulationwasalso assessed.

2. Materlalsandmethods

2.1 MateríaisTissue cultureplastic wareswerefrom Nune(Denmark). Culture media andfetal calf

serumwerefrom Biowhitakker (Belgium). The bisindolylmaleimideOF 109203X, forskolin, PD098059 andcelí permeableceramide analogswere from Calbiochem(USA). TNFcz was fromPreproTech-Tebu(France).T4 polynucleotide kinase, NF-KB protein and NF-KB consensusoligonucleotidewere from Promega(France). Bacterial SPMase(5. aureus), dibutyryl cyclicAMP andthe restof reagentswere from SigmaChemicals(USA).

2.2 Primary culturesofastrocytecelis

Cortical astrocyteswere derived from 1-2 day oíd rats and cultured as previouslydescribed(Galve-Roperhet al., 1997a).Cellswereseededat a densityof 3x104 cells/cm2on plasticplatespreviouslycoatedwith 5 pg/ml dl-polyornithine in water. Celíswereculturedfor 3 weeksinbasalmediumconsistingof a mixture of Dulbeccosmodified Eaglemedium (DMEM) and HamsF12 (1:1,y/y), with 0.66%glucose,5 pg/ml streptomycin,SU/ml penicilhin, andsupplementedwith10% fetal calf serum. The primary cultures consisted of 95% astrocytesas judged byimmunocytochemicalstaining of glial fibrillary acidic protein. Primary cultures of astrocyteswereincubatedfor threedaysbefore the experiments,in chemically-definedmedium(consisting

2

Page 72: ¡1ID DII IIMUllID - UCM

of serum-freebasalmediumsupplementedwith 25 pg/ml insulin, 50 pg/ml humantransferrin, 20nM progesterone,50 pM putrescine,and30 nM sodiumselenite).

2.3ELISA ofsecretedNG)?

For extracellular NGF determination, ceil supernatantswere collected 48 h aftertreatmentas describedin the text, diluted in one volume of phosphatebuffer salme (PBS)containing0.1% Tween 20 and 0.5% gelatin, and conservedfrozen at -20 0C until quantitation.NQF releasedby the cells wasassayedin triplicate, by a double-siteELISA, usinga monoclonalanti-NGF antibody, coupled or not to 13-galactosidaseaccording to an experimental protocoldescribedbefore(Laviadaet al., 1995).

2.4 Preparationofnuclearaudcytosolicextracta

Nuclear and cytosolic extracts were obtained according to a previously describedmethod(Andrieu et al., 1995).Briefly, ceil pelletswerehomogenizedat 4 0C in 400 pl of bufferA (10 mM Hepes,pH 7.8, 10 mM KCl, 1mM MgCl2, 0.5 mM EDTA, 0.1 mM EGTA, 1 mM

dithiothreitol, lmM phenylmethylsulfonyl fluoride and 10 pg/ml leupeptin). The celís wereallowedto swell for 15 mm on ice, IgepalCA-630 (0.6% final concentration)wasadded,andthetubeswerevortexed.Nucleiwere pelletedby centrifugationat 1200 x g for 20 mm at 4 0C. Thesupernatantcontainingthe cytosolic fraction was centrifugedat 14 000 x g and the resultingsupernatantwas usedfor Westernblot analysis.The nuclei were suspendedin buffer A andafter sedimentationat 2000 x g for 20 mm, they were suspendedin 25 pl of buffer C (20 mMHepes. pH 7.8, 400 mM NaCí, lmM MgCl2, 0.5 mM EDTA, 0.1 mM EGTA, 1 mMphenylmethylsulfonyl fluoride and 10 pg/ml leupeptin)and incubatedfor 30 mm on ice. Aftercentrifugation at 15 000 x g for 20 mm, the supernatantwas collectedand storedat -80 0C.Proteinconcentrationsweredeterminedby the bicinchoninicacidmethod.

2.5Electrophoreticmobility shift assays

Oligonucleotideprobesused were end-labeledusing T4 polynucleotidekinase and [y-32P]ATP accordingto the supplier’s instructions.Binding reactionswere performedin a totalvolume of 20 pl with the radiolabeledoligonucleotide(250000cpm), bindingbuffer (containing2 mM Hepes,pH 7.8, 50 mM NaCí, 1 mM MgCl2, 05 mM EDTA, 0.5 mM dithiotreitol, 4%glycerol, 1.2 jtg poly (dIdC), and 0.4 pg of bovine serumalbumin) and 5 pg of nuclearextract.After incubationfor 20 mm at room temperature,the samplesweresubiectedto electrophoresison 4% acrylamide gel for 3-4 h at 100 y. Dried gel was exposedto an X-ray film (Hyperfilm,Amersham)at .800 C or quantifiedby Phosphorímager445 SI (Molecular Dynamics).

The following oligonucleotideswere usedin EMSA: NF-KB consensus,AGT TOA 000GAC TTT CCC AGO C; mutatedNF-KB, AOT TGA TTC TCG AAA CCC AGO C; NF-KBNGF,OCA TTG CAO 000 CCT CCC AGO Mil and mutatedNF-KBNGF, OCA TTG CAT AGC CCTCCC AGO MR.

2.6 Westernblot autalysisof ¡kB-aCytosolicextractsweresubjectedto SDS-PAOEon 8% polyacrylamidegeis (Galve-

Roperhet al., 1997c).Thenproteinsweretransferredonto Hybond-ECLmembrane(Amersham,UY.). Blots wereblockedwith 5% fat-freedried millc, andsubsequentlyincubatedwith IkB-a polyclonal antibody(SantaCruz,USA). Membraneswerethen incubatedwithsecondaryanti-rabbitperoxidase-labeledantibodyandfinally subjectedto luminographywithan ECL detectionkit (Amersham,U.R3.

3

Page 73: ¡1ID DII IIMUllID - UCM

2.7 Metabolic labelingofcellular choline-phospholipidsan.d lipid analysis

Primary cultures of astrocytes were mcubated before the experiment in thechemically-definedmedium with 1 pCi/ml of [methyl-3H]choline. After 72 h incubation, tlieradioactivemediumwasremovedandcells werechasedfor 2 h in the chemically-defmedmedium.Then, cells were stimulatedwith TNFa for the indicated times, scrapedand inmediatelysubjectedto low speedcentrifugationandfi-ozen at -20 0C.

Lipid extraction and analysis were performed according tu previously describedprocedures(Andrieu et al., 1994). Briefly, ceil pelletsweresuspendedin distilled water andceliswere disruptedat 40C by briefsonication(10 s). An aliquotwas takenfor protein determination.The remaiingwasextractedwith 2.5 ml of chloroform/methanol(2:1, vf~’). The lowerpliase waswashedwith a syntheticupperphaseconsistingof chloroform/methanol/water(3:48:47,y/y/y) andevaporatedunder nitrogen.Then the lipid extractwas subiectedto mild alkaline hydrolysis asfollows: the residuewasdissolvedin 0.25ml cbloroform and0.25ml methanolic0.5 M NaOH, andincubatedovernightat 37 0C. ASter additionof 0.85ml of chloroform,0.25ml of methanolic0.5 MHCl, 0.43ml of water and0.5 ml of chloroform/methanol(2:1, y/y) the upperphase(contaiingthe[3H]-choline label releasedfrom phosphatidylcholine)was countedfor radioactivity. The lowerphasewas washedtwice with the synthetic upperphase,and the washingswere countedforradioactivity. The organic phase (containing the SPM) was evaporated and counted forradioactivity. In sorneexperiments,the massof total phospholipidsandSPM wasquantitatedbymeasuringtheir phosphatecontent(Ames, 1966).

Ceramidequantitationwas carriedout using E. coli diacylglycerol kinase (Amersham,UR)and [y-32P]ATPaccordingto previouslypublishedprocedures(VanVeldhovenet al., 1992).

3. Results

3.1 TNFa-iutduced NG)? secretion iii primar-y astrocytes is independen!of PKC and MI4PKactivíties

In order to investigatethe regulationof NOF synthesisby TNFa, primary astrocyteswere exposed to the cytokine and the NOF secretedinto the extracellularmedium wasquantifiedby ELISA. Incubationof astrocyteswith TNFa inducedadose-dependentincreaseinthe NGF presentin the ceil supernatant,with a maximal effect at 50 ng/ml (datanot included).The enhancedsynthesis and secretion reached a maximal level after 48 h of cytokinestimulation.

In anattemptto clarify the possiblesignalingpathwaysinvolved in TNFaupregulationof NOF, celís werepretreatedwith the bisindolylmaleimide0F109203X(BlM), a highly specificinhibitor of PKC. We havepreviouslydemonstratedthat BlM treatmentof astrocytesis abletomimic the effect of PKC down-regulationon the regulationof NGF secretionin glial celís(Laviada et al., 1995).BlM did not affect TNFa-stimulatedNOF secretion,thereforeindicatinga PKC-independentmechanismof cytokine effect (Fig. lA). On the other hand, the cAMPanalogdibutyryl-cyclic AMP (db-cAMP) and the cAMP raising agentforskolin (FK) partiallyinhibited cytokinestimulatedNOF secretion(30% and25% inhibition, respectively).

The MAP kinase dependencyof TNFa-induced NGF secretion was studied bypretreatmentof the cells with the MEK inhibitor PD098059(Alessi et al., 1995), which is aMeto preventMAP kinase activation in primary astrocytes(Oalve-Roperhet aL, 1997a). SpecificMEK inhibition did not result in a decrease,but rather led to a slight increase,of TNFa-inducedNGF secretion,indicating a MAP kinaseindependentmechanism.Thiswasin markedcontrastwith NGF inductionby cell-permeantceramideand exogenouslyaddedSPMase(Fig.iB), where incubation with PD098059resulted in a 80 and 90% inhibition respectively,stronglysuggestingthat TNFa andceramidesactthroughdifferentpathways.

4

Page 74: ¡1ID DII IIMUllID - UCM

150

125

100

a:0 75z

50

25

o

1000

800

-~ 800

a:0zo. 400

200

o

Mg. 1. Regulationof TNFa-, C2-ceramide-aná SPMase-stimulatedNGF secretion.Primary culturesofrat astrocyteswere incubatedin the presenceof 2 ¡sM BlM, 500 ¡sM db-cAMP, 10 ¡sM FK, 100 ¡sM PD098059 or 500 nM PAO 1 h prior to 50 ng/ml TN?Fct(A) or 25 ¡sM C2-ceramide,1 U/ml bacterialSPMase<B) treatmentfor 48 h. NGF in thesupernatantswasassayedwith a doublesiteELISA. Dataare means±S.E.M. of 3 to 4 independentexperimentswith determinationsin triplicate. Agentsalone,which hadnoeffect on NGF seeretionhave been omitted for clarification. Statistieal analysis was performed byStudent’st-test;significantdifferencesare indicated:* PczO.025,** P<0.001.Statisticalanalysisfor TNFaandceramidestimulation is relatedto controlcelis,andwheninhibitors are usedthestatisticsla referredtu thevalueswith thestimulant alone.

Preincubationof primary astrocyteswith the tyrosine phosphoproteinphosphataseinhibitor phenylarsineoxide (PAO) completely abolishedthe TNFa-stimulatedNOF secretion.PAO hasbeenshownto preventNF-KB activationby TNFain botEmyeloid andepithelial cells(Singh and Aggarwal, 1995). Therefore, tliese results indicate that TNFcz regulationof NOFsynthesisis independentof PKC and MAPK activities, is partially inhibited by cAMP raisingagents,and mayinvolve the nucleartranscriptionfactor NF-KB.

5

Page 75: ¡1ID DII IIMUllID - UCM

3.2Regulation.of thenucleartranscriptionfactorNF-KB by TNFa

To determine the effect of TNFct on the nuclear transcription factor NF-a,electrophoreticmobility shilt assays(EMSA) were undertaken.Treatment of astrocyteswithTNFa ledto the activationof NF-KB, asdemonstratedin the EMSA by theformation of aspecificbandwhich was competedoff by an excessof unlabeledprobe. Fig. 2 showsthe time course ofTNFct-inducedNF-KB activation.Nucleartranslocationof NF-wB wasalreadyevident5 mm afterceil stimulationwith a maximaleffect at 30 mm of treatment.Although the nucleartranscriptionfactor AP-1 was also activatedin primary astrocytesby TNFa, AP-1 activation was transient,with maximalactivationonly 5 mm after TNFct stimulationandreturningto basallevelawithin15 mm (datanotshown).

We further investigatedNF-KB regulationby TNFa to identily possibleanalogieswithTNFa-stimulatedNOF secretion.As shownin Fig. 3, PAO completelyblockedNF-a activation,in agreementwith previousreportsindicating the role of tyrosinephosphoproteinphosphataseinNF-KB activationby TNFa (SinghandAggarwal, 1995). NF-KB activationwasslightly inhibitedby PICC inhibition asshown by the effect of BlM on TNFa sitimulation. Increasedintracelularlevelsof cAMP evokedby FK partially blocked the ability of TNFa tu activate NF-KB. Similarresultswere obtainedwith db-cAMP.The specifityof NF-KB

-~ TNF‘-4

Lo ‘~oo — Cj CD -~

NF-KB complex

Fig. 2. Time-courseof TNFa activationof NF-KB. Primar>’ astrocyteswere stimulatedfor the indicatedtimes with 35 ng/ml TNFcz, andthen nuclearextractssubjectedto EMSA. The gel is representativeof twoindependentexperiments.

activation by TNFa was demonstratedby the inhibitory effect exertedby the sermeproteaseinhibitor dichloroisocoumarin(DCIC) (datanot shown).Indeed,pretreatmentof celiswith thisproteaseinhibitor abolishedTNFx-induced NF-KB activation, which is concordancewith apreviousreportthat demonstratedthe existenceof aserine-likeproteasecrucialfor tlie controlof NF-KB activationby TNFa (Machleidtet al., 1994).

Some of the intracellular effects of TNFa have been related to its abiity to induceceramidegenerationupon SPM hydrolysis (Hannunet al., 1996; Spiegelet al., 1996). In orderto test theposaiblerole of ceramidegenerationin TNFastimulationof NF-KB activation,we

6

Page 76: ¡1ID DII IIMUllID - UCM

-~

zZ

~zz o

-q ~ +

o Z -ct~--~ -D ~ 4o E~~-dQW E-~

NF-kB complex

Fig. 3. Regulationof NF-KB activation by TNFa andceramíde.Pnmaryastrocyteswere treatedfor 30mm with 35 ng/ml TNFa, 25 ¡iM CS-ceramideamI 1 U/ml SPMase.Where indicated, celís werepreincubatedfor 30 mm with 5 ¡sM PAO, 2 ¡sM BlM or 500 ¡sM db-cAIMP. Results shown arerepresentativeof 3 to 4 independentexperiments.

assessedthe ability of ceramidetreatmentto activate NF-KB in primary rat astrocytes.Asshown in Fig. 3, treatmentwith the cell-permeantN-octanoylceramide(Ca-cerarnide)or withbacterial SPMase,which elevatesthe cellular ceramideconcentration,also stimulated thenuclear tranalocationof NF-KB. However, in agreementwith previousobservationson othercell types(Andrieu et al., 1995), their stimulatoryeffect wasmuch weakerthan that exertedbyTNFa.

3.3¡kB-adegr-adationoccur-stít co¡rcer-t with NF-,cBactivation.¿u TNFa-stirnulatedastrocytes

Dissociationof the inhibitory moiety, IkB, of cytosolic NF-KB complexesallows NF-KBactivation and translocationto the nucleus (O’Neill and Kaltschmidt, 1997). Therefore, wemeasuredthe levels of IkB-a protein in the cytosol of TNFa- and ceramide-stimulatedcelísbyWesternblot. Fig. 4A showsthat thereis a dramaticdepletionof the inhibitory subunitlvelsin TNFa-stimulatedcelís, which occura in parallel to the observedactivation of NF-KB. Inagreementwith resultsobtainedby EMSA, exogenousSPMase,Ca-,and C2-ceramidesproduceda slight decreasein cytosolic leveis of IkB-a (Fig. 4A); however, this decreasewas not aspronouncedas in TNFcz-treatedcelís.Degradationof IkB-a waspreventedby celípretreatmentwith PAO prior to TNFaor Ca-ceramidestimulation (Fig. 4B).

3.4 Thesphingornyelin-cer-arnidepathwayis ¡mt activatedby TNFa ¿n.pr-linar-y astr-ocytes

To further investigatewhether the SPM-ceramidepathwaywas activatedby TNFa inprimary astrocytes,SPM and ceramidelevels were measuredas describedin Materials andMethods.Althoughslight variationscould be observed,TNFa stimulationsfor up to 120 mmdid not evokeany significant decreaseof 5PM levels nor any increaseof intracellular ceramidelevels (Fig. SA). SPM massmeasurementswere carriedout leading to identical resulta(n3;

7

Page 77: ¡1ID DII IIMUllID - UCM

datanot included). Furthermore,neitherSPM nor ceramidelevels were affectedby TNFa inthe C6 glioma celí line (n3, datanot included). Measurementof phosphatidylcholine(PC)anddiacylglycerol (DAO) levels also indicated the absenceof a pool of PC sensitive to TNFa inastrocytes(Fig 5B).

JkB

IkB

-4o‘-4

eoo

a,

‘-4 ‘-4a)e e

Cl CCr) o U)

-4o

eoo

+

~ oz ~H ~

‘-4a)e

CCo

z

Fig. 4. Westernblot analysisof IkB-a subunit on cytosolic extractsfrom stimulatedastrocytes.Al Celíswerestimulatedwith vehicle, 25 ¡sM C2-ceramide,25 ¡sM Ca-ceramide,1 U/ml SPMase,or 35 ng/ml TNFafor 30 mm. B/ Celís were ineubatedwith or without 5 ¡sM PAO for 30 mm prior to TNFa or Cs-ceramidestimulation.

3.5NF-KB doesnot directly r-egulateNG)?geneexpress¿on.

