1n4001 - 1n4007 - prof.usb.veprof.usb.ve/bueno/e_potencia/laboratorio/hojas de datos.pdf · figure...

38
1N4001-1N4007 1N4001-1N4007, Rev. C 2001 Fairchild Semiconductor Corporation 1N4001 - 1N4007 General Purpose Rectifiers (Glass Passivated) Absolute Maximum Ratings* T A = 25°C unless otherwise noted *These ratings are limiting values above which the serviceability of any semiconductor device may be impaired. Electrical Characteristics T A = 25°C unless otherwise noted Features Low forward voltage drop. High surge current capability. Symbol Parameter Device Units 4001 4002 4003 4004 4005 4006 4007 V F Forward Voltage @ 1.0 A 1.1 V I rr Maximum Full Load Reverse Current, Full Cycle T A = 75°C 30 µA I R Reverse Current @ rated V R T A = 25°C T A = 100°C 5.0 500 µA µA C T Total Capacitance V R = 4.0 V, f = 1.0 MHz 15 pF DO-41 COLOR BAND DENOTES CATHODE Symbol Parameter Value Units 4001 4002 4003 4004 4005 4006 4007 V RRM Peak Repetitive Reverse Voltage 50 100 200 400 600 800 1000 V I F(AV) Average Rectified Forward Current, .375 " lead length @ T A = 75°C 1.0 A I FSM Non-repetitive Peak Forward Surge Current 8.3 ms Single Half-Sine-Wave 30 A T stg Storage Temperature Range -55 to +175 °C T J Operating Junction Temperature -55 to +175 °C Symbol Parameter Value Units P D Power Dissipation 3.0 W R θJA Thermal Resistance, Junction to Ambient 50 °C/W Thermal Characteristics

Upload: hatu

Post on 06-Feb-2018

222 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

1N4001-1N

4007

1N4001-1N4007, Rev. C 2001 Fairchild Semiconductor Corporation

1N4001 - 1N4007

General Purpose Rectifiers (Glass Passivated)

Absolute Maximum Ratings* TA = 25°C unless otherwise noted

*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

Electrical Characteristics TA = 25°C unless otherwise noted

Features• Low forward voltage drop.

• High surge current capability.

Symbol

Parameter

Device

Units 4001 4002 4003 4004 4005 4006 4007

VF Forward Voltage @ 1.0 A 1.1 V Irr Maximum Full Load Reverse Current, Full

Cycle TA = 75°C 30 µA

IR Reverse Current @ rated VR TA = 25°C TA = 100°C

5.0 500

µA µA

CT Total Capacitance VR = 4.0 V, f = 1.0 MHz

15 pF

DO-41COLOR BAND DENOTES CATHODE

Symbol

Parameter

Value

Units 4001 4002 4003 4004 4005 4006 4007

VRRM Peak Repetitive Reverse Voltage 50 100 200 400 600 800 1000 V IF(AV) Average Rectified Forward Current,

.375 " lead length @ TA = 75°C 1.0 A

IFSM Non-repetitive Peak Forward Surge Current

8.3 ms Single Half-Sine-Wave 30 A

Tstg Storage Temperature Range -55 to +175 °C TJ Operating Junction Temperature -55 to +175 °C

Symbol

Parameter

Value

Units PD Power Dissipation 3.0 W RθJA Thermal Resistance, Junction to Ambient 50 °C/W

Thermal Characteristics

Page 2: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

1N4001-1N

4007

1N4001-1N4007, Rev. C 2001 Fairchild Semiconductor Corporation

General Purpose Rectifiers (Glass Passivated)(continued)

Typical Characteristics

0.6 0.8 1 1.2 1.40.010.020.04

0.10.20.4

124

1020

Forward Voltage, VF [V]

Forw

ard

Cur

rent

, IF [

A]

T = 25 C Pulse Width = 300µµµµS2% Duty Cycle

ºJ

1 2 4 6 8 10 20 40 60 1000

6

12

18

24

30

Number of Cycles at 60Hz

Peak

For

war

d Su

rge

Cur

rent

, IFS

M [A

]

0 20 40 60 80 100 120 140 160 1800

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Ambient Temperature [ºC]Ave

rage

Rec

tifie

d Fo

rwar

d C

urre

nt, I

F [A

]

SINGLE PHASE HALF WAVE

60HZRESISTIVE OR

INDUCTIVE LOAD.375" 9.0 mm LEAD

LENGTHS

0 20 40 60 80 100 120 1400.01

0.1

1

10

100

1000

Percent of Rated Peak Reverse Voltage [%]

Reve

rse

Curr

ent,

I R [m

A]

T = 25 CºJ

T = 150 CºJ

T = 100 CºJ

Figure 1. Forward Current Derating Curve Figure 2. Forward Voltage Characteristics

Figure 3. Non-Repetitive Surge Current Figure 4. Reverse Current vs Reverse Voltage

Page 3: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHERNOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILDDOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCTOR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENTRIGHTS, NOR THE RIGHTS OF OTHERS.