The NOF gene promoter contains a NF-KB like binding site located 669 base pairsupstream of the TATA signal (Jehanet al., 1993). To examine whether this site is apotential target for activatedNF-KB to regulateNOF genetranscription,gel shift assayswereperformedwith purified nucleartranscription NF-KB and with the oligonucleotidesofthe proposedsite of regulation. Fig. 6 shows that, although this NF-KBNGF probe is able tobind speeifically the nuclear transeription factor (seeresult with mutatedoligonucleotide),the intensity of the binding is weak as compared to the binding to NF-KBconsensus

A‘-.4

a,e

CCo+

o

-~ ‘~ e

B

8

Page 78: ¡1ID DII IIMUllID - UCM

1 Oc

120

-> lid

E leo<3

EO 90

80

‘0

so

130

20

lío

E so

0 90

a

79

el

Fig. 5. Lipid quantifleationafter TNFx stimulation.Primary rat astrocyteswere labeledwith [H]cholinefor 72 h. Then, celís were incubatedwith 35 ng/ml TNFz and at the indicatedtime points incubationswerestopped.SPM (Fig SA, -@-> andPC (Fig. 5B, -@-) levelswere determinedasdescribedin ‘Materialsand Methods”.Phospholipidlevelsareexpressedas percentageof thevalue observedat time O. Valuesrepresentthe mean±S.E.M. of 4 different experiments.Ceramide(Fig. SA, -O-) andnAO (Fig. SB, -O-)levels weredeterminedby the DAG kinasemethod.Valuesareexpressedas percentageof radiactivity attime O of 3 independentexperiments.Statistical analysis using the Student’s t-test revealed nosigsiificant differences.

oligonucleotide.In fact, cellular NF-KB presentin the nuclearextractsfrom TNFa-stimulatedcelíswasnot ableto bindto the NF-KBNGF site (datanotshown).

4. Discussion

Resultsfrom the presentreportpoint tu a differential effectof TNFa versusexogenousceramideor SPMasein the regulationof NOF synthesisandsecretionby primary astrocytes.Inspite of the many efforts tu elucidate the mechanismsthat control NOF synthesis, theregulationof this complexprocessremainslargely unlknown. We havepreviouslydescribedtheinvolvementof exogenousPC-PLCin the regulationof NGF synthesisby astrocytes(Laviadaetal., 1995). PC-PLC in turn has also been reported tu mediate TNFa activation of NF-KBthroughacidic5PMbreakdown(Schútzeet al., 1992;Wiegmannet al., 1994).NGF inductionbyPC-PLCis partially dependenton PKC activity (Laviadaet al., 1995),whereasTNFa inductionof NOE synthesisin primary astrocytesseemstu be independentof PKC activity (the presentreport). This is also true for N01’ induction by cell-permeantceramidesand exogenousbacterialSPMase(Oalve-Roperhet al., 1997).

O lO 10 45 60 75 90

TIME (coja)

9 15 30 45 60 75 90

TIME (mio)

9

Page 79: ¡1ID DII IIMUllID - UCM

The existenceof crosstallcsamongdifferent signaling pathways,which allows a tightcontrol of NOF synthesis, is evidencedby the inhibitory effect of increasedintracellular cAMPlevels on TNFz-stimulatedNGF production.We havepreviously describeda similar inhibitoryeffect of thecAiMP cascadeon ceramide-andlipopolysaccharide-inducedNGF synthesis(Oalve-Roperhet al., 1997a; 1997b),althoughthe exactmechanismunderlyingthis processis not wellunderstood.IncreasedcAMP levels have been shown to prevent MAP kinase activation inastrocytes(Kurino et al., 1996; Willis and Nisen, 1996). However, although TNFa increasesp42/p44MAP kinaseactivity in primary astrocytes(unpublishedobservation),this activationwould not be responsiblefor theinduction of NOF synthesis,asshownby the lack of inhibitoryeffect of P0098059(Fig. 1). Our datarather indicatethat NOF induction by TNFct in primaryastrocytesis independentof MAP kinase activity, in sharp contrast with the effect ofceramides,which activate NGF synthesisby a p42/44 MAPK activity-dependentmechanism(Oalve-Roperhet al., 1997a,andpresentreport). The inhibitory effect of cAiMP may also beattributedto the observeddecreaseof TNFct-activationof NF-KB (the presentreport; Pahanetal., 1997).

uE

a> ceci ci a az 8 8

o,,~ -~ -~ ~ ci a

z8

z z+ + + + rL ~~ z z

NF-kB complex

Fig. 6. Analysis of NF-KB binding to different oligonucleotides.Gel retardationassayswere performedwith 400 ng of the purffied NF-KB protein (1’) andthe correspondingradiolabeledprobes.Lanes1, P +NF-KB NGF probe;2, P 4 NF-KB NGF mutatedprobe;3, P + NF-KB consensusprobe; 4, P + NF-KB consensusmutatedprobe;5, free NF-KB NGF probeand6; free NF-KB consensusprobe.

Our resultsshow that in primaryrat astrocytesthe nucleartranscription factor NF-KB18 rapidly activated by TNFx stimulation. The ability of TNFa to activate NF-KB is wellestablished,butmuchcontroversystill existsaboutthe signalingmechanismsinvolved insuch a stimulation. Sornereportsindicatethat ceramidegeneration,by acidic SPMase,rnayberesponsiblefor NF-KB activation (Schútzeet al., 1992;Machleidtet al., 1994;Wiegmannet al.,1994). In contrast,othershavenot found. evidencefor the involvementof ceramidein NF-KBstimulation (Bettset al., 1993; Andrieu et al., 1995;Gamardet al., 1997). Moreover,evidencehasbeenpresentedagainsta role of acidic SPMasein the effectsof TNFa (Andrieuet al., 1994;ICuno et al., 1994; Zumbansenand Stoffel, 1997). In our hands,exogenousSPMaseand Cs-

lo

Page 80: ¡1ID DII IIMUllID - UCM

ceramide,which stimulateNOF synthesisto a muchgreaterextentthan TNFct, activatedNF-KB in primary astrocytes,althoughto a lesserextentthan TNFa. In addition, IkB-a egradationwaslessaffectedby ceramidesthanby TNFa.Recently,Modur et al. (1996)havedescribedthatin endothelialcelís TNFa is aMe tu activate Raf-1 througli a ceramide-dependentpathway,whereasNF-KB activation 15 achieved by a ceramide-independentmechanism.Our datasuggeststhat primary astrocytesrnay behavein sucha way. As a matter of fact, ceramideisableto induce subeellularredistributionof tEn atypicalPKC 4 in glial cells (Oalve-Roperhetal., 1997c), andthis effect coincideswith increasedRaf-1 pliosphorylationandMAPK activity(Oalve-Roperhet al., 1997a).

The existenceof a ceramide-independentmechanismfor the TNFa-inducedstimulationof NF-KB was confirmed by the lack of significant 5PM hydrolysisupon celí stimulation. It iswurth notingthat the absenceof activation of the SPM-ceramidepathwayby TNFamight beacommon featureof glial celís, since murine C6 glioma celís and humanU2S1MOglioma celísare also resistantto TNFa-stimulatedSPM hydrolysis (datanot shown;Richard et al., 1996).Moreover, although ceramidesare able to stimulate stress-activatedprotein kinase in glialcelís, TNFcz activationof SAPK doesnot seemto involve the ceramidepathway (Zhanget al.,1996).Re TNFx-sensitiveSPM pool involved in signaltransductionhasbeensuggestedto belocated in the inner leaflet of the plasmamembrane(Andrieu et al., 1996). The absenceofsignificant variations of 5PM mass levels, togetherwith the absenceof ceramidegeneration,rule out the possibility that metabolic labeling with [3H]cholinemay not be able tu label theTNF~-sensitivesignalingpooíof SPMin confluentastrocytes.

The origin of the endogenousceramidesresponsiblefor the inductionof NOF synthesisin the celímaybe linkedtu otherpossiblegenerationsourcesof ceramidethan5PM hydrolysis,e.g. resulting frum stimulated “de novo’ synthesis or inhibited degradation.Theseprucesseshavealreadybeenshownto mediatesorneof the biological effectsuf sphingolipids(Boseet al.,1995; Bielawskaet al., 1996;Paumenet al., 1997). For instance,the generationof ceramidebya mechanisminvulving a reducedrate of catabolism would lead to a prugressiveand slowaccumulation of the lipid within the ceIl, and this may be of great importancein regulatinglong-term responses(Bielawskaet aL, 1996).

In summary,our resultsare in line with previousreportspointing to the existenceofceramide-dependentand ceramide-independenteffects of TNFa. Our data provide strongevidence that TNFa and ceramide act by different mechanismsin the regulation of NOFsecretionby astrocytes.This is evidencedby their differentdependencyun MAP kinaseactivity,the lack of SPM-ceramideactivation by TNFa, and their different ability tu activateNF-KB.Finally, our results indicatethat, althoughNF-KB transcriptionfactor doesnot appeartu play adirect role on NGF genetranscriptiun, TNFa-induction of NGF synthesismayrely un previousNF-kB activatiun.

AcknowledgmentsWe are indebtedto Dr. M. Ouzmánfor fruitful commentsun the manuscript,Dr. U.

Wiun for the NGF promoteruligonucleotidesequences,F. Valiño andDr. E. Dulín for technicalassistance.I.O.R. was recipient of a FEBS shurt-term fellowship. This work was financiallysupportedby SpanishCICYT (SAF 96/0113),FIS (97/0039),CAM (6648)andINSERM grantstuT.L.

II

Page 81: ¡1ID DII IIMUllID - UCM

ReferenccsAlessiDR., CuendaA., CohenP., DudleyD.T., andSaltiel AH. (1995)PD 098059is aspecificinloibitor of the

activatiunof mitogen-activatedproteinkinaseñ~ vitro andin vivo. ~J.Riol. Chan.270,27489-27494.AmesB.N. (1966)Assayofinorganiephosphate,totalphosphateandphosphatases.Meth.Enzyrnol.8, 115-118.Andrieu N., Salvayre R., and Levade T. (1994) Evidence againsí involvement of the acid lysosomal

sphingoxnyelinasein thetumor-necrosis-factor-andinterleultin-1-inducedsphingomyelincycle andceilproliferationinhumanfibroblasta.Biochem.el. 303,341-345.

AndrieuN., SalvayreR., JaffiézouJi’., asidLevadeT. (1995)Low temperaturesasidhypertonicitydo notblockcytokine-inducedstimulationofthesphingomyebnpathwaybut inhibit nuclearfactor-icBactivation.JBiol. Chan.270,24518-24524.

AndrieuN., SalvayreR., andLevadeT. (1996)Comparativestudyof Ihe metabolicpoolsof sphingomyelinandphosphatidylcholinesensitivelo tumornecrosisfactor.Lur. el. Biochem.236, 738-745.

Betts J.C., Agranoff AB., Nabel 0.3k asid ShaymanJA. (1994)Dissoeiationof endogenouscellular ceramidefromNF-kB activation.el. Biol. Chern.269, 8455-8458.

BielawskaA., GreenbergMS.,PerryD., Jayadev5., ShaymanJA., McKay C. andHannunY. (1996)(1S,2R)-D-erythro-(N-Myristoylamino)-1-phenyl-1-propanolas an inhibitor of ceramidase.el. Biol.Chern. 271,12646-12654.

Bose R., Verheij M., Haimovitz-Fried.anan,Scotto K., Fuks Z. and Kolesnick R. (1995) Ceramidesynthasemediatesdaunorubicin-inducedapoptosis:analternativemechanismfor generatingdeathsignals.Cdl82, 405-414.

Brodie C. (1996)Differential effect.s of Thl andTh2 derivedcytokinesun NOF synthesisby mouseastrocytes.FEBSLett.394,117-120.

Dopp J.M., Maelcenzie -OrahamA., Otero C.C. and Merrill JE. (1997) Differential expression,cytokinemodulation,and speciflcfunctionsof type-1 asid type-2tumor necrosisfactor receptorsin rat glia. el.Neur-ochern.75, 104-112.

Galve-Roperh1., Haro A., and Diaz-Laviada 1. (1997a) Induction of nerve growth factor synthesis bysphingomyelinaseandceramidein primaryastrocytecultures.Muí. Br-am Res.(inpress).

Galve-Roperh1., MalpartidadM., Haro A., Brachet1’., fliaz-Laviada 1. (1997b) Regulationof nenegrowthfactor secretionand mRNA expressionby bacterial lipopolysaccharideja primary cultures of ralastrocytes.el.Neur-osci.Res.49, 569-575.

Galve-Roperh1., HaroA. andDiaz-Laviada1. (1997c) Ceramideinducedtranslocationof protein kinaseC ~ inprimary culturesof astrocytes.FEBSLett. 415, 271-274.

OamardC.J., Dbaibo 0.5., Liu B., ObeidL.M. asid Hannun Y. (1997) Selectiveinvolvementof ceramideincytokine-iaducedapoptosis.Ceramideinhibits phorbolesteractivation of nuclearfactor kappaB. JBiol. Chem.272, 16474-16481.

HannunY. A. (1996)Funetiosisofceramidein coordinatingcellularresponsestu stress.Science274, 1855-1859.HattoriA., TanakaE.,MuraseK., IshidaN., ChataniY.,TsujimotoM., Hayashi1<. asidKohnoM. (1993)Tumor

necrosisfactor stiinulatesthesynthesisandsecretionof biologically activenenegrowthfactorin non-neuralcells.J Bid. Client.268, 2577-2582.

HattoriA., HayashiK. andKohno M. (1996)Tumor necrosisfactor (TNF) stimulatestheproductionof nenegrowthfactorin flbroblastsvia the55-kDatype 1 TNF receptor.FF285 Lett. 379, 157-160.

HuwierA., BrunnerJ., HummelR., VervoordeldonkM., Stabel5., VanderBush II. andPfeilschifterJ. (1996)Ceramide-bindingandactivationdefinesprotein kinasec-rafas a ceramide-activatedprotein kinase.14-oc. Natí. Acad.Sé.USA93, 6959-6963.

JayadevS., Linardic CM. asid Hannun YA. (1994) Identification of arachidonieacid as a mediator ofsphingomyelinhydrolysisin responselo tumornecrosisfactora.el. Rial. Chan.269,5757-5763.

JehanF., Neveu 1., NaveilhanP., Brachel P. and Wion D. (1993) Complex interactiosis among seeondmessengerpathways,steroidhormones,andprotuoncogenesuf Ihe Fos andJunfamilies convergejatheregulationof tite nenegrowthfactorgene.el. Neurochem.60, 1843-1853.

Kuno1<., SukegawaK, IshilcawaY., Orii T., asidMatsushimaK. (1994)Acid sphingomyelinaseis nol essentialfor the IIrl and tumor necrosisfactor receptorsignalingpathwayleadingtu NF-kB activation, mt.Irnrnunol. 6, 1269-1272.

Kurino M., Fukunaga1<., UshioY andMiyamotoE. (1996)Cydlic AMI’ inhibits activationof mitogen-activatedprotejalimaseandceil proliferationja responselo growthfaetorsin culturedrat corticalastrocytes.el.Neurochern.67, 2246-2255.

Laviada ID., Baudet C., Oalve-Roperh1., Naveilhan 1’. asid Brachet P. (1995) Phosphatidylchohne-phospholipaseC mediatestheinductionof nenegrowthfactorja culturedgil-al cells. FF285 Lea. 364,301-304.

12

Page 82: ¡1ID DII IIMUllID - UCM

LozanoJ., BerraE.,MunicioMM., Diaz-MecoMT., Dom~guez1., SanzL., andMoscatJ.(1994)ProtejakinaseC ~isoform is critical for KB-dependentprumoteractivationby sphingoanyelisiase.el. Biol. Che~n.269,19200-19202.

Machleidt T., WiegmannK, Hentel T., Schútze5., BauerleP., and Krónke M. (1994) SphingumyelinaseactivatesproteolyticIkB- degradationin aceil-freesystem.el. Biol. Client. 269, 13760-13765.

Meri-ill SE. asid BenvenisteE.N. (1996)Cytokinesja inllammatorybrajalesiosis: helpful asid hanaful.TINS19, 331-338.

Modur V., ZimmermanGA., PrescottS.M., asidMclsityre T.M. (1996)Endothelialceil isiflamnoatoryresponseslo tumornecrosisfactora.J Biol. Chem.271, 13094-13102.

Neveu 1., Naveilhasi P., JehanF., Baudet C.. Wion D., De Luca H.F. asid Brachet P. (1994) 1,25-DihydroxyvitaminD3 regulatesthesynthesisof nenegrowthfactorja primaryculturesuf glial cells.Muí. Br-am Res.24, 70-76.

O’Neill L. asid KaltschmidtC. (1997)NF-KB: a crucial trasiscriptionfactor for glial asid neuronalceil fusiction.Trends Neurosci.20, 252-258.

Pahan1<., Nambuodiri A.M.S., Sheikh F.G., Smith B.T. asid Sisigh 1. (1997) IncreasingcAMP attesiuatesjaductiunof jaduciblenitric-oxidesyntbaseni rat primaryastrocytes.el. Biol. Client. 272,7786-7791.

Paumen M.B., Ishida Y., Muramatsu M., Yamamoto M. asid Honjo T. (1997) Inhibitiun of carnitinepalanitoyltransferase1 augmentasphingolipid synthesisasid palmitate-inducedapoptosis.el. Bid.Chan.272,3324-332g

Pshenichkin5.1>., SzekelyAM., asid Wise B.C. (1994) Trasiscriptionalasid posttrasiscriptionalmechanismsinvolvedin theinterleukin-1, steroid,asidprotejakinaseC regulationofnenegrowthfactorja corticalastrocytes.el. Neurochern.63,419-428.

RichardA., RobichaudO., LapointeR., Bourgoin5., DarveauA. asid PouhnL. (1996)Interferenceof H~,~-1 nefja thesphingumyelintrasisductionpathwayactivatedby tumor necrosisfactor-aja humanglial cefls.AIDS11,Fi-FI.

SchútzeS.,PotthoffK.,MachleidtT., BerkovicD., WiegmansiK. andKronkeM. (1992)TNF activatesNF-KB byphosphatidylcholine-speciñcphospholipaseC-induced“acidic sphingomyelinbreakdown.Celí 71, 765-776.

Singh 5. asid Aggarwal B.B. (1995) Protein-tyrosinephosphatasejahibitors block tumor necrosisfactor-dependesitactivationofthenucleartrasiscriptionfactorNF-kB. el. Biol. Chan.270,10631-10639.

Spiegel5., FosterD. asid Kolesnick R. (1996)Signal trasisductionthruughlipid secosidmessengers.Cur-r. Op.Celí Biol. 8, 159-167.

VanDijk MCM., 1{illcman H., asid VanBlitterswijk W. J. (1997)Platelet-derivedgruwth factor activationofmitogesi-activatedproteni kinasedependsun tite sequesitialactivationof phosphatidylcholine-speciñcphospholipaseC, protenikisiaseC-C asidRaf-1.Biochem~J.325. 303-307.

Van Velcihoven PP., Mathews J.J., Bolognesi DI’., and Beil R.M. (1992) Changesja biuactive lipids,alkylacylglycerolasidceramide,occurja HIV-infectedcells. Biochein.Biophys.Res.Cornrnun.187,209-216.