TRADEMARKSThe following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and isnot intended to be an exhaustive list of all such trademarks.

LIFE SUPPORT POLICY

FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.As used herein:1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implant intothe body, or (b) support or sustain life, or (c) whosefailure to perform when properly used in accordancewith instructions for use provided in the labeling, can bereasonably expected to result in significant injury to theuser.

2. A critical component is any component of a lifesupport device or system whose failure to perform canbe reasonably expected to cause the failure of the lifesupport device or system, or to affect its safety oreffectiveness.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification Product Status Definition

Advance Information

Preliminary

No Identification Needed

Obsolete

This datasheet contains the design specifications forproduct development. Specifications may change inany manner without notice.

This datasheet contains preliminary data, andsupplementary data will be published at a later date.Fairchild Semiconductor reserves the right to makechanges at any time without notice in order to improvedesign.

This datasheet contains final specifications. FairchildSemiconductor reserves the right to make changes atany time without notice in order to improve design.

This datasheet contains specifications on a productthat has been discontinued by Fairchild semiconductor.The datasheet is printed for reference information only.

Formative orIn Design

First Production

Full Production

Not In Production

OPTOLOGIC™OPTOPLANAR™PACMAN™POP™Power247™PowerTrenchQFET™QS™QT Optoelectronics™Quiet Series™SILENT SWITCHER

FASTFASTr™FRFET™GlobalOptoisolator™GTO™HiSeC™ISOPLANAR™LittleFET™MicroFET™MicroPak™MICROWIRE™

Rev. H4

ACEx™Bottomless™CoolFET™CROSSVOLT™DenseTrench™DOME™EcoSPARK™E2CMOSTM

EnSignaTM

FACT™FACT Quiet Series™

SMART START™STAR*POWER™Stealth™SuperSOT™-3SuperSOT™-6SuperSOT™-8SyncFET™TinyLogic™TruTranslation™UHC™UltraFET

STAR*POWER is used under license

VCX™

Page 4: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

NTE130 (NPN) & NTE219 (PNP)Silicon Power Transistor

Audio Power Amp, Medium Speed Switch

Description:The NTE130 (NPN) and NTE219 (PNP) are silicon complementary transistors in a TO3 type casedesigned for general purpose switching and amplifier applications.

Features: DC Current Gain: hFE = 20 – 70 @ IC = 4A Collector–Emitter Saturation Voltage: VCE(sat) = 1.1V (Max) @ IC = 4A Excellent Safe Operating Area

Absolute Maximum Ratings:Collector–Emitter Voltage, VCEO 60V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector–Emitter Voltage, VCER 70V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector–Base Voltage, VCB 100V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emitter–Base Voltage, VEB 7V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous Collector Current, IC 15A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Base Current, IB 7A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Device Dissipation (TC = +25°C), PD 115W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Derate Above 25°C 0.657W/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Junction Temperature Range, TJ –65° to +200°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage Temperature Range, Tstg –65° to +200°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance, Junction–to–Case, RthJC 1.52°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Electrical Characteristics: (TC =+25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

OFF Characteristics

Collector–Emitter Sustaining Voltage VCEO(sus) IC = 200mA, IB = 0, Note 1 60 – – V

Collector–Emitter Sustaining Voltage VCER(sus) IC = 200mA, RBE = 100Ω, Note 1 70 – – V

Collector Cutoff Current ICEO VCE = 30V, IB = 0 – – 0.7 mA

ICEX VCE = 100V, VBE(off) = 1.5V – – 1.0 mA

VCE = 100V, VBE(off) = 1.5V, TC = +150°C – – 5.0 mA

Emitter Cutoff Current IEBO VBE = 7V, IC = 0 – – 5.0 mA

Note 1. Pulse Test: Pulse Width ≤ 300µs. Duty Cycle ≤ 2%.

Page 5: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Electrical Characteristics (Cont’d): (TC =+25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

ON Characteristics (Note 1)

DC Current Gain hFE IC = 4A, VCE = 4V 20 – 70

IC = 10A, VCE = 4V 5 – –

Collector–Emitter Saturation Voltage VCE(sat) IC = 4A, IB = 400mA – – 1.1 V

IC = 10A, IB = 3.3A – – 3.0 V

Base–Emitter ON Voltage VBE(on) IC = 4A, VCE = 4V – – 1.5 V

Second Breakdown

Second Breakdown Collector Currentwith Base Forward Biased

Is/b VCE = 40V, t = 1.0s; Nonrepetitive 2.87 – – A

Dynamic Characteristics

Current Gain–Bandwidth Product fT IC = 500mA, VCE = 10V, f = 1MHz 2.5 – – MHz

Small–Signal Current Gain hfe IC = 1A, VCE = 4V, f = 1kHz 15 – 120

Small–Signal Current Gain CutoffFrequency

fhfe VCE = 4V, IC = 1A, f = 1kHz 10 – – kHz

Note 1. Pulse Test: Pulse Width ≤ 300µs. Duty Cycle ≤ 2%.Note 2. NTE130MP is a matched pair of NTE130 with their DC Current Gain (hFE) matched to within

10% of each other.Note 3. NTE219MCP is a matched complementary pair containing 1 each of NTE219 (PNP) and

NTE130 (NPN).

1.187 (30.16)

.875 (22.2)Dia Max

.665(16.9)

.430(10.92)

SeatingPlane

.040 (1.02).312 (7.93) Min

.135 (3.45) Max

.350 (8.89)

Emitter

Collector/CaseBase

.215 (5.45)

.525 (13.35) R Max

.156 (3.96) Dia(2 Holes)

.188 (4.8) R Max

Page 6: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

LM555TimerGeneral DescriptionThe LM555 is a highly stable device for generating accuratetime delays or oscillation. Additional terminals are providedfor triggering or resetting if desired. In the time delay mode ofoperation, the time is precisely controlled by one external re-sistor and capacitor. For astable operation as an oscillator,the free running frequency and duty cycle are accuratelycontrolled with two external resistors and one capacitor. Thecircuit may be triggered and reset on falling waveforms, andthe output circuit can source or sink up to 200mA or driveTTL circuits.

Featuresn Direct replacement for SE555/NE555n Timing from microseconds through hoursn Operates in both astable and monostable modesn Adjustable duty cyclen Output can source or sink 200 mAn Output and supply TTL compatiblen Temperature stability better than 0.005% per ˚Cn Normally on and normally off outputn Available in 8-pin MSOP package

Applicationsn Precision timingn Pulse generationn Sequential timingn Time delay generationn Pulse width modulationn Pulse position modulationn Linear ramp generator

Schematic Diagram

DS007851-1

February 2000LM

555Tim

er

© 2000 National Semiconductor Corporation DS007851 www.national.com

Page 7: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Connection Diagram

Ordering InformationPackage Part Number Package Marking Media Transport NSC Drawing

8-Pin SOIC LM555CM LM555CM RailsM08A

LM555CMX LM555CM 2.5k Units Tape and Reel

8-Pin MSOP LM555CMM Z55 1k Units Tape and ReelMUA08A

LM555CMMX Z55 3.5k Units Tape and Reel

8-Pin MDIP LM555CN LM555CN Rails N08E

Dual-In-Line, Small Outlineand Molded Mini Small Outline Packages

DS007851-3

Top View

LM55

5

www.national.com 2

Page 8: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Absolute Maximum Ratings (Note 2)

If Military/Aerospace specified devices are required,please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage +18VPower Dissipation (Note 3)

LM555CM, LM555CN 1180 mWLM555CMM 613 mW

Operating Temperature RangesLM555C 0˚C to +70˚C

Storage Temperature Range −65˚C to +150˚C

Soldering InformationDual-In-Line Package

Soldering (10 Seconds) 260˚CSmall Outline Packages

(SOIC and MSOP)Vapor Phase (60 Seconds) 215˚CInfrared (15 Seconds) 220˚C

See AN-450 “Surface Mounting Methods and Their Effecton Product Reliability” for other methods of solderingsurface mount devices.