WiegmannK., Schñtze5., MachleidtT., Witte D., andKrónkeM. (1994) Fusictionaldichotomyuf neutralasidacidicsphingomyelisiasesin tumornecrosisfactorsignabngCelí78, 1005-1015.

Wiflis SA. asid NisenP.D. (1996)Differential jaductionof themitogen activatedprotein kinasepathwaybybacteriallipopolysaccharidein culturedmonocytesandastrocytes.Biochern.el. 313,519-524.

Yu J., Wiley RO., asid Perez-PoloR.J. (1996) Altered NOF proteni levels in different brain areasafterimmunolesiosi.el. Neurosci.Res.43,213-223.

Zhang1>., Miller B.S., RosesizweigSA. asid BhatNR. (1996)Activation uf thec-JunN-terminalkinase/stress-activatedprotenikinaseniprimaryglial cultures.el.Neurosci.Res.46, 114-121.

ZumbansenM. and Stoffel W. (1997) Tumor necrosisfactor a activates NF-KB in acid sphingomyelisiase-deflcientmouseembryonicflbroblasts.el.Bid. Chein.272, 10904-10909

[3

Page 83: ¡1ID DII IIMUllID - UCM

Joarnal of NeuroscienceResearch49:569—575(1997)

Regulation of Nerve Growth Factor Secretionand mRNA Expressionby BacterialLipopolysaccharide in Primary Cultures of RatAstrocytesIsmaelGalve-Roperb,’JoséM. Malpartida,1 Amador Haro,1 Ph¡l¡ppeBrachet,2and InésDíaz~Laviada3*‘Dcpartrnent of Hiochcmistry asid Molecular Biology, Faculty Biology, Univcrsity Complutense, Madrid, Spain2Centre Hospitalier Régional Universitaire, INSERM U.298, Angers, France3Departínent of Biochemistry asid Molecular Biology, Faculty Medicine, University of Alcalá,Alcalá de Henares, Madrid, Spain

The present work was undertaken to study tbe effectof bacterial lipopolysacebaride(LPS), a potent activa-tor of the hostinfianimatory response,on dicsynthesisof nerve growtb factor (NGF) by newborn rat brainastrocytes. Treatment of pr¡mary rat astroglial celíscultured in chemieally defined medium with LPSresulted in a dose-dependentaccumulation of NGFmRNA, andan increasedreleaseof NGF protein lii theeclI ¡nedium. NGF mRNA levels were maximal after24 brof stimulation (8-fold mercase),whereasextraed-lular NGF peakedafter 72 bours of treatment (17-foldmercase).This dramatie mercaseof extraecílular NCFwasabrogated¡f celís wcrc treated witb actinomycinD or cycloheximidc, a fact whieh implies tbat titeaceumulat¡on of extracellular NGF by LPS-treatcdcelís requires DNA transcr¡ption and RNA transía-tion. Stimulation of NGE syntbcs¡sand seeretionwas:(i) unaifeeted hy treatment witb thc protein kinase Cinhibitor b¡sindolylmaleimide, asid (II) preventedbyforskolin and 3-isobutyl-1-metbylxanthine,two agentswhieb mercaseeAMP levels. Inhibition of LPS cfTeetivasalso obtained with apigenin, a proposed inhibitorof tite mitogen-netivatedprotein kinase pathway. Re-sults thus showthat LPS stimulates NGF synthcsisbyastroglial celís througb a meehanismtbat is indepen-dent of protein kinase C (PKC), antagonized bycAMP-elevatingaguils, and probably mediatedbytite mitogen-activatedprotein kinase cascade.Titedataraisetite possibility that LPS exertsstimulatoryeffeetson NGF synthesistbat are independentof tboscelicited by astroeytc-dcrived inflammatory lympho-kines sueb as IL-113, TNflx or TGF~1. J. Neurosci.Res.49:569—575,1997. o 1997 Wilcy-Liss, Inc.

Key words: lipopolysaecbaride; nervegrowtb factor;astroeytcs; protein kinase C

INTRODUCTION

Bacterial lipopolysaccharide(LPS) is the sole lipidpresentisi the outer membrasieof Gram-negativebacteria.It acts as a potent activatorof the host isifiammatoryresponse. In the cesitral nervoussystem (CNS), localinjection of LPS is followed by arapid activation of brainresident macrophages, the microglial celís, and by arecruitment of peripheral monocytesor macrophages(Montero-Menei et al., 1996). However, astrocytesbe-come activated in a secosid phase of the inflammatoryprocess. It is presently well established that astrocytesconstitute an importasit auxillbry ccli controlling theimmunological status of the CNS. These celis, whcsiactivatedwith LPS, produce lymphokisies or cytokinessuch as nitric oxide, IL-113, IL-6, TOP-pl asid TNFa(Kimberlin et al., 1995; Schmidlin asid Wiesingcr, 1995;Willis andNisen, 1995;Slegersasidjoniau, 1996) whicliare actively driving tite immune reactiosis. However,astrocytesarealso a seurceof neurotrophicfactors,asid

Abbreviations: BlM, bisindolylmalcimidc; cAMP. cyclic AMP; FCS,fetalcali scrum; IBMX, 3-isobutyl-1-methylxanthine;IL- 113, intcrlcu-kin- 13; IL-6. interleukin-6; LPS, lipopolysaccharidc;MAP kinase,mitogen-activatcd protein kinase; NGF, nerve growth factor; PKC,protein kinmc C; FMA, phorbol 1213-myristate 13a-acctatc; TGFI3I,transforming growth factor 31; TNFa, tumor necrosis factor u; Tyr,tyrphostin.Contract gr-ant sponsor: Comisión Interministerial de Cicncia y Tecno-logia; Contract gr-ant number: SAF 96-0113. Contract gr-ant sponsor:Fondo de Investigación Sanitaria; Contract gr-ant number: FIS 97/0039-01. Conrract gr-ant sponsor: Accion Integrada (Picasso Progrm);Contract grant number: 95/138.*Co~espondencc tu: Dr. Inés D. Laviada, Dept. of Biochemistry,Faculty of Medicine, University of Alcalá. 28871 Alcalá de Henares(Madrid), Spain. E-mail:id¡@’solea.quim.ucm.es

Received l4Fcbruary ¡997; Revised ¡SApril 1997; Accepted l5April¡997

© 1997 Wiley-L¡ss, Inc.

Page 84: ¡1ID DII IIMUllID - UCM

570 Galve-Roperh et al.

these different mediators, when applied exogcnouslyalune or in combination, can act as inducers of thesynthesis of the neurotruphic factor nerve gruwth factor(NGF), at least in vitro, and pussibly in vivo (Pshenichkinet al., 1994;Pltiss et al., 1995; Hattori et al., 1996). In amuregeneral way, arelationship between CNS inflamma-tion and NGF accumulation exists, since levels of thisfactor appear significantly increased in cerebrospinalfluids of multiple sclerosis patients (Bracci-Laudiero etal., 1992).

NGF is mainly known asa neurunalsurvival factor,active un sorne peripheral fetal neuruns and, in the CNS,un cholinergic neurons uf basal forebrain (Varun a al.,1995). However, high aftinity recepturs for NGF wereidentified un pheripheral monocytesand/or T lympho-cytes (Ehrhard et al., 1993), while the factor may beproduced not unly by astrocytes, but also by activated

brain microglial celís (Mallat et al., 1989).Therefore,theinvolvement of NGF in the neuruimmuneinteractionswhich takeplaceduring an inllammatoryreactionin theCNS appears probable, but remains elusive. In thisgeneral cuntext, we have investigated whether LPS caninduce NGF synthesis in newborn rat astrocytes, andanalyzed the signalling pathway activated by LPS inthese celis. Previousstudies have shuwn that pruteintyrusine-kinase activatiun andnucleartranscription factorNF-KB transduceLPSresponsesin monocytes or astrucy-toma celís (Geng et al., 1993; Carísunand Aschmies,1995). LPS strungly activatesp42míPk and Raf-l, twoessential componentsof tIte mitugen-activatedprutein(MAP) kinase signal transductiunpathway (Willis andNisen, 1996). Agents tliat elevate intracellular cyclicAMI’ (cAMP) have been slouwn tu inhibit the MAPkinasepathway(Cook andMcCurmick, 1993;Wu et al.,1993) and tu decreaseLPS-inducedIL- I~B mRNA accu-mulatiunin humanastrocytes(Willis andNisen,1995).

Our resultssbow that LPS is a powerful inducerofNGF synthesisin astrocytes.Thecumpuundactsthrougha signal transduction pathway independent of proteinkinase C, antagonizedby cAMP-elevatingagents, andinvolving presumablyMAP kinaseactivatiun.

MATERIALS AND METHODS

Primary Culturesof Astroglial Celís

Cortical astruglial celís were derivedfrom 1- tu2-day-uld rats and cultured as previously described(Laviada et al., 1995).Celís were seededat a densityof3 >< lO~ cells/cm2un plastic platespreviouslycoatedwith5 ~ig/mldl-pulyurnitbine in water.Celíswereculturedfor3 weeks in basal medium cunsisting uf a mixture ofDulbecco’smodified Faglemedium(DMEM) and Ham’sFI 2 (1:1,y/y), with0.66%glucose, 5 pg/ml streptomycin,5 U/ml penicillin, andsupplemented with 10% fetal calf

serum (FCS). Microglia-oligudendroglia-freeastroglialcultures were obtained after 2 hours uf orbital shaking.Ihe primary cultures cunsisted uf 95% astrucytes asjudged by immunocytuchemical staining uf glial fibril-lary acidic protein. Time course, duse response andNurtbern blut experiments were carried orn in 57-cm2plates. The rest uf the experiments were done in 6-welldishes.

Three days before the experiment, at day 21, theserum-containing medium was removed and celís weretransferred tu a chemically defined medium cunsisting ofserum-free basal medium supplemented with 25 ng/mlinsulin, 50 pg/ml humantransferrin, 20 nM prugesterone,50 jiM putrescine, and 30 nM sodium selenite.

RNA Analysis andEnzyme-LinkedlmmunosorbentAssay(ELISA)

After the indicated times uf treatment, RNA extrac-tiun wascarried out accordingtu the LiCI/ureamethod.Nurthern blot analysis was also performedby standardprocedures(Jehanet al., 1995).Glyuxal-treatedRNA wasfractionatedin agarosegels, transferred tu Hybond-Nmembranesby capillaryblotting, andhybridizedseriallywith a32P-labelledprubeof muuseNGF cONA.The NGFprobewas the 917-bpNGF DNA cloned by Scottet al.(1983). Standardizationof RNA loading was routinelycontrolled by hybridization of tite blots with amyluidprecursorprotein cDNA prube (Shivers et al., 1988).Densitumetricanalyseswereperfurmedwith Phosphorlm-ager445 SI (MolecularDynamics,Sunnyvale, CA).

FurextracellularNGF determinatiun,celíssuperna-tantswerecollected24 huursafter treatmentas describedin tite text, diluted in une volume of phosphate-hufferedsalme(PBS)containing0.1%Tween20 and0.5%gelatin,andcunservedfruzenuntil quantitatiun.NGE releasedbytite celís was assayed in triplicate, by a double-siteELISA, usinga munoclonalanti-NGFantibudy,coupledur not tu fB-galactusidase(BuehringerMannheim,India-napulis, IN), according tu an experimental protocoldescribedbefore(Laviadaet al., 1995).

Otiter Citemicals

Tissue culture plastic wares were purchasedfrumNunc (Roskilde,Denmark),culturemediafrom BioWhit-taker (Verviers, Belgium), and FCS frum JRH Biosci-ences (Sussex,England). E. coli 0127:B8 LPS W wasfrom DIFCO Laboratories(Detroit, MI). It wasdissulvedand sonicatedin PBS prior tu utilization. Hybond-Nmembraneswere from Amersham(Little Chaltfont, En-gland). Apigenin, forskolin andbisidulylmaleimidewerefrom Calbiuchem(La Julia,CA). 3-Isobutyl-1 -methylxan-titine (IBMX) and otherreagentswere from Sigma (St.Louis,MO).

Page 85: ¡1ID DII IIMUllID - UCM

LipopolysaecharideRegulation of NGF Synthesis 571

RESULTS

Induetion of NGF Expression and Seeretionby LPSHigitly enrichedastruglial cultureswereexpusedtu

increasingconcentrationsuf E. cali LPS during24 hr,andsecretedNGF was determinedni the supernatantofcultured celís. As shown in Figure 1, LPS treatment-increasedthe amount of extracellularNGF in a dose-dependent manner. Maximal stimulation (1 0-fold overcontrol) wasobserved at 2 pg/ml. In additiun, Nortiternblut analysis of total cellularRNA wasusedtu studytiteeffect of LPS un NGF mRNA levels. Asimilarconcentra-tiun-dependent effect of LPS was observed un NGFmRNAaccumulatiun(Fig. 2).

Primary culturesof astrocyteswere treated with amaximal duseuf LFS (2 pg/ml) and extracellularNGFanéNGF mRNA accumulationwereassessedafter van-uus time periods. Figure 3 situws titat titere was noincreasein extracellularNGEconcentratiunafter 8 hr uftreatment. In contrast, a striking enhancementwas no-ticed after 24 itr. Maximal NGF secretionoccurredincelís treatedfur 72 itr with LPS (17-fold increaseuverbasal value). Densitumetricanalysis uf Nurthern blutspresentedin Figure 4 indicatedthat a 4-fold increaseinNGF transcripts touk place after 8 br of treatment,witereas maximal levels uf NGF mRNA were reachedafter 24 itr of treatment(8-fold mercase).

Tu assesswitetherLPS inductiunwasdependentunDNA transcriptiunandRNA transíatiun,weempluyedaninhibitur of DNA transcription,actinomycinO (Act O),and an inhibitur of prutein syntitesis, cycluiteximide(CHX). Resultssummarizedin Table 1 sbow that treat-mentwith either2.5pM Act O urSpM CHX completelyblocked tite augmentationof NGF secretiuninduced byLPS-

60 -

50 -

a,o.u..C.Dz

40 -

30 -

20 —

10 —

o0 0001 0.01 0.1 0.5 2 10

LPS pg/ml

Fig. 1.treated(LPS).

Nerve growth factor (NGF) secretionby astroglial celíswith increasingconcentratiunsof lipopolysaccharidePrimary cultures uf strocytes, 3 weeks oíd, were

incubatedwith increasingconcentration of LPS during 24 hr. Atthis moment, NGF releasedin the supernatants was assayedwith a double-siteELISA. Dat-a are meatns1 S.E.M. of fourindependentexperirnents.Each determination was in triplicate.Maximal NGF secretionwasobtainedwith 2 iig/m¡ LPS.

NGF

1 2 3.01 67

PKC and Tyrosinc Kinasc Inhibit¡on Do Not AfTcettite Induction of NGF Seeretionby LPS

In an attempt to study tite patitways involved in thecontrol of NGF synthesisby LPS in astrocytes,celísweretreatedwith bisidolylmaleimide(BlM), a highly specificinhibitor of PKC, prior tu tite incubation with LPS.ClassicalPKCs are strongly activatedby phorbol estersas phorbol 12-myristate 13-acetate(PMA), whicit is aputent inducer of NGF genein astrocytes(Neveu et al.,1992). We itave previouslydescribedthattreatmentwiththe PKC inhibitor BlM abolisited PMA-induced NGF(Laviadaet al., 1995). Treatmentof astrucyteswitit SIMdid not affect LPS-inducedNGF secretiun(Table 1),indicating that tite signaltransductionpathwaytriggeredby LPS wasPKC-independent.

Tyrusine kinase inhibitors have been shuwn tublock sumeof tite LPS effects.Tu studywhetheractiva-tiun of tyrusinekinaseswas onvolved in NGF induction

APP~ ~ .9,,,Fg2N hnbo na oNOFmRNAa m uninducedby increasingconcentration of LPS. Celís were treatedwith increasingconcentrations of LPS. Lane 1,untreated celís;lane 2,0.001 pg/ml; lane3,0.01 ¡ig/ml; ¡une4,0.1 ¡ig/ml; ¡une5, 0.5 gg/ml; lane6, 2 gg/ml; lane 7, 10 gg/m¡. After 24 hrincubation, total RNA was isolated, electrophoresed,blottedand serially hybridized with a radiolabelled NGF and AP?cONA probes.Essentiallyidentical results were obtained inthreeindependentexperiments.

by LPS in astroglial celís, we empluyed the inhibiturstyrphustin A0126 and genistein.As situwn in Table 1,neititer tyrpitustin AGI2G nor genistein affected LPS-stimulatedsecretionof NGF.

1

n 1

Page 86: ¡1ID DII IIMUllID - UCM

572 Galvc-Roperhet al.

80

70

60

o>o.u-<3z

50

40

30

20

10

0

hours

Fig. 3. Time courseof NGF secretionafter treatmentwith LPS.Primary astrocytecultureswere incubatedin the presenceof 2~ig/mILPS. At the indicated times, cell-secretedNGF wasassayedwi¡h a double:siteELISA assay. Data are mean ±S.E.M. of two independent experiments with determinations intriplicate.Maximal inductionoccurredat 72 hoursof treatment.

AgentsElcvat¡ngcAMP LevelsInitibit LPS-InducedProduetionof NGF

Tite effect of raising intracellularcAME levels unLES-inducedNGF releaseby astroglialcelís was deter-mined by treating celís with eititer furskolin (FK) orIBMX. FK or IBMX alune had no effect un NGFsecretion. Huwever, a 1 -hr preincubation with theseagents led tu a complete inhibitiun uf LPS-stimulatedsecretiunof NGF. Celí treatmentwith thecAMEanaloguedibutyryl-cAMP exertedtite sameinitibitory effect (datanot sitown). Tu cunfirm tite antagonisticaction of cAMEun theinduction uf tite NGF geneby LES, Nortitern blotanalyseswere carneé uut under the same treatmentconditions.Figure 5 shuwsthat botit FK and IBMX docompletely block the accumulationof NGF transcriptswhicit uccursin responsetu aLES treatment.

Stimulation of NGF Produetion by LPS Is Initibitedby Apigenin

Tu furtiter examine tite pathway by witich LESinducesNGF syntitesis and secretion by astroglial celís,the plant fiavonuid apigenin (API) was used. Celís werepreincubated with apigenin for 1 hr, and titen treated .wititLES. Under sucit conditiuns, LPS failed tu induce anyaugmentatiun of tite amount of cdl secretedNGF (Table

NGF

1 23 4

‘OsÍAPPfl•

Fig. 4. Time courseof NGF mRNA accumulationin astroglialcelís treated with LPS.Celíswere treated at the indicated timeswith 2 pg/ml LPS and NGF mRNA accumulationassessedbyNorthern blot. Lane 1, 0 hours; lane 2, 8 hours; lame 3, 24hours; lane4,72 hours; lameS,¡20 hours.Essentially identicalresults were obtainedin two independent experiments.