Electrical Characteristics (Notes 1, 2)(TA = 25˚C, VCC = +5V to +15V, unless othewise specified)

Parameter Conditions Limits Units

LM555C

Min Typ Max

Supply Voltage 4.5 16 V

Supply Current VCC = 5V, RL = ∞VCC = 15V, RL = ∞(Low State) (Note 4)

310

615 mA

Timing Error, Monostable

Initial Accuracy 1 %

Drift with Temperature RA = 1k to 100kΩ, 50 ppm/˚C

C = 0.1µF, (Note 5)

Accuracy over Temperature 1.5 %

Drift with Supply 0.1 %/V

Timing Error, Astable

Initial Accuracy 2.25 %

Drift with Temperature RA, RB = 1k to 100kΩ, 150 ppm/˚C

C = 0.1µF, (Note 5)

Accuracy over Temperature 3.0 %

Drift with Supply 0.30 %/V

Threshold Voltage 0.667 x VCC

Trigger Voltage VCC = 15V 5 V

VCC = 5V 1.67 V

Trigger Current 0.5 0.9 µA

Reset Voltage 0.4 0.5 1 V

Reset Current 0.1 0.4 mA

Threshold Current (Note 6) 0.1 0.25 µA

Control Voltage Level VCC = 15VVCC = 5V

92.6

103.33

114

V

Pin 7 Leakage Output High 1 100 nA

Pin 7 Sat (Note 7)

Output Low VCC = 15V, I7 = 15mA 180 mV

Output Low VCC = 4.5V, I7 = 4.5mA 80 200 mV

LM555

www.national.com3

Page 9: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Electrical Characteristics (Notes 1, 2) (Continued)

(TA = 25˚C, VCC = +5V to +15V, unless othewise specified)

Parameter Conditions Limits Units

LM555C

Min Typ Max

Output Voltage Drop (Low) VCC = 15V

ISINK = 10mA 0.1 0.25 V

ISINK = 50mA 0.4 0.75 V

ISINK = 100mA 2 2.5 V

ISINK = 200mA 2.5 V

VCC = 5V

ISINK = 8mA V

ISINK = 5mA 0.25 0.35 V

Output Voltage Drop (High) ISOURCE = 200mA, VCC = 15V 12.5 V

ISOURCE = 100mA, VCC = 15V 12.75 13.3 V

VCC = 5V 2.75 3.3 V

Rise Time of Output 100 ns

Fall Time of Output 100 ns

Note 1: All voltages are measured with respect to the ground pin, unless otherwise specified.

Note 2: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is func-tional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guar-antee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit isgiven, however, the typical value is a good indication of device performance.

Note 3: For operating at elevated temperatures the device must be derated above 25˚C based on a +150˚C maximum junction temperature and a thermal resistanceof 106˚C/W (DIP), 170˚C/W (S0-8), and 204˚C/W (MSOP) junction to ambient.

Note 4: Supply current when output high typically 1 mA less at VCC = 5V.

Note 5: Tested at VCC = 5V and VCC = 15V.

Note 6: This will determine the maximum value of RA + RB for 15V operation. The maximum total (RA + RB) is 20MΩ.

Note 7: No protection against excessive pin 7 current is necessary providing the package dissipation rating will not be exceeded.

Note 8: Refer to RETS555X drawing of military LM555H and LM555J versions for specifications.

LM55

5

www.national.com 4

Page 10: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Typical Performance Characteristics

Minimuim Pulse WidthRequired for Triggering

DS007851-4

Supply Current vs.Supply Voltage

DS007851-19

High Output Voltage vs.Output Source Current

DS007851-20

Low Output Voltage vs.Output Sink Current

DS007851-21

Low Output Voltage vs.Output Sink Current

DS007851-22

Low Output Voltage vs.Output Sink Current

DS007851-23

LM555

www.national.com5

Page 11: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Typical Performance Characteristics (Continued)

Output Propagation Delay vs.Voltage Level of Trigger Pulse

DS007851-24

Output Propagation Delay vs.Voltage Level of Trigger Pulse

DS007851-25

Discharge Transistor (Pin 7)Voltage vs. Sink Current

DS007851-26

Discharge Transistor (Pin 7)Voltage vs. Sink Current

DS007851-27

LM55

5

www.national.com 6

Page 12: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Applications InformationMONOSTABLE OPERATION

In this mode of operation, the timer functions as a one-shot(Figure 1). The external capacitor is initially held dischargedby a transistor inside the timer. Upon application of a nega-tive trigger pulse of less than 1/3 VCC to pin 2, the flip-flop isset which both releases the short circuit across the capacitorand drives the output high.