TABLE 1. Efl’ect of Treatnient With Dillerení Agcnts o» LPS-Induced NGFSecretionby Astroglial CelIs*

Addition NGF pg/mI

Control 6.2±3.0LPS 2 ¡ig/ml ¡09.3 ±6.6LPS 2 ¡ag/ml + Act D 2.5 pM 9.9 ±2.5LPS 2 ¡ig/ml + CHX 5pM ¡2.0± ¡.3LPS 2 pg/ml + BlM 2pM 104.5±9ÁLPS2pg/mI+TyrAGl26 100pM ¡05.0±26LPS 2 pg/ml + genistein ¡00 pM ¡03.6± 5LPS 2 4/ml 1- FK ¡O pM 25.6±¡0.7LPS 2 pg/ml + IBMX ¡00 pM 21.7±7.5LPS 2 pg/ml + API 25 pM 22.9 ±2.2

*Primary cultures of astrocytcs were incubated in the presence of the

indicated agents ¡ hour prior tu LPS Ireatmcnt fur 24 hours. NGF u ihesupernatants was assayed with a double-site ELISA. Data are means ±S.E.M. of three indcpendent experiments with dewrminations intriplicate. Agents alune, which had no etfect un NGF secretion, havebeen omitted tu cl-arify Ihelable.Abbreviatiuns: Act D, -actinumycin D; CHX, cyclohcxiniide; BlM.bisindolylnnleimidc; Tyr AC126. tyrphostin A0126; FK, forskolin:IBMX, 3-isubutyl-l-methylxanthine; API, apigenin.

1). Tite compuundalsobluckedtheNGF mRNA accumu-lationin thecelís (Fig. 6)-Titedose-responsecurveshowstitat tite 1C50 valuefor apigenininhibition was approxí-mately lO ~iM(Fig. 7).

DISCUSSIONTite present study shows that LES is a putent

activaturof NGF secretionin primaryculturesof corticalastrocytes.LES inducedNGF synthesisanésecretiunbyastruglial celís in a cuncentration-dependentmanner.Adoseuf 10 ng/ml wasalreadyeffective but thestrongestresponsewasobtainedwitit a doseof 2 jig/ml LES. At titisconcentration,LES induced an accumulationuf NGFmRNA and NGF proteins whicit reacitedtiteir maiximallevelsafter24 itr and72 itr uf treatment,respectively.Titeprotein secreted in tite extracellular medium was in-

0 8 24 72 120

Page 87: ¡1ID DII IIMUllID - UCM

Lipopolysaceharide Regulation of NGF Syuthesis 573

12 3 4

NGF Oo,o-

I.l~0z

APPS••U~

Fig. 5. cAMP-clevatingagentscounteract NOF mRNA accumu-lation inducedby LPS. Astrocyte cultures were treated with noadditions (lane 1) or with 2 ¡ig/ml LPS alune (Infle 2) or in thepresenceof eitherforskolin (FK) lO ~M (Iane3) or3-isubutyl-¡-meihylxantbine (IBMX) lOO ¡iM (Infle 4). FK and IBMXwereadded1 hotir prior tu LPS treatment. Essentially identicalresulís were obtained in two independent experiments.

1 234

NGF

100

75

50

25

o

[Apigenin] pM

Fig. 7. Dose responseinhibition of LPS-inductedNGF secre-¡ion by apigenin. Astrocyte cultureswere incubated with 2ag/ml LPS andthe indicated doses of apigeninfor 24 hoursandNGF secreted to the supernatantswas assayedwith a double-siteELISA assay.Dataaremeans±S.E.M.of two independentexperimentswith determinationsin triplic~¡te.

ARR

Fig. 6. Apigenin inhibits NGF mRNA accumulationin as-troglial celís induced by LPS. Primary cultures were treatedwith no additions (lame 1) or with 2 ¡dg/ml LPS (lame 2), 25 pMapigenin (lane 3) or 2 ¡ig/ml LPS plus 25 14/ml apigenin (lane4). The latter was added 1 hour prior tu LPS treatment.Essentially identical results were obtaincd in twu independentexperiinents.

creased by afactoruf 1 7-fold, witicit is considerable.Titeeffect uf LPS requiredbutit prutein syntitesisandDNAtranscriptiun,as it was abrogatedby initibition uf cititerbiusyntiteticsteps,usingCHX anéActO.

LES induction uf NGF by astrocytesmay be titeresuiruf a complexprucesscumprisingtite variuuseffectsuf LES un titosecelís,as well as un otiter celí types titatmigitt be presentin tite primary culture. However, tite-experimentalprucedureusedin tite presentwurk, whicitprovidesitigitly enrichedastrocyticcultures,points tu adirect effect of LPS on NGF synthesisand secretionbyastrocytes.Nevertiteless,stimulation of NGF syntitesismay not result from a direct actionof LES un astrucytes,but frum autocrine luups. Otiter products releasedby

astrocyte in responsetu LES cuuld enitancetite expres-siun of tite NGF gene.This is thecaseuf inflammatorycytokinesTNFx, TGFj3 and IL-lI3, witich have beendescribedas inducersof NGF synthesis(Sprangeret al.,1990; Pshenichkinet al., 1994;Pltisset al., 1995;Hattoriet al., 1996).However,inductiunof cytokinesby LES itasbeen sitown tu uccur througit protein tyrosine kinaseactivatiun (Geng et al., 1993). Tyrphostin AG126 itasbeensitown tu preventLPS tuxicity in vivo anéblucksLPS-stimulatedTNFct anénitric oxide (NO) productionby macropitages(Novogrodskyet al., 1994;Vanicitkin etal., 1996). Genistein itas also been implicated in titeinitibition uf the syntitesis of IL-6 stimulatedby IL-l¡3(Caríson ané Ascitmies, 1995). Our results did notevidence any effect of tite tyrosine kinase initibiturstyrpitostinAG 126 andgenisteinuntheLES-inducedNGFproductiun. Titerefure,our datasuggesttitat tite regula-tion of tite expressionuf tite NGF geneelicitedby LES isnut mediatedby TNEa,IL- 1, IL-6 or NO pruduction.

Tu furtiter study tite mechanismtriggeredby LPSand leading tu a stimulatiun of NGF production byastrucytes,we examinedwitetheragentsabletu increaseintracellularcAME caninitibit tite effectof LES. Tite roleuf cAMP anéprutein kinase A in NGF regulatiun byastroglialcelís is still nut clearly defined.Dependinguntite celí cultureconditiuns,tite gruwth stateof celís andtite experimental mudel, different results itave been

0 5 10 15 20 25

Page 88: ¡1ID DII IIMUllID - UCM

574 Galve-Roperh ct al.

ubtained.Witile undercertaincunditiuns,forskolin, cate-chulaminesor cAME analuguesstimulatedNGF synthe-sis, tite cumpuundswere fuundby otiters tu be ineffectiveor able tu counteract tite promotory actiun of severalinducersof NGF syntitesis(Haitnetal., 1994;Jeitaneta!.,

1995). Our results fil witit this sciteme,sincetitey showtitat FK ané IBMX block tite stimulatury effect uf LES,butit at tite level uf NGF mRNA accumulation andcelí-secretedprutein.FK anéIBMX havebeeninvolvedin theblockadeof tite MAP kinasepatitwayin epidermalgrowth factor (EGF)-stimulatedcelís titruugit a cAME-dependent increase in Raf-l pitospitorylatiun, witicitpreventsRas-éependentactivation of Raf-l (Cook anéMcCormick, 1993; Wu et al., 1993). Our data inéicatethat apigenin,a prupusedinitibitur of the MAP kinasepatitway, also inhibited LES-induced NGF synthesis.Apigenin itas beendemonstratedtu reversethe v-H-ras-transformed phenutypeuf NIH 3T3 celís titrough theinitibitiun uf tite MAE kinase-assuciatedsignaltransduc-tion patitway (Kuu anéYang, 1995). Our result suggeststhat LES triggers in astroglial celís a MAP kinase-dependentmecitanismwhicit promutestite activation oftite NGF gene.It is notewortitytitat activationuf tite MAPkinasecascadeby LPS,and its initibition by agentstitat ele-vate celí levelsof cAME, wasrecentlyreporteéin a itu-man astrocyticcelí line, U-373MG (WiIlis anéNisen, 1995).

Twu general mecitanismsappeartu promote titeexpressionof tite NGF genein astrucytes.Tite first uneuperatestitrough tite activatiunof PKC, anéis triggeredby scrum ané éiacylglycerol (D’Mello and l-Ieinricit,1990;Neveuet al., 1992).Tite otiter uneactsthrougittitesphingomyelinpatitway,and is tituugitt tu beswitcited unby vitamin D3 (Neveu et al., 1994). We itave recentlydescribedtitat tite breakduwnof phosphatidylcholinebypitospitulipaseC may activatebotit mechanisms(Laviadaet al., 1995).Resultssituwn in tite presentreport inéicatetitat the regulatiunof NGF production by LPS in astro-cytes seemstu be independentof EKC activation, andtiterefore, LES could control NGF syntitesis by titesecuné mecitanism. Bacterial LPS has been sitown tutrigger similar cellular responsestu TNFa and IL-l~,witich areknuwn tu initiate a signalling pathwayinvolv-ing spitingomyelin itydrulisis (Kulesnick ané Golde,1994;Hannunet al., 1996) andRaf-l activation(Belkaetal., 1995). Recentstudiessuggesttitat LES is recugnizedby tite sameintracellularmoleculestitat biné tite seconémessengerceramide(Wrigitt anéKolesnick, 1995). Fur-titermore,LES canstimulatea ceramide-activatedpruteinkinasein HL-60 celís (Josepitet al., 1994) whicit appearscapableuf catalyzing tite pitosphorylatiunuf Raf (Yau etal., 1995). Titis suggeststitat the MA? kinasecascadeisinvolved in tite spitingomyelinpatitway. Therefore,ourresults indicate titat LPS stimulates NGF syntitesis in

astrucytes by a mecitanism that seemstu be closelyrelatedtu tite patitwayactivatedby spitingumyelinaseandwitich is independentof PKC.Thedataraisethe pussibil-ity titat stimulatiun uf tite synthesisof NGF is a éirectcunsequenceuf LES actiun un astrocytes,ratherthan anindirect responseelicited by LES-inducedcytukinessuchasIL- 13,TNF~ or TGFj3.

NOTE ADDED IN PROOE

We itave recently observedthat LES induces a3-fuld stimulationof p42/p44MAPK in primary culturesuf astrocytes.

ACKNOWLEDGMENTS

We titank Dr. M. Guzmánfor itelpful discussiunandcritical reaéingof tite manuscript,and tu Dr. E. Dulín ¡briter assistancein the ELISA prucedurewitit tite Fluoros-kan -

Titis work wassupportedby grantsfrum ComisiónInterministerialde Cienciay Tecnología(SAE 96-0113),from Fundode InvestigaciónSanitaria(FIS 97/0039-Dl)ané from “Acciun Integrada”(EicassuErugram)promot-ing tite cullaborationbetweenFranceanéSpain(95/138).

REFERENCESBelka C, Wiegmann K, Adam D. Holland R, Neuloh M, Herrmann E

Kronke M, Brach MA (¡995): Tumor necrosis factor (TNF)-uacdvates c-raf-l kinase vio the pSS TNF rcceptor engagingneutral sphingomyelinasc. EMBO J 4:1156—1 ¡65.

Bracci-Laudicro L, Abc L, Levi-Montalcini R, Buttinelli D, SchilterD. Gillessen S, Ottcn U (¡992): Multiple sclcrosis patientsexpress increased levels of B-nerve growth factor in cerebrospi-nal fluid. Neurosci Lett ¡47:9—12.

Caríson RO, Aschmies SH (¡995): Tyrosine kinase activily is essenlialfor interlcukin- 1 bela stimubated production of iníerleukin-6 inU373human astrocytoma cclls. i Neurochen, 65:249 ¡—2499.

Cook Si, McCormick F (1993): Inhibilion by cAMP of Ras-dependeníactivation of Raf. Science 262:1069—1072.

OMello SR, Hcinrich O t1990): Induction of ncrve growth factor geneexpression by 12-O-lctradecanoyl phorbol ¡3-acetale. J Neuro-chems5:718—721.

Ehrhard PB, Gauter U, Stalder A, Bauer J, Otten U (¡993): Expressionof nerve growth factor and nerve growth faclor tyrosine kinasetrk in activated CD-4 positive TceIl clones. Proc NaO Acd SciUSA 90:5423—5427.

Geng Y, Zhang B, Lotz M (¡993): Protein tyrosine kinasc activ-ation isrequired for lipopolysaccharide induction ofcytokines inhumanbluod monocytes. J lmmunol 151:6692—6700.

Hahn M, Lorez H, Fischer 0(1994): The immortalized astroglial celí¡inc RC/ is a new model system for the study of nerve growthfactor (NGF) regulation: Stimulation by interleukin- ¡13 andtrnsforming growth factor-131 is additive and affectcd differ-ently by dibutyryl cyclic AME Cha 10:286—294.

¡-lannun YA, Obeid LM, Dbaibo 0(1996): Ceramide. A novel sccondmessenger and lipid mediator. lo Beil RM (cd): H-andbook ofLipid Research. New York: Plenum Press, Pp ¡77—204.

Page 89: ¡1ID DII IIMUllID - UCM

Lipepolysacehar¡deRegulation of NGF Synthesis 575

Hattori A, Hayashi K, Kohno M (1996): Tumor necrosis factor (TNF)stimulates Ihe production of nerve grow¡h factor in flbroblastsvia the 55-kDa type 1 TNF receptor. FEBS Lett 379:157—160.

Jehan F, Neveu 1, Naveilhan P, Wion O, Brachel P (¡995): lnterac¡ionsbctween second messenger pathways influence NGF synthesiso mousc primary astrocyles. Brain Res 672:128—136.

ioscph CK. Wright SO, Bornmann WC, Randolph JT, Kumar ER.Bi¡tman R, Liu J, Kolesnick RN (¡994): Bacierial lipopolysac-charide has structural similarity tu ceramide and stimulatesccramide-activated protein kinase in myeloid celís. J Biol Chem269:17606—17610.

Kimberlin 0W, Velasco 5, Paris MM, Hickey SM, McCracken GH,Nisen PO (¡995): Modulation of expression of genes involvedin ¡he inflammatory response by lipopolisaccharide and tempera-ture in cullured human astroglial celís. lmmunol lnvest 24:775—785.

Kolesnick R, CuIde DW (¡994): The spbingoniyelin pathway in tumornccrosis factor and intcrleukin-I signaling. Cdl 77:325—328.

Kuo M, Yang N (¡995): Reversion of y-U-ras transformed NIH 3T3celís by apigenin through inhibiling niitogcn activaled proteinkinase and its downstream oncogcncs. Biochem Biophys ResComniun 212:767—775.

Laviada ID. Baudel C. Galve-Ropcrh 1, Naveilban P, Brachet P(1995):Phosph-atidylcholine-phospholipase C mediates ihe induction ofnerve growth factor in cultured glial celís. FEBS LeÉt 364:301—304.

Mallat M, Houlgat¡e R, Brachet P, Prochian¡z A (¡989): Lipopolysac-charide-stimulatcd rat brain macrophagcs release NGF o vitro.Dey Biul ¡33:309—311.

Montero-Menei CN, Sindji L. Garcion E, Mege M, Conez O, GamelinE, Darcy F (¡996): Early evcnts of the intlammatory reaclioninduced in mt brain by lipopo¡ysaccharide intracerebral injec-tion: Relative coniribution of peripheral monocytes and acui-vated microglia. Brain Res 724:55—66.

Neveo 1, Jehan F, Houlgatte R, Wion O, Brachel P (¡992): Activalion ofnerve growth factor synthesis in prinlary glial celís by phorbol12-niyristate ¡3-acetate: Role of prolein kinase C. Brain Res570:316—322.

Neveu 1. Naveilban P Jehan E. Haudet C. Wion DDe Loca HE, BracherP (¡994): l.25-Dihydroxyvitamin 0, rcgulates ¡he synthesis ofnerve growíh Lictor o primary culturcs of gilal edN. Muí BrainRes 24:70—76.

Novogrodsky A. Vanichkin A. Patya M. CuAL A. Osherov N. LevitzkiA (1994): Prevention of Iipopolysaccharide-induced leihal Lux-¡city by tyrusinc kinase inhibitors. Scicnce 264:1319—1322.

PIUss KMA. l’feilschifter J. MUhí 1-1. Huwiler A, Boeckh C. Otten U995): Mudulatory role of plateler-derived growth factor on

cy¡okine-induced nerve growth factor synthesis in ra¡ mesangialcelís. Biochem 1 312:707—711.

Pshenicbkin SP, Szekely AM, Wise 5 (1994): Transcriptional andposttranscriptional mechanisms invulved in the inter¡eukin-l,stcroid, and protein kinase C regulation of nerve gruwth factorIn cur¡ical astrocytes. J Neurochem 63:419-428.

Schmidlin A, Wiesinger U (1995): Stimulation of arginine ¡ransportana) nitric oxide production by ¡ipopolysaccharide is mediatedby different signaling pathways in astrucytes. 1 Neurochem65 :590—594.

Scott J, Selby M. Urde-a M, BeIl 6, Quiroga M, Ru¡ter WJ (1983):¡solation and nucleotide sequence of cONA encoding ¡heprecursor of mouse nerve grow¡h factor. Nalure 302:538—540.

Shivers BD. Hilbich C, Multhaup O, Salbaum M, Beyreuther K. SeeberPH (¡988): Alzheimers disease amyloidogenic glycoprotein:Expression pattern in rat brain sugges¡s a role in celí contad.EMBO Ji: 1365—1370.

Slegers H. Joniau M (¡996): Lipupolysaccharide-enhanced expressionuf interleukin-6 in dibutyryl cyclic AMP-differentia¡ed rat C6glioma. 1 Neurochem 66:466—473.

Spranger M, Lindholm O, Bandtlow C, Heumann R. Gnahn H.Naher-Noe M, Thocncn U (¡990): Regula¡ion of nerve growthfactor (NGE) syn¡hesis in the rar central nervuos sys¡em:Coniparison between the elfects of interleukin-l and variousgrowth factors in as¡rocyte cultures ana) in vivo. Burí Ncurosc¡2:69—76.

Vanichkin A, Patya M, Gazi¡ A. Leyitzki A, Novogrodsky A (1996):Late administration of Iipophilic tyrusine kinasc inhibitorprevents ¡ipopolysaccharide and E. coli-induced lethal tuxicity.

Infecí Dis ¡73:927—933.Varon SS. Conner JM, Kuang R (¡995): Neurotruphic factors: Repair

and regenera¡ion in the central nervous system. Res NeurolNeurusci 8:85—94.

Willis SA, Nisen PO (¡995): lnhibi¡ion of lipopolysaccharidc-inducedIL- ¡13 transcription by cyclic adenosine monophosphatc inhuman astrocytic celís. J lmmunol 154:1399—1406.

Willis SA, Nisen PO (1996): Differential induction of the mitugen-activated protein kinase pathway by bacterial lipopolysaccha-ride in cultured munucy¡es and astrocytes. Biuchem 1 313:519—524.

Wright SO. Kolesnick R (1995): Dues endutoxin stimulale celís bymimicking ceramide?. Imniunol Today 16:297—302.

Wu 1, DenÉ P, Jelinek T. Wolfman A, Weber Mi, Sturgill TW (¡993):Inhibition of ¡he EGF-ac¡ivated MAP kinase signaling pathwayby adenusine 3,5’-rnonophosphate. Sejence 262:1065—1069.

Yao B, Zhang Y, Oelikat 5, Ma¡hias 5, Basu 5, Kolesnik R (1995):Phosphorylation of Raf by ceramidc-activated protein kinase.Nature 378:307—310.

Page 90: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 80

RESULTADOS Y DISCUSIÓN

Regulaciónde la producciónde NGFpor el TNFc¿ Papeldel NF-icB

Los resultadosexpuestosponen de manifiesto el efecto inductor del TNFcz en

la síntesisde NGF. Del estudiode la regulacióndel NGF por el TNFa se desprende

queesteejercesuefecto por un mecanismodiferente, y probablementeindependiente,

de la generaciónde ceramidaspor acciónde la SMasa.La síntesisde NGF inducida

por TNFa y LPS esindependientede cPKC, de forma similar al efectopromovidopor

ceramidas.Sin embargo, la inducción de NGF por ceramidaspareceestarmediada

por la activación de la cascadade MAPK, mientras que el efecto del TNFct es

independiente de este sistema de fosforilación. Esta constituye la primera

observaciónde que ambos mediadores,TNFa y ceramidas,ejercen su efecto de

maneraindependiente.La ausenciade hidrólisis de SM y de generaciónde ceramidas

por TNFa en astrocitos,indica que esta citoquina no activa la síntesis de NGF a

través de la SMasa. Los resultados descritos indican la existencia de otros

mecanismosendógenosdistintos de la acción de la SMasa, como puede ser la

estimulaciónde la síntesisde novoo la inhibición de su degradaciónparaincrementar

los niveles intracelulares de ceramidas (Bose et al., 1995; Biewlaska et al., 1996;

Paumen et al., 1997). Es importante destacar que una proteína viral de RIV-1

favorecela activación de la SMasapor el TNFcz, lo que revela queeste sistemade

transducciónde señaleses funcional en células gliales en una situación de infección

vírica (Richard et al., 1996). Experimentosrealizados iii vivo muestran como la

inyección de otra proteína viral de RJV-1 aumentala expresiónde NGF in vivo

(Bagettaet al., 1996). El conjunto de estasobservacionessugiereque el aumento de

los niveles intracelulares de ceramida puede ser importante en los astrocitos

reactivos,induciendoentre otras respuestasun aumentoen la síntesisy secreciónde

NGF.

Por otra parte se observaquela inducción del NGF se inhibe por el óxido de

fenilarsina, inhibidor de tirosina fosfatasas.Estemoduladorbloqueala activacióndel

factor de transcripciónnuclear NF-KB, así como la degradaciónde su subunidad

citusólica inhibidora IkBa. Parece por tanto que NF-KB, está implicado en la

regulaciónde la expresiónde NGF por TNFct. El estudiodel promotor del gende NGF

indica laexistenciade unaposiblesecuenciareguladoraquepodríaunir estefactor de

transcripción (Jehan et al.1993). Sin embargo, los experimentos realizados

demuestranque, al menos in vitro, el oligonucleótido correspondientea esta

secuenciano escapazde unir el factor de transcripción.Portanto laexpresióndel gen

Page 91: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 81

de NGF inducidapor TNFa dependede NF-KB pero de forma indirecta y no por la

unión directaal promotordel gen de NGF. La inhibición parcialque ejerceel cAMP

sobrela secreciónde NGF inducidapor TNFct no puedeser atribuida en estecasoa

una inhibición de la cascada de MAPK, ya que este sistema de fosforilación

aparentementeno esta implicado (Kurino et al., 1996, Willis y Nisen, 1996). Sin

embargo,la inhibición parcialde la activaciónde NF-KB por el aumentoen los niveles

de cAMP intracelular (Pahanet al., 1997), constituyeunaalternativaparaexplicarel

efectoinhibidor del cAIVIP sobrela síntesisde NGF.

Regulaciónde la secrecióndeNGFpor LPS

En lo que se refiere al LPS, los resultadosobtenidosponende manifiesto el

potente efecto inductor del LPS (E.coli) en la síntesis y secreción del NGF por

astrocitos en cultivo primario. Los inhibidores de actividad tirosina quinasa

empleadosno bloqueanla secreciónde NEW inducidapor LPS, lo quesugiere una

activación directa del LPS y no un efecto indirecto mediado por la secreción de

citoquinaspro-inflamatorias, inductores de la secreciónde NGF (Carman-Krzanet

al., 1991; Rattori et al., 1993; Pshenichkinet al., 1994). Para profundizar en este

aspecto, se ha estudiado también el posible papel del óxido nítrico (NO) en la

inducción de NEW por LPS. El NO es un importante mensajeroparacrino regulador

de diferentessituacionespatufisiológicasen el SNC (Murphy et al., 1993; Schmidliny

Wiesinger,1995). La exposiciónde astrocitosa LPS o a citoquinaspro-inflamatorias

activa la generaciónde NO a través de la NO sintasa inducible, por ello resulta

factible que la generaciónde NO constituyaun mecanismomediadorde la regulación

de la síntesis de NGF. Los resultadosobtenidos(no incluidos) con aminoguanidina

(inhibidor de la NO sintasa constitutiva e inducible), y L-NAME (inhibidor

competitivo de la NO sintasaconstitutiva)ponende manifiesto queestesistemade

transducciónde señalescarecede efecto en la regulaciónpor LPS de los niveles de

NGF sintetizado.Por tanto, la secreciónde NGF inducida por LPS es independiente

de la producciónde NO y posiblementetambiénde citoquinaspro-inflamatorias.En

estecontexto,esimportantedestacarque la estimulaciónde la vía de las ceramidas

puedesimular algunas de las respuestascelularesinducidas por el LPS (Barberet

al., 1996).

La inhibición a travésde la vía del cAMP de la secreciónde NGF inducidapor

LPS pone de manifiesto la existenciade mecanismosde regulaciónquepermiten un

control preciso de la síntesisde este factor neurotrófico. Los datos obtenidoscon

Page 92: ¡1ID DII IIMUllID - UCM

Resultadosy Discusión 82

apigenina,inhibidor de la cascadade MAPK, fueron confirmadosposteriormentecon

el usode un inhibidor sintético altamenteespecíficode MEK, denominadoPD 098059

(Alessi et aL, 1995). El tratamientosimultáneode los astrocitosen cultivo primario

con PD 098059 y la dosis máxima de LPS disminuye en un 50% la estimulación

máxima producida por LPS en ausenciadel inhibidor. Puesto que el LPS es un

importanteactivadorde NF-KB, el efecto inhibidor del cAMP en la síntesisde NGF

inducidapor LPS puede,por tanto, serexplicadopor una inhibición de la cascadade

MAPK, comopor la inhibición de la activaciónde NF-KB (Pahanet al., 1997).

Page 93: ¡1ID DII IIMUllID - UCM

III- DISCUSIÓN GENERAL Y

CONCLUSIONES

Page 94: ¡1ID DII IIMUllID - UCM

Discusión General y Conclusiones 83

III- DISCUSIÓN GENERAL Y CONCLUSIONES

El funcionamientodel SNC dependedel equilibrio funcional entresus distintos

componentescelularesy de una adecuadaintegración y adaptacióndel sistema a

unascondicionesexternasvariables. Los astrocitosconstituyen un importante centro

de coordinaciónfuncional en el SNC, a través de la expresiónde neurotrofinas,

proteínas de adhesión, citoquinas y factores de crecimiento que regulan el

funcionamiento neuronal, su desarrollo y la plasticidad neuronal. Además, los

astrocitosson activadoresde respuestasde emergenciaante procesosde lesión o

infecciónmediantesucontribuciónal procesode gliosis. En estecontexto, los niveles

locales de neurotrofinas,como el NGF, favorecen el crecimiento de determinadas

poblaciones neuronales en momentos específicos del desarrollo. Un descenso

“programado”en los niveles de NGF puedeserimportantepararestringir, eliminar o

modificar poblaciones neuronales locales. El propio NGF puede desencadenar

procesosde apoptosis, necesariosdurante el desarrollo del sistema nervioso. La

síntesisneurunalde NGF en el SNC puedeser sustituidapor la síntesisglial, siendo

los astrocitoslas células no neuronalesmásabundantesdel SNC. La inducción de la

síntesisde NGF por astrucitusactivadospuedeproporcionarel suficiente suministro

de NGF en el SNC endeterminadassituaciones.

La síntesis de NGF está muy regulada y controlada por las condiciones

extracelulares.In vivo, en una situación fisiológica normal y en el SNC adulto, la

expresióndel NGF por astrocitosestareprimidaperola activaciónastrocitariainduce

su expresión. Los resultados mostrados profundizan en el conocimiento de los

sistemasde transducciónde señalesque activanla síntesisy secreciónde NGF por

astrocitosen cultivo primario. La ruta de la SMasay la consiguientegeneraciónde

ceramidaspresentaun alto grado de similitud con vías de transducciónde señales

clásicasy mejor conocidascomo la generaciónde DAG por activación de diferentes

fosfolipasas. El DAG y la ceramida son estructuralmentesemejantesy una vez

generadospor la fosfolipasacorrespondientepermanecenembebidosen la membrana

plasmática.De maneraanálogaal DAG, que actúadirigiendo a algunosde los tipos

de PKC a la membranadondese activan,la ceramidapodría actuarcomo punto de

unión dirigiendo su(s)proteína(s)efectora(s)hacia la membrana,lo que implicaría su

activación. Las ceramidaspuedenpor tanto modular la actividad de sus efectores

induciendo cambios conformacionalesde la proteína, modificando su localización

subcelularpor translocacióny favoreciendoel accesoa sus substratos.La existencia

de una modulacióndiferencial de PKC ~ y Raf-1 por los análogosde ceramida de

Page 95: ¡1ID DII IIMUllID - UCM

Discusión General y Conclusiones 84

diferente longitud del grupo acilo, puedeexplicarsedesdeel modelo del grupo alquilo

protuberante(Krñnke, 1997). Según este modelo, el grupo alquilo de la SF sería

reconocidopor las proteínasefectorasde los esfingolípidos,mientras el resto acilo

seríael responsablede la inserción en la membranaplasmática. Si esto fuera así, la

C2-ceramidapodría ser reconocidapor las mismasproteínasefectorasqueceramidas

de mayor longitud, pero carecería de la capacidadde dirigirlas a la membrana

plasmática.

La inducción observadade NGF por acción de la PC-PLC, puede reflejar el

efectoregulador sobrela síntesisde NGF de los sistemasde control de proliferación

celular, dadoquela hidrólisis de PC constituyeuno de susmecanismosde regulación.

El efectopromovidoporla PC-PLCconfirma, además,la importanciade la generación

de mensajeroslipídicos en la regulaciónde la funcionalidadastrocitaria.La inducción

de la síntesisde NGF por la acciónde la PC-PLC poseecaracterísticascomunesconel

efecto observadopor la acción de la SMasaexógenay las ceramidaspermeables,lo

que hace pensar que ambos efectos están relacionados de forma sucesiva y

coordinada.El trabajo realizadoenla presentetesisdoctoralconstituyeun ejemplode

la importanciade los mensajeroslipídicosen la regulaciónde la funcionalidadcelular.

Glicerolipidos y esfingolípidos son importantes reguladores de sistemas de

fosforilación de proteínasy la regulación cruzadaque ejercen entre si aumentala

complejidadde los mecanismosde control posibles.

El LPS, uno de los principales activadores de la respuesta inmune e

inflamatoria anteuna situaciónde infecciónbacteriana,induce un drásticoaumento

en los niveles de NGF, sintetizado por astrocitos en cultivo primario. El efecto

regulador del LPS puedetener diferenteslecturaspero todas ellas relacionadascon

los resultadosanteriormentedescritos.La vía de las ceramidaspuede ser activada

por la exposicióncelulara endotoxinas(Hannun, 1996), y se hapropuestoqueel LPS

puede ejercer alguno de sus efectos por analogía estructural con las ceramidas

activando efectores similares a los activados por el aumento en los niveles

intracelulares de ceramidas como la CAPK (Wright y Kulesnick, 1995). Las

característicascomunesde la estimulación de la síntesis de NGF por el LPS y

ceramidassugierenque ambosefectospodrían estar relacionadoscon la inducción de

NGF duranteunasituacióninflamatoriao de lesión.

El TNFcz, otro activadorcaracterísticopro-inflamatoriode la vía de la SMasa-

ceramidas(Hannun, 1996), promuevesin embargoun incrementoen la síntesisde

NGF con algunasdiferenciasconla inducciónobservadapor el aumentode los niveles

Page 96: ¡1ID DII IIMUllID - UCM

Discusián General y Conclusiones 85

intracelulares de ceramida, lo que sugiere que ejerce su acción de manera

independientede la hidrólisis de SM. En efecto,elTNFct no induceun aumentoen los

niveles intracelularesde ceramidaa través de la hidrólisis de SM. La inducción de

NGF por un aumentoen los niveles de ceramida se puedeexplicar por la activación

de la ruta de la SMasapor otros activadoresde estesistemade señalizacióncelular, o

por un aumentoen los niveles intracelularesdebidoa la regulaciónde su síntesiso

degradación.

Respectoa los sistemasde fosforilación implicados, los resultadosexpuestos

constituyenla primerareferencia,de la quetenemosconstancia,queasignaun papel

a la cascadade las MAP quinasasen la regulación de la expresióndel NGF. La

importanciade estesistemade fosforilaciónen la regulaciónde la síntesisde NGF se

ve confirmadaal observarsequedistintos activadoresde la síntesisde NGF dependen

en mayoro menormedidade la actividadMAPK. La proteínaquinasaPKC ~ es una

de las dianasde la acciónde la PC-PLCy las ceramidasen los astrocitos,modificando

su localizaciónsubcelulary su grado de fosforilación. La localizaciónperinuclearde

PKC ~ inducidapor la activaciónde los astrocitospuedeestarrelacionadacon efectos

de regulaciónde la expresióngénica, como ocurre tambiénen otros tipos celulares

glialesy neuronales(Carísony Hart, 1996; Wootenet al., 1997).

La activación de PKC ~ por ceramidaspuedeocurrir por interaccióndirecta,

ademáslas ceramidasson capacesde activar Raf-1, lo quese relacionacon el efecto

activadorde PKC ~ sobreMEK y IVIAPK. Recientementese ha descritoque PKC ~ es

capaz de activar e interaccionarde forma directa con Raf-1, lo que explicaría un

mecanismode activación de MAPK independientede Ras desencadenadopor la

activación de la PC-PLC (Van Dijk et al., 1997a). Estas observacionesjunto con los

resultadosmostrados permiten proponer un modelo en el que en los cultivos

primarios de astrocitospuedeexistir unarelación entrela activaciónde la PC-PLC y

la generaciónde ceramidaspor activaciónde la SMasa.Lasceramidasgeneradasson

capacesde incrementarla actividadMAPK, pudiendoatribuirseesta activacióna su

efectoreguladorsobrePKC ~ y Raf-1. Estesistemade transducciónde señalespodría

constituir un importantesistemade regulaciónde la síntesisde NGF en situaciones

de activaciónastrocitariacomola queocurreduranteel procesode gliosis.

Page 97: ¡1ID DII IIMUllID - UCM

Discusión General y Conclusiones 86

PGPIfla~na

0’penwabl~

S\4asaexcgena

t

0’UAW

BaH

SF

sF-1-P

a

Fsqtnnnde ksprñripaksasp&t~ffitldiadm enlapi~ntnnpnrinade tesisdcxtnl

Page 98: ¡1ID DII IIMUllID - UCM

IV- BIBLIOGRAFÍA

Page 99: ¡1ID DII IIMUllID - UCM

Bibliografía 87

y- BIBLIOGRAFÍA

AbousalhamA., Liossis c., OBrien L. y Brindley D.N. (1997)“Cell-permeableceramidespreventthe activation ofPLD by ADP-ribosylationfactornadRhoA’ J.fbi. Chem.272:1069-1075.

Adam-Klages5., Adam D., Wiegmann1<.. Struve5., KolanusW., Schneider-MergenerJ.y Krónke M. (1996)‘TAN anovelWD-repeatprotein,couplesthep55TNF-receptortu neutralsphingomyelinase’Ceil 96:937-947.

AIbi E. y Magni MP. (1997)“Chrumatin neutralsphingomyelinaseandits role in hepatic regeneration”Biochem.Biophys.Res. Comniun.236:29-33.

Alessi DR., CuendaA., Cohen P., Dudley D.T., and Saltiel AR. (1995) “PD 098059 is a specific inhibitor of theactivationof mitogen-activatedproteinkinasein vitro andin vivo”. J. Biol. Chem.270:27489-27494.

Aiexander J.M., Hsu O., PenchukL., y Heinrich 0. (1988) ‘Cell-specific and develupmentalregultion of nervegrowthfactor-humangrowthhormonefusiongenein trnsgenicmice” Neurun3:133-139.

Ancinuz K., VanDommelen1<., Nicolai 5., vanMechelenE. y SlegersH. (1997) ‘Cyclic AMP-mediatedinductiunuf theGFAP is independentofprotein kinaseA activatiunin rat C6 glioma’ J. Neurosci.Res.15:324-333.

Andrieu N., SalvayreR. y LevadeT. (1994)‘Evidenceagainstinvolvementof the acidlysosomalsphingomyelinaseinthe tumor-necrosis-factor-ana) interleukin-1-inducedsphingomyelincycle ana) cell proliferation in humanfsbrublasts’Biochem.J. 303:341-345.

Andrieu N., SalvayreII. y Levado T. (1996) “Comparativo study uf the metabolic pools of sphingon,yelin ana)phosphatidylcholinesensitivo to tumor necrosisfactor” Fur.J. Biochem.236:738-745.

Arendt T., BrucknerM.K., Jirel’ T., Pagliusi 5.. KruskaL. y HeumanaIt. (1995) ‘Degeneratiunof rat cholinergicbasalforebrainneuronaandreactive changesin NGF expressionafter chronicneurotoxic injury. Reactiveexpressionuf NGF genein astrocytes”Neurosci.65:647-659.

AsaokaY., TsujishitaY., y NishizukaY. (1996)“Lipid signalingfor prutein kinaseC activation” en Handbookof LipidResearch8:59-74. PlenumPresa(NewYork).

Awatauhi H., FurukawaY., Hirota M., Murakami Y., Nii 5., Furukawa5. y Hayashi Ji. (1993) ‘IL-4 ana) IL-5 asmodulatorsof NGF aynthesis/secretionin astrocytes’J. Neurosci.Res.34:539-545.

Awatsuhi It., Furukwr.Y., Hirota M., Furukawa5. y Hyashi K. (1995) InterferoassupressNGF aynthesisas aresultof interferencewith cell growth in aatrocytesculturedfrum neonatal¡nousebrain” J. Neurochem.64:1476-1482

Ayer-Lelievre C., Olson L., EbendalT., SeigerA. y PerasunH. (1988) “Espreasionof the beta-nervegruwth factorgenein hippocampalneurona”Science240:1339-1341.

Bagetta 0., CorasanitíMT.. Aloe L., Berliocchi L., Costa N., Finazzi-Agru A. y Nistico 0. (1996) “Intracerebralinjection of humanimmunodeticiencyvirus type 1 cuatproteingpl2O differentially affectstheexpressiunofnervegruwth factor ana) nitric oxide synthaaein the hippocmpusof the rat” Proc. Natí. Acad. Sci USA93:928-933.

Baker S.J. y ReddyE.?. (1996)Transducersof life and deth:TNF receptorsuperfamilyana asauciatedproteins’Oncogene12:1-9.

BallestasME. y BenvenisteEN. (1995) ‘Interleukin-113andtumor necrosisfactor-a-mediatedregulationof ICAM-igeneexpressionin astrocytearequireproteinquinaseCactivity” Gua14:267-278.

BarberSA., Detore0., McNally R. y vogel SN. (1996) “Stimulation uf the ceramidepathwaypartially mímica LPS-inducedresponsesin murineperitonealmacrophages”Infect. Immun.64:3397-3400.

BaudetC., Naveilhn 1>., JehanF., Brachet1>. y Wion D. (1995) “Expressionuf the nerve growth factor gene 1$controlledby the microtubulenetwork” J.Neurosci.Res.41:462-470

Borra E., Díaz-MecoMT., Domiaguez1., Municio MM., SanzL., LozanoJ., ChapkinRS. y MoscatJ. (1993) ‘ProteinkinaseC ~isoformis critical for mitogenic signaltranaduction”Celí74:555-563.

BerraE., Díaz-MecoMT., LozanoJ., Frutos5., Municio MM., SánchezP., SanzL. y MoscatJ. (1995) ‘Evidence for aroleof MEK andMAPK duringsignaltransductionby proteinkinaseCC]’ EMBO J. 14:6157-6163.

BerraE., Munício MM., SanzL.. Frutos5., Diaz-MecoMT., y MoscatJ. (1997) Puaitioningatypicatproteinkinasecisofornisin theU’V-inducedapoptoticsignalingcascade”Muí. Celí. Biol. 17:4346-4354.

Bielawaka A, Linardic CM, Hannun YA (1992) “Ceramide-mediatedbiolugy. Determination of structural andstereospecificrequirementathrough the use of N-acyl-phenylaminoalcoholanalogs” J. Biol. Chem.26 7:18493-18497

BielawskaA., GreenbergMS., Perry D., Jadayev5., ShaymanJA., McKay C. andHannunY. (1996) “(1S,2R)-D-erithro-(N-Myristoylamino)-1-phenyl-lpropanolas an inhibitor uf ceramidase”J. Biol.Chem. 271:12646-12654.

Bilderback T.R., Grigsby R.J. y Dobrowsky R.T. (1997) “Asauciation uf p7SNTR with caveolin and localization of

neurotrophin-inducedsphingomyelinhydrolisisto caveolae”J. Biol. Chem.272:10922-10927.

Page 100: ¡1ID DII IIMUllID - UCM

Bibliografía 88

Bonini 5., LambiaseA., Bonini 5., AngelucciF., Magriní L., Manni L. y Aloe fi. (1996) ‘Circulating nervegrowthfactor levels are increasedin humanswith lergic diseaseaand aathma’Proc. Natí. Acad. Sci. USA93:10955-10960.

Bonni A, SunY, Nadal-vicensM, Bhatt A, FrankDA, Rozovaky1, Stahl N, YancopoulosCD, GreenbergME (1997)“Regulatiun of gliogenesisin the central nervoussystem by the JAK-STAT signaling pathway” Science278:477-483.

Bose It., Verheij M., Haimovitz-Friedman,ScottoJi., Fuks Z. ana) Kolesnick It. (1995)“Ceramideaynthaaemediatosdaunurubicin-inducedapoptosis:analternativemechanismfor generatingdeathsignais” Celí52:405-414

Boutros T., Croze E. y Yong V.W. (1997) “Iaterferon-13 is a potentpromotor of NGF productionby aatrocytea”J.Neurochem.69:939-946.

Brenner3., KoppenhoeferU., WeinstockC., LinderkampO., Lang F. y GulbiasE. (1997> “Fas- or ceramide-inducedapoptosiais mediatedby a rací-regulatedof Jun N-terminal kinaselp3skinasesana) 0A00153” J. fbi.Chem.272:22173-22181.

Brodie C. (1996)“Differential effectsof Thl ana)Th2 derivea)cytokineson NCF synthesisby mouseastrocytes”FEBSLetters394:117-120.

CarísonC.D. y Hart R.P. (1996) “Activation of acidic aphingomyelinaseana) protejakinaseC ~ is requiredfur IL-1inductionof LIF mRNA in a Schwannce” fine” Cha 18:49-58.

Carman-JirzanM., vigé X. yWise B.C. (1991)“Regulationby interleukin-1of nervegruwthfactorsecretionana)nervegrowthfactormRNA expressiunin rat primaryastroglialcultures”.1. Neurochem.56:636-643.

Carman-JirzanM. y Wiae f.C. (1993) “Axachiclonic ada) lipuxygenationmay mediatointerleukin-1 stimulation ofNGF secretionin astroglialcultures”J.Neurosci.Res.34:225-232.

Carrier A., RosierMF., Guillemot E., GoguelA.F., Pulciní F., Bernheim A., Auffray C. y DevigneaMD. (1996)“Integratedphyaical,genetic,-ana) genidmap covering2Mb aroundthe humanNGF gene(NGFB) at ipíS”Genomica31:80-59.

Carawell5. (1993) “The putential for treating neurodegenerativedisorderawith NGF-ioducingcompounds”Exper.Neurol. 124:36-42.

CartwrightM., Martin 5., D’Mehlu 5. y Heinrich 0. (1992) “The human nerve growth factor gene: atructureuf thepromotor regionana)expressioninL929 fibroblasta” Muí. frain Rea. 15:67-75.

Ceaaccia-BunnefxlP., CarterB.D., DobrowakyItT. y ChaoMV. (1996a)“Death of uligodendrocytesmediateclby theinteractionof nervegrowth factor with ita receptorp75” Nature383:716-719.

Casaccia-BunnefilP., Aihel fi. y Chao MV. (1996h) “Central gua ana) neuronal populationa display clifferentialsensitivity tu ceramirlodependontdeath”J. Nourosci.Res.43:382-389.

Cazaubon5., ChaverotN., RomeroJA., Girault JA., AdamaunP., StrosborgAD. y Couraua)PO. (1997) “Cruwthfactor activity uf ondothelin-1 in primry aatrocytesmediatedby adheaiundependentana) independontpathways”J.Neuroací. 17:6203-6212.

Cbakrabarti5., Sima AA., Lee J., BrachetP. y Dicuu E. (1990> “Nerve growth fctor(NGF), proNGF ana) NGFreceptorlike immunorectivity in 33 rat retina” BrainRes.523:11-15.

Charrasse5., JehanF., Confort C., BrachetP. y Clos J. (1992> “Thyroid hormuneprumotestransientnervegruwthfactor synthesisin rat cerebellarneurohíasta”Dey. Nourusci. 14:282-289.

Chen C.C., Cheng C.S.. Chang J. y HuangH.C. (1995) “Differential correlatiunbetweontranslocationana) dow»-regulationof convontionalana) newpruteinkinaaeiauzymesin C6 glioma celIa”J. Nourochem.64:818-824.

Chen C.C., ChangJ.y ChenWC. (1996) “Potontiationof hradykinin-inducedinositulphosphatosproductiunby cyclicAMP elovatingagentaana)enduthelin-1in culturedaatrocytea”Clin 16:210-217.

ChenY., Dicou E., Djakiew 0. (1997) “Charactorizationof nervegrowth factor precursorprotein oxprossiunin mtroundapermatidaana)the truphic offoctsof nervegrowthfactorin tho maintenanceuf Sertoli colí viahility”Molí. Celí Endocrinul. 127:129-136.

ChengJ., Weber JO.. faldaaaareJ.J., y RabenDM. (1997) “Ablatiun of Co a-aubunitresultain a tranafurmedphenutypeandconatitutivelyactivephosphatidylcholine-specificphoaphulipaseC’ J.Biol. Chem.272:17312-17319.

Clark C.J., DruganJ.K.. RoasmanKL., CarpenterW.J., Rogera-GrahamK. Fu H. Der C.J. y CamphellSL: (1997)“14-3-3 zetanegativelyregulatearafí activity by intoractiunawith tho Raf-1cysteinorich domain”J. Biol.Cbem.272:20990-20993.

ClemenaJA., StephensonD.T., SmalatigE.B., RobertaE.F.. JuhnstoneEM., SharpJ.D., Little SP. y KramorR.M.(1996) “Reactive gua expresacytosolic PLAtA after tranaientglobal forebrainiachemi in tho rat Stroke27:527-535.

ColangeloAM., Panifi., Mocchetti1. (1996)CurrolatiunbetweonincreasodAP-lNcr binding activity ana)inductiun ufnerve growth factor tranacriptiunhy multiple signal tranaductionpathwaysin C6-2B glioma colla” Muí.Brain Res. 35:1-10.

Page 101: ¡1ID DII IIMUllID - UCM

Bibliografía 89

ColemanES. y Wooten MW. (1994)“Nerve growth factor-inducea)differentiationof PCL2 colla employatho PMA-insenaitiveproteinkinaaeC-zetaiaoform” J.Muí. Neurosci.5:39-57.

CoadorelliD.F., Doll’Aihani P., Mudo O., TimmuskT. y Belluarrio N. (1994) “Expressiunof neurotrophinaana) theirreceptorain primary astroglialcultures:induction by cyclic AMP-elovatingagenta”J. Nourochem.63:509-516.

CoruneosE., Martinoz M., McKenna 5. y Koster M. (1995) “Differential regulatiun of aphingomyolinaaeana)coramirlaseactivity by growthfactorandcytokinea:implication for cellularproliforation ana)differential” J.fiol. Chem.270:23305-23309.

CoroneosE., Wang Y., PanuakadR., Tomploton D.J. y Keator M. (1996) “Sphingulipid motabulitesdifferentiallyregulateaextracellularsignal-rogulatedkinaao ana) atros-activatea)protein kinaae cascados”Biochem J.3 16:18-17.

CroedunD.J.y Tuttlo J.B. (1997)“Synergiaticincreasoja nervegrowth factor secretionby culturedvascularamuothmuaclocolla treatedwith injury-relatodgrowth factura”J.Nourusci.47:277-286.

CrespoP., Miachak 1-1. yGutkindJ.S. (1995) “Ovorexpressionof mammalianproteinkinaso C-zetadoesnot affect thegrowth characteristicaof NIH3TS colla” Biochem.Biophys.Res.Commun.213:266-272.

Cuvillier O., Pirianov G., Jileusor 3., Vanek P.C., Coso O.A., Gutkind J.S. y Spiegel 5. (1996) “Supproaion ufceramide-modiatedprogrammedcol1 deathby sphingoaine-1-phusphate”Naturo381:800-503.

DarnelídE. (1997)“STATa ana)generegulation”Science277:1630-1635.

DaviesAM., Bndtlow C., HeumanaIt., Korsching 5., Ruhrer H. y ThuenenH. (1987> “Timing ana) sito uf nervegrowthfactorayntheaisin dovolopingskin in relation tu innervationana)expreasionof the receptor”Nature326:353-358.

Debeir T., CuougnonJ., Vigo X. y BenavidesJ. (1996)“Tranaductionmechaniamsinvulved in thrombin receptor-induced nervegrowth factor secretion-ana) celí division in primary culturesof aatrucytes”J Neurochem.66:2320-2328

DechantO. y Bara)eYA. (1997) “Signalling thruugbthe nourutrophinreceptorp75NTW’ Curr. Op. Neurobiul. 7:413-418.

DekuakyST., CosadR., Miller P.D.,StyrenS.D., Kuchanek PM. y Mariun D. (1994)“Upregulatiunof nervegrowthfactorfollowing corticaltrauma”Exper.Neurol. 130:173-177.

l5enhart DT. (1996> “Signal-tranaducingprotein phuaphorylationcascadeamediatedby RasfRhupruteina in thomanimaliancelí: thepotentialfor multiplez signaling”fiochem.J. 318:729-747.

Deaagher5., Cordier J., Glowinsky J. y Tencé M. (1997) “Enduthelin atimulateaPLD in atriatalaatrucytes”J.Neurochem.68:78-87.

Desai N.N., Zhang H., Olivera A., Mattie ME. y Spiegel 5. (1992) “Sphingusine-1-phoaphate.a metabuliteufaphingosine,increasesphosphatidic cid loyola by phospholipaseD activation” cl. fiol. Chom. 267:23122-23128.

DeSimoneR., Micera A. y Aloe L. (1996> “mRNA for NGF ana) p75 ja tho centralnervouasystemof rataaffectedbyexperimentalallergiconcephalumyelitis”Nourupathol.Appl. Neurobiol.22:54-59.

Díaz-Laviada1., LarroderaP.. Diaz-MecoMT., CornetME., GuddalPH., JohanaenT. y MoscatJ. (1990) “Evidencofor a ruleuf PC-PLCin the regulationof proteinkinaaoC by rasana)srconcogenea”EMBO J. 9:3907-3912.

Diaz-MecoMT., LozanoJ., Municio MM., ferraE., Frutos 5., SanzL. y MoscatJ. (1994) “Evidence for the in vitroana)in vivo interactionuf ras with proteinkinaseCC]’ J.Biul. Chem.269:31706-31710.

Diaz-MecoMT. Municio MM., Frutos 5., SánchezP., LozanoJ., SanzL. y MoscatJ. (1996) “The productof par-4, ageneinduced a)uringapoptusis,intoracta selectivelywith the atypical isoformaof protoin kinaso C” Celí86:777-786.

Dicou E. y Norrioro V. (1997)“Evidonce thaI naturalautoantibodiosagaiastNGF may be putontial carrieraof NG?’J. Neuroimmunol.75:200-203.

D’MelIu 5. y Heinrich O. (199Th> “Structural ana)fuactional identificatiun uf rogulaturyrogiuna ana) cia elementosurroundingthonerve growth factorgenepromotor”Muí. Brain Res.11:255-264.

D’Mello 5. y Heinrich O. (1991b> “Multiple signalting pathwaysiatoractja Ihe regulation of nervo growth factorproduction in L929fibrublasta”J. Nourochom.57:1570-1576.

Dopp J.M., Mackenzie-CrahamA., Otero C.C. ana)Merrilí dE. (1997)“Differential expreasion,cytokinemodulatiun,ana)specificfuactionaof type-1andtypo-2 tumornecrosisfactor receptorain rat gua” J. Neurochem.75:104-112.

Ea)wardaR.H., SelbyM.J., GarcíaP.D. y RutterW.J. (1988)“Procesaingof tho nativo nervegrowthfactorprecursortefon biologically activenervegruwth factor” J.Biol. Chem.263:6810-6815.

Elkabea 5., DiCicco-Bloom E. y flack 1.3. (1996> “Brain microglia/macrophageaexpresa neurotrophinsthatselectivelyregulatemicroglialproliferationana)fuctiun” J.Neurosci.16:2508-2521.

Page 102: ¡1ID DII IIMUllID - UCM

Bibliografía 90

Exton J.H. (1997-a> “Celí aignalling through guanine nucleotido-bindingregulatory proteina (O proteina) ana)

phospbolipasea”Eur. J.fiochem.243:10-20.

ExtonJ.H. (1997b) “New a)evelupmentsin PLD” J.fiol. Chom. 272:15579-15582.

Fiobich B.L., Liob Ji., BergerM. y fauer cl. (1995) “Stimulation of the aphingomyelinpathwayainducesIL-6 geneexpreaaionin humanaatrocytomacelIa” J. Neuroimniunol.63:207-211.

FriodmanW.J., Altiok N., FredholmB.B. y PersaunH. (1992) “Mechanismaof nervo growth factormRNA regulationby IL-113 in hippucampalcultures:role of secona)mesaengera”cl. Neurosci.Res.33:37-46.

Fukumoto H.. JiarihanaM. y Suno M. (1994) “Characterizationof C6-1OA glioma colla highly respunsivete 1~-adronorgicreceptoragonist-induceclNGFsynthesis/aecretion”Cha 12:151-160.

Furukwa 5., FurukawaY., SatoyoshiE. ana) HayaahiJi. (1987> «Syntheais/aocretionof nerve growth factor isassocitedwith cell growth in culturedmoesoastroglialcolla” Biochem.Biophys. Ros.Comm.142:395-402.

Ceilen C., fektaaM., Wiea)erT., Kodolja V., Coordt 5. y OrfanosC. E. (1997> “ía,25-a)ihydroxyviteminDa inducesaphingomyolinhyrlrolysiain HaCaTcelísvia TNFa” cl. Biol. Chem.272:8997-9001.

Choah5. y Boíl R.M. (1997)“Regulatiunuf Raf-1kinaaeby intoractionwith the lipid secona)measenger,phoaphtidicacid” Biochom. Suc. Transac.25:561-564.

Ojaume C., TaberneroA. y MedinaJ.M. (1997> “Metabolic traffsckingthroughaatrucyticgapjunctiona” CIja 21:114-123.

CitadCM. y Cilad V.H. (1995)“Chemotaxiaana)accumulationof nervegrowth factorby microglia ana) macrophagos”J. Nourosci.Res.41:594-602.

Goldkorn T., DreaslerKA., Muindi J., Radin NS., MendelsuhnJ., MenaldinoD., Liotta D. y Jioleanick R.N. (1991>“Coramide atimulatea epidermal gruwth factor roceptur phosphorylationin A431 human epidormuidcarcinomacelIa. Evidencethatceramidomay mediatosphingusineaction” cl. Biol. Chom. 266:16092-16097.

Comez-MuñozA., AbousalhamA., Jiikuchi Y., Waggoner13W. y Briodley D. (1997> “Rule of aphingulipida inrogulating the phusphulipaaoD pathway ana) colí division” 103-115 en “Sphingolipid-MediatedSignalTranaduction”Mit. HannunYA. LandeaCo. (Austin-Toxas>.

Conzalezcl., Conzalez1., SantanaE., Hernandez1., Quintanacl.. EstovezF.. Fanjul L. y Ruiz C. (1996) “c-Jun isdownatreamtargetfor ceramide-activatedprotejaphosphataaein A431 colla” J. Biol. Chom. 271:21375-2 1380.

Ha JiS. y ExtonJ.H. (1993>“Differential tranalocationof proteinkinaaeC isozymesby thrombinana) plateíotderivedgrowthfactor. A poasiblefunctionfor phoaphatidylcholine-deriveddiacylglycerol” cl. Biol. Chem.268:10534-10539.

Han M., LorezH. y Fiacher0. (1994) “The immortalizedastroglialcelí ¡me RC7 isanew moctelsystemfor the studyof NCF regulation:atimulation by interleukin-13ana)tranaforminggrowth factor-pl is additiveana)affoctoddifferentlyby dibutyryl cyclic AMP” Cha 10:286-294.

Han M., Loroz It. y Fischer C. (1997) “Effect of calcitriol in combination with cortiacosterono,intorloukin-113 ana)tranafurminggrowthfactor-131 un NCF secrotionin an astroglialcelí line” J. Neurochem.69:102-109,

HannunY. A. (1996)“Functionsof coramideincoordinatingcollular responsestu atreas”Science274:1855-1859.

Hannun YA., Obeid L.M. y Dbaibo OS. (1996> “Ceramide: A novel secona) measongorana) lipid mediator” en“Hndboukof Lipid Rosearch”Vol. 5”Lipid socona)measengera”177-204Mit. Bell R.M. Plonum Presa(NewYork>.

Hattori A., TanakaE., MuraseJi., Ishida N., ChataniY., Taujimoto M., HayashiK. ana) Kohno M. (1993>Tumornecrosisfactor atimulatosthe synthesisana) secretionof biologically activo norvo growth factor in non-neuralcolla. J.Biol. Chom.268, 2577-2582.

Hnttori A., HayashiJi. y KohnoM. (1996)“TNF atimutateatheprorluctionof NCFin fibroblastavia the 55-kDatype 1TNF receptor’FEB5 Lotters 379:157-160.

HengerorB., Lindholm D., HeumanaIt., Rúthor U., WagnerEF. y ThuononH. (1990) “Losion-inducea)incroaseinnervegruwthniRNA is modiatodby c-fos” Proc.Natí.Acad.USA 87:3899-3903.

HoumannIt. y Thoonenfi. (1986) “Comparisonbotweenthe time couraoof changosin norvo growth factor prutoinlovelaana)thoseofita mosaengerRNAin theculturedrat iris” J.Biol. Chem.261:9246-9249.

HeumanaIt., Kursching5., BandtlowC. y ThoenenH. (1987)“Changosof nervogrowth factorayntheaiain nonneuralcollain responsetu sciaticnervo transection”cl. Celí fiol. 104: 1623-1631.

Heymachclv., Jirúttgon A., Suter U. y ShooterEM. (1996) “The rogulateclsecrotionana) vectorial targetingofnourotrophinain neuroendocrinoana) epitholiatcelia” J.Biul. Chem.271:25430-25437.

Hill C.S. y TroismanIt. (1995)“Transcriptionalregutationby oxtracollularsignala:mochanismaana)specificity” Cotí80:199-211.

Hofmancl. (1997)“The potontial for isuonzymo-selectivemodulationofprotoin kinasoC” FASEBcl. 11:649-669.

Page 103: ¡1ID DII IIMUllID - UCM

Bibliografía 91

HoulgatteIt, MallatM, BrachetP. ProchiantzA (1989)“Secretionuf nervo growthfactorin culturesof glial colla ana)neuronaderivedfrom a)ifferentregionaof the mouaebrain” cl NourosciRes24:148-152.

Hurwitz AA., Lyman W.D., Hermancl.W. (1995) “Tumor necrosisfactor a ana) tranaformingfactor 13 upregulateastrocyteoxpreaaionof monocytechomoattractantprotein-1”cl. Neuroimmunol.57:193-198.

I-Iuwiler A., Brunner cl., Hummel It., Vorvoorcleídonk M., Stabel5., Van der Boah H. y Pfeilschifter J. (1996>“Ceramidebinding ana)activationdefinesprotoin kinasec-rafasa ceramideactivatea)protein kinase”Proc.Natí.Acad.Sci. USA 93:6959-6963.

Frabetova5. y Sacktor T. (1996)“Bidirectional rogulationof protein kinaseMC in the maintenanceof long tormpotontiationandlong termdepreasion”J.Neurosci.16:5324-5333.

Inoue M., Kiahimoto A., TakaiY. y NiahizukaY. (1977) “Studios un a cyclic nucloutido-indopendontprotoin kinaaeandita proenzymein mammaliantiasuos”cl. fiol. Chem.252:7610-7616.

Iaraél A. (1997)“Ikf kinaaoall zippedup”Science388:519-521.

claken5. (1996)“Protoin kinaseC isuzymoaana)substratos”Curr. Opin. CelíBiul. 8:168-173.

clayadov 5.. Hayter HL., Andrieu N., Gamara)Ccl., Liu f., falu It., HayakawaM.. Ito E. y HannunYA. (1997>“PhosphulipasoA2 is necossaryfor TNFa-inducedceramidegenerationin L929 celIa” cl. fiol. Chem.272:17196-17203.

JehanF., Neveu 1., NaveilhanP., BrachetP y Wion 13. (1993) ‘Complez interactiona among socona)measengerpathwaya,atoroid hormones,ana)protuoncogeneaof the Fos ana)clun famulies convergein tho regulationofthenervegrowto factorgene”cl. Neurochem.60:1843-1853.

JehsinE., Neveu 1., NaveilhanP., Wion 13. y BrachetP. (1995)“Interactionabetweensecona)moasongorpathwayainíluenceNGE syntheaiain mouseprimaryastrocytea”BrainRes. 672:128-136.

ceban F., NaveilhanP., Neveu 1., Harvie D.. Dicou E., BrachetP. y Wion 0. (1996) “Regulationof NCF, BDNF ana)LNCFRgeneexpressiunin ROS17/2.8 cells” Mol. Celí. Endocrinol. 116: 149-156.

KeIler iN., Stoiner MR., Holtaborg F.W., Mattson MP. y Steiner SM. (1997) “Lyaophosphtidic acid-inducedproliferation-relatedsignalain astrocytes”cl. Neuruchem.69:1073-1084.

JijeserA., SeitzT., Adíer RS., Coffer P., KrommerE., CrespoP., Cutkind J.S., HondersonD.W., Muahinakyd.F.,Jiolch W. y Miachak H. (1996) “Prutoin kinaaoc-~ reyertav-raf tranaformationof NIH-3T3 colla” Genes&Dovolop.10:1455-1466.

mm M. Y., Linardic C., Oboid L., y HannunY. (1991> “Identification of sphingomyelinturnover as an effectormechaniamfor the action of tumor necrosis factor alpha ana) gamma-interferon.Spocific rolo in celídifforentiation”cl. fiol. Chem.266:484-489.

KimelbergH.Ji. (1995)“Receptoraun aatrocytes-Whatposaiblefunctiona?”Neurochem.mt. 26:27-40.

Jilein cl., Chalifis V., LiscovitchM. y Ldffelholz Ji. (1995) “Rule of PLD activationin nervoussyatomphysiologyana)pathophyaiology”cl. Neurochem.65:1445-1455.

Jiohier NC. y JoIy A. (1997) “The involvementof an LPS induciblo IkB kinaae in endotoxin toleranco” Biochem.Biophys. Ros. Com. 232:602-607.

Koraching5. y ThoenenH. (1983)“Nerve growth factor in aympathoticganglia ana) correspondingtargetorganaoftherat: corrolationwith donsityof aympatheticinnervation”Proc.Natí. Acad. Sci. USA 80:3513-3516.

Korsching5., AuburgorC., HeumannIt., Scottcl. y ThoenenH. (1985>“Loyola of nervo growthfactor ana)ita mRNAin tho centralnervouasystomof the rat corroí-atewith cholinergicinnorvation”EMBO J. 4:1389-1393.

Jioraching5. y ThoenonH. (1988)“Developmentalchangeaof norve growth factorlevela in aympatheticgangliaana)thoir targotorgana” Dey. fiol. 126:40-46.

KorzuaE., NagaseH., Rydoll It. y TraviaJ. (1997>“The M.APK ana)JAK-STAT aignalingpathwayaareroquirea)for anoncustatinM-roaponaiveetemont-mediatedactivation of matriz metalloproteinase1 gene oxprosaion”cl.Biol. Chem.272:1188-1196.

RrónkeM. (1997>“The mudeof coramideaction: thealkyl chainprotusionmodo?’Cytok. & Gruwth FactorRes.8:103-107.

Jiurino M., FukunagaJi., UshioY ana) Miyamoto E. “Cyclic AIvIP inhihita activationof mitogen-activatedproteinkinaaeana)celíproliferatiunin responseto growthfautorain culturedmt cortical astrocytes”cl. Neurochom.67 (1996)2246-2255

Kyriakis J.M., fanorjeo P., Nikoíaki E., Dai T., Rubio EA., Ahmad MF., Avruch cl. y Wooa)getJ.It. (1994> “Thoatresa-activatedproteinkinaaesubfamilyof c-Junkinases”Naturo369:156-160.

JiyriakiaJ.M. y Avruchcl. (1996)“Suundingtho alarm:proteinkinasecascadosactivatedby atressandinfiammation”cl. Biol. Chem.271:24313-24316.

LambiaseA., Bracci-LaudieruL.. Bonini 5., StaracoG., DElios MM., DoCarli M. y Aloe L. (1997)“Human CD4t Tcelíclonesproduceana)releasenervegrowth factorana)expresahigh-affinity nervegrowthfactor receptora”cl. Allergy Clin. Imniunol. 100:408-414.

Page 104: ¡1ID DII IIMUllID - UCM

Bibliografía 92

Laurenz J.C.. Cunn J.M., Jolly C.A. y Chapkin It.S. (1996) ‘Alteration uf glycerolipid ana) aphingolipicl secuna)mesaengorkinotics in rastranaformod3T3 colla” fiochom.Biophya.Acta 1299:146-154.

Lazarini F., StrosbergA.D.. CouraudPO., y CazaubonSM. (1996> “Coupling uf ETo endothelinreceptortu MAPKatimulationana)DNA syntheaiain primaryculturesof mt aatrocytea”cl. Neuruchom.66:459-465.

Lohrich KW. y FurroatJ.N. (1994) “Protein kinaae C ~ ja asauciatedwith the mitotic apparatuain primary celí

culturesof thesharkrectalglana)” cl. Biol. Chem.269:32446-32450.

Leslio C.C. (1997)‘Proportiosana)rogulationof cytosolicphospholipaseA2” cl. Biol. Chem.272:16709-16712

Levi-Montalcinj It. y HamburgorVA. (1953> “A diffusiblo agent uf mouse,producing hyperplasiaof sympathoticgangliaana)hyperneurotizacionof viscerainthechick ombryu”cl. Exp.zuol. 123:233-288.

LeviMontalciniR. (1987> “The norvegrowth factorSbyearslater” Science237:1154-1162

Levj-Montalcini It., SkaperS.D.,Bat Toso It., PetreíliL y LeunA. (1996)“Nerve growthfactor: from neurutrophintonourokine”TreadaNeuroaci.19:514-520.

Lowin C.It. y BardeY.(1996)“Physiologyuf the neurotrophina”Annu. Rey. Neuruacionce19:289-317.

Liao D., Moni-a B., BennN. y Berk B. (1997)“Protein kinaaeC-4 mediatosangiotenainII activationof ERK1/2 in

vascularamoothcelís” cl. Biul. Chem.272:6146-6150.

Ljmatola C., SchaapO., Muolonaar W.H., y van Blitterswijk W.J. (1994> “Phoaphatidicacjd activatiun of protoinkinaae C ~ ovorexpressedin COS celís: comparisonwith other protein kinaao iaotyposana) othor acidiclipida” Biochemcl. 304:1001-1008.

Lozanocl., Borra E., Municio MM., Diaz-MocoMT., Dominguez1., SanzL. y Moscatcl. (1994)“Protein kinaaeC zetaisoform is critical fur kappa B-dependent promotor activation by aphingomyolinase” cl. fiol.Chem.269:19200-19202

Lu f., YokoyamaM., Droyfus CF. y Black 1.3. (1991) “Rogulation of NGF geneexpressionin CNS glia by celí-celícontact”Muí. BrainRes. 11:359-362.

Luo W., SharjfTEL y Shrif M. (1996)“SubatancePinducedmitogenesisin humanastrocytomacelíscorrelateawjthactivationof theM.A.PK aignalingpathway” CancerRes. 56:4983-4991.

MachíeidtT., WiegmannJi., HenkelT., Schútze5., fauerle P., ana) Krbnke M. (1994) “SphingomyelinaseactivatesproteolyticIkB- degradationin a celí-freesyatem”cl. fiol. Chom. 269:13760-13765.

Magiatretti PJ. y Pellerin L. (1996> “Cellular basia of brain energymetaboliamana) their relevancetu fuactionalbrain imaging: evidencofor aprominentroleof astrocytea”CerebralCortez6:50-61.

Mallat M., HouígatteIt., BrachetP. y ProchiantzA. (1989)“LPS-atimulatodrat brain macrophagesreleaseNGF invitro” Dey. Biol. 133:309-811.

MangouraD., SogosV., Pellotioro C. y DawaonC. (1995> “Differontial regulationof PLC ana) PLD by phorbolestoraana)tho physiologicalactivatoracarbacholana) gluatamatein astrocytesfrom chickenembryocerebrum-ana)cerebellum”Dey. Brain Ros. 87:12-21.

Maraja It., Light Y., PatersonH.F. y M&wahall Ccl. (1995) “Itas rocruitaRaf-1 te the pl-asmamembranefor activationby tyroainophosphorylation”EMBO cl. 14:3136-3145.

McDonaldN.Q. y ChaoMV. (1995)“Structuraldeterminantaof neurotrophin ction” cl. Bio. Chem.270:19669-19672.

Merril AH., Liotta D.C. y Riloy RE. (1996>“Bioactive propertiesof aphingoaino-ana)atructurallyrolatedcompounds”en“Handbookof Lipid Research”Vol. 8 “Lipia) secona)measengera”205-287Edit. Boíl R.M. Plenum Presa(NewYork).

Merril ¿LE. y BenvenisteEN. (1996> “Cytokines in inLmmatory brain lesiona:helpful andharmful” TINS 19:331-338.

Middlomisa P.JL, Cysbors J.W., Rothbone MR. (1995> “Extracollular guanusineana) gunoaino-5’-triphoaphateincrease:NCFaynthosis-ana)releasefrom culturodmuuseneopallialaatrocytos”frain Ros. 677:152-156.

Modur V., Zimmerman CA., PrescottSM. y Mclntyre T.M. (1996) “Endothelial colí inflammatory responsestuTNFa” J.Biol. Chem.271:13094-13102.

Montaner5., ItamosA., PeronaR., EstoveP., CarneroA., LacalJ.C. (1995>“Overezpreaionof PKC zeta in NIHSTScelís does not induce celí tranaformationnor tumorigonicity ana) duos not alter NF-kappa3 activity”Oncogene10:2213-2220.

MorrisonO.K. y CutíerRE.(1997>“The complexityof rM-1 regulation”Curr. Opin. Celí Biol. 9:174-179.

Múller C., Ayoub M., StorzP., Renneckocl., PabbroO. y Pfizenmaior(1995)“PKC zeta is molecularawich in signaltranaductionof TNF-a, bifunctionallyregulatoclby ceramideana)arachidonicacid” EMBO cl. 14:1156-1165.

Murphy5., et al. (1993>“Synthesisof nitric oxido in CNS glial colla” TINS 16:323-328.

Nakamura 5. (1996) “Phoaphatidylcholinehydrolysis ana) protoin kiaso C activation for intracollularsignMlingnotwork”

Page 105: ¡1ID DII IIMUllID - UCM

Bibliografía 93

Nakanishi H., Brewer KA. y Exton J.H. (1993) “Activation of the ~ iauzyme uf protein kinaso C byphosphatidylinoaitol3,4,5-triphuaphto”cl. Biol. Chem.268:13-16.

NaveilbanP., Noveu1., JehanF., faudet C., Wion D. y BrachetP. (1994> “Reactiveoxygon apeciesinfluenconervegrowthfactorsyntheaisin primaryrat aatrocytea”cl. Neurochem.62:2178-2186.

Neyeu 1., clehan F., Houlgatte It.. Wion D. y frachet P. (1992) “ Activation of nervo growth factor synthesisinprimarygua1celísby phorbol 12-myriatate13-acetato:roleof proteinkinaseC” BrainRos. 570:316-322.

Neveu1., NaveilhanP., JehanF. BaudetC., Wion O., DeLuca H.F. y BrachetP. (1994) “L,25-a)ihydroxyvitaminD3regulatestheaynthesisof NCF in primaryculturesof glial colla” Muí. BrainRes.24:70-76.

Nikcevich 1CM, Cordon KB, Tan L. Hurst SD, Jiroepil ,JF, GardinierM, BarrettTA, Miller SO (1997)“IFN-gamma-activatedprimry murjne aatrocytesexpresaB7 custimulatorymoleculesana)primo naive antigea-apeciflc9?celia”cl. Inimunol. 158:614-621

Nikolova-KarakaahianM., ValesTIt., Wang E., MenaldinoD.S.,Alexander C., Goh cl., Liotta D.C. ana) Morrilí AH.(1997) “Ceramide aynthase ana) ceramidaseain tho regulation of sphingoid base motabolism” en‘Sphingolipid-mediatedsignaltranaduction”159-168Edit. HannunYA. LandosCo. (Austin-Texas>.

Nisolí E., Tonellofi, BonareseM., Liberini P. y CarrubaMO. (1996)“Expressionof nervegrowth factor in brownadiposetisaue:iniplicationafor thormogenesisandobeaity” Endocrinol. 137:495-503.

Olivera A., Buckley NE. y Spiegol 5. (1992) ‘Sphingomyelinasoana) coll-permeablocoramide analugaatimulatecellular proliferationin quiescentSwiss 3T3 fibroblasta”cl Biol Chom. 267:26121-26127.

OliveraAy Spiogel5. (1993>“Sphingoaine-1-phoaphateas asecona)measengerin colí proliferationinducodby PDCFana) FCSmitogena”Nature365:557-560.

ONeil L.ASJ. y JialtschmidtC. (1997) “NF-kB: a crucial tranacriptiunfactor for glial ana) neuronalcoll function”TrondsNouroaci.20:252-258.

OntenienteB., Horellou P., Nevou1., Makeh1., Suzuki F., BourdetC., Grimber O., Colin P., BrachetP., Mallet cl.,Briana)P. y PeschanskiM. (1994)“Cell-type-specifscexpresaionana)regulationof ac-foa-NCFfusion geneinneuronaana) astrocytesof transgenicmjce” Mol. frain Res.21:225-284.

PahanJi., NamboodiriA.M.S., SheikhF.C., Smith B.T. -ana) Singh1. (1997>“IncroaaingcAMP attenuateainductionofinduciblo nitricoxide synthaaein rat primaryastrocytoa”cl. Bjol. Chem.272:7786-7791.

Paumen MB. Ishida Y., Muramatsu M., Yamamoto M., y Honjo T. (1997) “Inhibition of carnitinepalmitoyltranaferase1 augmentaaphingolipid synthesisana) palmitate-inducedapoptosis”cl. Biol. Chem.272:3324-3329.

Persichini T., ColaaantiM., Mollace y., Nistico C., Itmacci MT. y Lauro CM. (1994) “NMDA-dopondent NGFmRNA expressionby humanaatrocytomacolla is mediatedby nitricoxide” NeuroReport.5:2477-2480.

PUlas JiMA., Pfeilachiftercl., Miihl H., Huwiler A., foeckh C., ana) OttenU. (1995) “Modulatory rolo of p¡atolot-derivodgruwth factorun cytokineinducodnerve growthfactor syntheaiain rat glomerularmesangialcolla”Biochemcl. 312:707-711.

PurtoritT. y McCarthy lCD. (1997)“Astrucytic neurotrnamittorareceptorain aitu ana) in vivo” ProgrosaNeurobiul.5 1:439-455.

PostGR. y Brown cl.H. (1996)“0 protein-coupledreceptoraana) aignalling pathwayaregulatinggrowth responses”FASEB cl. 10:741-749.

ProacottSM. (1997>“A thomaticseriesun phoapholipasoa”J. Biol. Chem.272:15043.

PrinaBA., Weber Mcl., Hu R.M., PedramA., DanielaM. y Levin ER. (1996) “Atrial natriureticpeptide inhibita

M.APK throughtho cloarancereceptor”.1. Biol. Chem.271:14156-14162.

PahenichkinSP.,SzokelyAM., ana)Wise f.C. (1994)“Tranacriptional-ana)poattranscriptionalmechaniamainyolyedjn tho interloukin-1, ateroid,ana)proteinkinaaeC regulationof nervegrowth factorin corticalaatrocytes”J.Neurochem.63:419-428.

PshenichkinSP. y WiaeB.C. (1995>“Okadaicada)increasosNCF secretion,mRNA stability, ana)genetrnscriptionin primaryculturesof corticalaatrocytea”cl. Biol. Chom. 270:5994-5999.

PulaA., Schmidt5., OraweF. y St-abel5. (1997>“Interactionof protoinkinasoC4 with ZIP, a novelprotoin kinaseC-bindingprotoin” Proc.Natí.Acad.Sci. USA 94:6191-6196.

Pyne 5., Chapmancl., Steelo L. y Pyne N.J. (1996> “Sphingomyolin-dorivedlipida differontially rogulato theoxtracollular signal-regulatedkinaao 2 (ERK2) ana) c-Jun N-terminal kinaae (JNK) signal cascadosinairwaysmoothmuaclo” Eur. J.fiochem.237:519-826.

Pyne 5., Tolan O.G., Conwy AM. y Pyne N. (1997> “Sphingolipids as difforential rogulatorauf cellular signallingprocosaes”Biochem.Suc.Tranaact.25:549-556.

Racke MM., Mason P.J., JohnsonMP., Brankamp RO. y Linnik MD. (1996) “Demonatratiunof a secona)pharmacolugicallyactivepromoterrogionin the NGF genethat inducestranacriptionat o-xon 3” Muí. frainRes.41:192-199.

Page 106: ¡1ID DII IIMUllID - UCM

Bihliografía 94

Raff M.C., Miller R.H. y Noble M. (1983) “A glial progenitor celí that devolopain vitro into an astrucyteur anoligoa)endrocytedepondingun culturo modium” Nature303:390-896

RheoSO, y Bao Y.S. (1997> “Regulation of phosphoinoisitide-apecificphoapholipaseC isozymes” cl. Biol. Chem.272:15045-15048.

Robner5., Wórtwein O., Cu Z., Yu Z., SchliebsIt., Bigí V. y Perez-PoloJ.R. (1997) “Chulinorgic control of nervogrowth factorin adult rata: evidencefrum corticalchulinergicdeafferentationana)chronicdrug treatment”J. Neurochom.69:947-953.

RocamoraN., PascualM., AcsádyL., LeceaL., FreundT.F., y SorianoE. (1996>“Exprosaionof NGF -ana) NTS mItNAsin hippocampal interneuronainnorvatod by the GAfAorgic septohippucampalpathway” J. Neurosci.16:3991-4004.

RuiajusMP. y DeachepperC.F. (1995) ‘Identifictiun ana)collular localizationof proteinkinaseC isoformain culturesof rat typo-1 astrocytea”BrainRes. 701:297-300.

Ruiz-AlbuaacJ.M., VelázquezE., Iglesiascl., JimenezE. y BlazquezE. (1997) “Inaulin promutos tbe hydrolyaiaof aglycosyl phosphatidylinusitolin culturedrat astroglialcelia” cl. Neurochom.68:10-19.

RushRA., Mayo It. y ZettlerC. (1995) “The regulatiunof nervo growth factor synthosisana) delivery tu poripheralneurona”Pharmac.Ther. 65:93-123.

SaaakiT., Hazeki O., UI M. y ¡Catada 9?. (1995) “Permisaiveeffect of ceramia)eun gruwth fctor-induced celípruliferation” Biochom.cl. 311,829-834.

SchliossF., SinningIt., FiachorIt., SchmalonbachC. y HáuaaingerD. (1996)“Calcium dependentactivationof Erk-1ana) Erk-2 afterhypo-oamoticastrocyteswelling” Biochem.cl. 320:167-171.

Schmidlin A. y Wiosinger H. (1995> “Stimulation of arginine transport ana) nitric oxide production byljpopolyaccharidoja mediatedby differentsignallingpathwayain astrocytea”cl. Neuruchem.65:590-594.

Schútzo 5., Potthoff K., Machleidt 9?., Borkovic O., Wiegmann Ji., Kronke M. (1992> “TNF actiyatos NF-kB byphusphatidylchoiine-specificphospholipaaoCinducedacidicbreakdowa”Celí 71:765-776.

SchwarzA. y FutormanAH. (1997) “Distinct rolesfor ceramideana) glucosylceramideat difforentatageaof neuronalgrowth” cl. Neuroaci.17:2929-2938.

Scott 1., SelbyM., UrdeaM. QuirogaM. Boíl 0.1. y RutterWcl. (1983)“Isolation -ana)nucleutidesequenceof cONAencodingthe precursorof mouaonervegruwthfactor” Nature302 538-540.

SogalRA. y OreenborgME. (1996)“Intracellularsignalling pathwayaactivatodby neurotrophicfactora” Annu. Rey.Neurosci.19:463-489.

Selby Mcl., EdwardsIt., SharpF. y Rutter W.J. (1987) “Mouse nervo growth factor gene:atructureana) oxpression”Muí ColíRol 9:3057-3064.

Spiogel5. Cuvillier O. Fuior E. y Mustien 5. (1997>“Sphingoaine-1-phosphato:momberof-a newclasaof lipid secona)measengor”121-130en “Sphingolipid-mediatedsignal tranaduction”Edit HannunYA. RO. Landea Co(Austin-Toxas).

SprangerM., Lindholm 13., BandtlowC., HeumannIt., CnahnH., Najer-NodM. y ThoenonH. (1990) “Regulationofnerve gruwth factor synthosis in the rat central norvoussystem: comparisonbetweenthe effects ofintorleukin-1ana)vrjoua growthfacturain aatrocyteculturesana)in vivo” Eur. cl. Neurosci.2:69-76.

Stella N., EstollesA., Siciliano cl., TenceM., Desagher5., Pionelli D., Gluwinaki cl. y Premontcl. (1997) “IL-1enhancostheATP-evokedrobaseof arachia)onicacia) from mouseaatrocytes”.1. Neuruscí.17:2939-2946.

Stukoe 13., MacDonald 5.0., CadwallerJi., Symons M. y Hancockd.F. (1994) “Activation of raf as a resultufrecru,mentte the pl-asmamembrane”Science264:1463-1467.

StukneD. y McCormickF. (1997>“Activation of c-Itaf-1 by Rasana) Src throughclifferont mochanisma:activationinvivo ana)in vitro” EMBO cl. 16:2384-2896.

TakokawaM., PosasF. y Saito H. (1997)“A human homolog of the yeastSsk2/5ak22MAP kinasekinasekinases,MTK1, mediatosatrosa-inducedactivatiunof the p38ana)clNJi pathwaya”EMBO J 16:4973-4982.

Tallant EA. y Higaun J.T. (1997) “Angiutenain II activateadiatinct signal tranaductionpathwaysin astrocytosisolatedfrom neonatalrat brain” Oua19:333-342.

Tang B., Wang M. y Wise f.C. (1997) “Nerve gruwth ~ctur mRNA atability is cuntrolledby a cis-actinginostabiiitydeterminantin the3’-untrnalatedregio-a” Muí. Brain Res.46:118-126.

Temple5. y Itaff M. (1988)“Oifferentiationof abipotontial glial progenitorcolí in singlecoll microculture”Nature3 13:223-225.

Teati It. (1996)“Sphingomyolinbroakdownana)colí fato” TIBS 21:468-471.

Torcia M., Brcci-LaudieroL., Lucibello M., NencioniL., Labardi13., Rubartelli A., CorzolinoF., Aloe L. y GaraciE.(1996>“Nervo growth factoris an autocrineaurvival factorfor memuryB lymphocytea”CeIl85:345-356.

TournierC., PomorancoM., OavarotJ.M. y PierreM. (1994)“MAP kinaaecascadoin astrocytea”Oua10:81-88.

Page 107: ¡1ID DII IIMUllID - UCM

Bibliografía 95

Vanfrockiyn ¿IR., VandenheodeJ.R., Fortol It., Yates A. y RampersaudAA. (1997> ‘Ganglioside OMí activatesMAPK Erk-2 ana)p’7O S6kinasoin U-1242 humanglioma celís” cl. Neuruchem.69:116-125.

Varun S.S., ConnerJ.M. y Kuang It. (1995) “Neurotrophicfactura: repairana) regeneratiunin tho central nervouasystem”Reator.Neurol. Neurosci.8:85-94.

Van Dijk MCM., Hilkman H., y vanBiitterawijk W.cl. (1997a>“Platolet-derivedgrowth factoractivatiunof mitogon-activatedproteinkinae a)ependaun tho soquentialactivationof phoaphatidyichuline-apocificphuspholipaseC, proteinkinaaeC.C ana)Raf-1” BiochomJ. 325:303-307.

Van Djjk MCM., Muriana F.J.G.,van dor Hoevon P.C.cl. Wia)t cl., Schaap13. MoolonaarW.H. y van BlitterawijkW.J. (1997b) “Diacylglycorol genoratedby exogenouaphoaphulipaaoC activateatho mitogen-activatedprotein kinasepathway independentof Itas- ana) phorbolestor-sensitivoprotein kinaso C: dopendenceonproteinkinasoC-C]’ Biochem.cl. 323:693-699.

VenableME., BielawskaA. y ObeidL. (1996> “Ceramideinhibita phospholipidPLD in a celí-freesyatem” cl. Biol.Chem.271:24800-24805.

Verheij M., Bose It., Lin X.H., Yao f., Jarvis W.D. Orant 5., Birror Mcl., SzaboE., Zon LI., Kyriakia J.M.,Haimovitz-FriodmanA., Fuks Z. y JiolesnickR.N. (1996)“Requieremontfor coramideinitiatocí SAPK/JNKsjgnaljngin atrosa-inducedapoptosia”Nature380:75-79.

Viga) X., Tang B. y Wiae B.C. (1992) “Cortical neuronainhibit basal ana) interloukin-1-atimulatodastroglialcelísecrotionuf NCF” Brain Res591:345-350.

Von Bartheld CS., Byers MR., Williams It. y Bothwell M. (1996) “Anterograde tranaportof neurotrophinsana)axodentritictranaforin developingvisualaystem”Nature379:830-833.

WartmannM., Hofer P. Turowski P., Saltiel AR. y HynosN. “Negativo modulatiunof membranelocMizationof theRaf-1 proteinkinaseby hyperphosphorylation”cl. Biol. Chem.272:3915-3923.

Watts ¿ID., Cu M., Polvorino A.J., Pttorson S.D. y Aeboraold It. (1997> “Fas-inducedapoptosiauf T colla occuraindependentlyof ceramidogeneration”Proc.Natí.Acad.Sci. USA 94: 7292-7296.

Wost~vick J.Ji., BielawakaA.E., Dbaibo G., HannunYA. y BrennerDA. (1995> “Ceramide actjyatosthe atresa-activatedproteinkinasea”cl. Biol. Chem.270:22689-22692

WiogmannK., Schtitze5. MachloidtT., Witte 13., ana)Krñnko M. (1994>“Fuactionaldichotomyof neutralana) cidicaphingomyelinasosin tumornecrosisfactoraignaling” Col! 78:1005-1015.

Wioanor DA. y Dawaon 0. (1996) “Staurosporineinduces progrmmedcelí death ja embryunic neurons ana)activationuf tho coramidepathway” cl. Neurochem.66:1418-1425.

Wilkin GP., MarriottDR. y CholewinskyA.J. (1990)“Astrocytehotorugeneity”TrendaNeuroaci.43:43-45

Wiilis SA. ana) Nisen P.D. (1996> ‘Difforontial induction uf tho mitogen activated protoin kinaae pathway bybacteriallipopolyaaccharidoin culturedmonocytosana)aatrocytes”Bjochem..1. 313 (1996)519-524.

WiegmnnK., Schtitzo5., MachleidtT., Witte O.,ana) KrénkeM. (1994)“Functjonal dichotomyof neutral-ana) acidicsphingomyelinaaesin tumornecrosisfactorsignaling” CeIl 78:1005-1015.

Wion 13., McCrogan13., Houlgatto It. y BrachotP. (1990) “Phorbol 12-myristato13-acetatoincreaseatheexprossionof tbe NOF genein mouseL929fibroblasta”FEBSLettors 262:42-44.

Woo 5.13. y Neot ¡CE. (1996> “Charactorizationof hiatidjno residuesossontialfor receptorbinding -ana) activity ofnervegrowthfactor”cl. Biol. Chom. 270:6278-6285.

WootenMW., SeibonhonerML., MatthowaL.H., Zhuu O.,y CulemanES. (1996> “Modulation of C-proteinkinaaoCby cyclic AMP in PC12 colla occurathroughphoaphorylationby protein kinaseA” .1. Nourochom.67:1023-1031.

Wooten MW., Zhou O., Wooten MC. y SeibonhenerML. (1997)“Transport of protein kinaseC isoformate thenucleusof PC12 colla by nerye growth factor: asauciationof atypical C-PKC with the nuclear matriz” cl.Neuroaci.Ros.49:393-403.

Wright 5.0. y Kolesnick R.N. (1995> “Does endotoxin atimulato celia by mimicking ceramide?”Immunol. Today16:297-302.

YaoB., ZhangY., Dolikat 5., Mathiaa5., Baau5. y JiolesnickIt. (1995>“Phosphorylationof Rafby ceramicle-activatedproteinkinase”Nature378:307-310.

YoahjdaJi. y CagoF.H. (1992) “Cooperativorogulationuf nervegrowth factoraynthosiaana) secretionin fibroblasta-ana)astrocytesby fibroblastgrowthfactorana)uthorcytokinos” frain Res569:14-25.

Yoahjmura5., SakaiH., OhguchiJi., Nakashima5., BannoY.. NishimuraY., SakaiN. y NozawaY. (1997a)“Changosin tho activity ana) mRNA loyola of PLD during coramido-inducedapoptosisin rat C6 glial colla” cl.Neurochom.69:713-720.

Yoahjmura 5., Sakai H., Nakashima5., Nozawa Y., Shinoda J., Sakai N. y Yamada H. (1997b) ‘Differentialexpreaaiunuf Rho family GTP-bindingpruteinsana)PI{C iaozymesduringC6 glial colí differentiation”Muí.BrainItes.45:90-98.

Page 108: ¡1ID DII IIMUllID - UCM

Bibliografía 96

ZhangP., Miller B.S., RusenzwoigSA. y Bhat N. (1996> “Activation uf c-clun N-torminal kinao/SAPK in primaryglial cultures”cl. Neurosci.Ros.46:114-121.

ZhngY., Yao3., Delikat 5., Bayoumy 5.. Lin X., fasu5., McCinley Nl. Chang-HuiP., LjchensteinH. y Kolosnick It.(1997a)“¡Cunasesuproasorof rasis coramidoactivatedprotejakinaao” CoIl 89:63-72.

ZhangP., Liu B., JonkinsO.M. HannunY. y ObeidL.M. (1997b) “Exprossionof neutralaphingomyolinasoidentifiosa distinctpuol of sphingomyelininvolved in apoptosis”.1. Biol. Cheis.272:9609-9612.

Zhong H., SuYangH. Erdjument-BromagoH., TompstP. y Chosh5. (1997>“The tranacriptionalactivity of NF-,cf isrogulatedby tho IwB-aasociatedPKAc aubunitthrougha cyclic AMP-independontmechanism”Ceil 89:413-424.