The voltage across the capacitor then increases exponen-tially for a period of t = 1.1 RA C, at the end of which time thevoltage equals 2/3 VCC. The comparator then resets theflip-flop which in turn discharges the capacitor and drives theoutput to its low state. Figure 2 shows the waveforms gener-ated in this mode of operation. Since the charge and thethreshold level of the comparator are both directly propor-tional to supply voltage, the timing internal is independent ofsupply.

During the timing cycle when the output is high, the furtherapplication of a trigger pulse will not effect the circuit so longas the trigger input is returned high at least 10µs before theend of the timing interval. However the circuit can be resetduring this time by the application of a negative pulse to thereset terminal (pin 4). The output will then remain in the lowstate until a trigger pulse is again applied.

When the reset function is not in use, it is recommended thatit be connected to VCC to avoid any possibility of false trig-gering.

Figure 3 is a nomograph for easy determination of R, C val-ues for various time delays.

NOTE: In monostable operation, the trigger should be drivenhigh before the end of timing cycle.

ASTABLE OPERATION

If the circuit is connected as shown in Figure 4 (pins 2 and 6connected) it will trigger itself and free run as a multivibrator.The external capacitor charges through RA + RB and dis-charges through RB. Thus the duty cycle may be preciselyset by the ratio of these two resistors.

In this mode of operation, the capacitor charges and dis-charges between 1/3 VCC and 2/3 VCC. As in the triggeredmode, the charge and discharge times, and therefore the fre-quency are independent of the supply voltage.

DS007851-5

FIGURE 1. Monostable

DS007851-6

VCC = 5V Top Trace: Input 5V/Div.TIME = 0.1 ms/DIV. Middle Trace: Output 5V/Div.RA = 9.1kΩ Bottom Trace: Capacitor Voltage 2V/Div.C = 0.01µF

FIGURE 2. Monostable Waveforms

DS007851-7

FIGURE 3. Time Delay

DS007851-8

FIGURE 4. Astable

LM555

www.national.com7

Page 13: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Applications Information (Continued)

Figure 5 shows the waveforms generated in this mode ofoperation.

The charge time (output high) is given by:

t1 = 0.693 (RA + RB) C

And the discharge time (output low) by:

t2 = 0.693 (RB) C

Thus the total period is:

T = t1 + t2 = 0.693 (RA +2RB) C

The frequency of oscillation is:

Figure 6 may be used for quick determination of these RCvalues.

The duty cycle is:

FREQUENCY DIVIDER

The monostable circuit of Figure 1 can be used as a fre-quency divider by adjusting the length of the timing cycle.Figure 7 shows the waveforms generated in a divide by threecircuit.

PULSE WIDTH MODULATOR

When the timer is connected in the monostable mode andtriggered with a continuous pulse train, the output pulsewidth can be modulated by a signal applied to pin 5. Figure8 shows the circuit, and in Figure 9 are some waveformexamples.

DS007851-9

VCC = 5V Top Trace: Output 5V/Div.TIME = 20µs/DIV. Bottom Trace: Capacitor Voltage 1V/Div.RA = 3.9kΩRB = 3kΩC = 0.01µF

FIGURE 5. Astable Waveforms

DS007851-10

FIGURE 6. Free Running Frequency

DS007851-11

VCC = 5V Top Trace: Input 4V/Div.TIME = 20µs/DIV. Middle Trace: Output 2V/Div.RA = 9.1kΩ Bottom Trace: Capacitor 2V/Div.C = 0.01µF

FIGURE 7. Frequency Divider

DS007851-12

FIGURE 8. Pulse Width Modulator

DS007851-13

VCC = 5V Top Trace: Modulation 1V/Div.TIME = 0.2 ms/DIV. Bottom Trace: Output Voltage 2V/Div.RA = 9.1kΩC = 0.01µF

FIGURE 9. Pulse Width Modulator

LM55

5

www.national.com 8

Page 14: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Applications Information (Continued)

PULSE POSITION MODULATOR

This application uses the timer connected for astable opera-tion, as in Figure 10, with a modulating signal again appliedto the control voltage terminal. The pulse position varies withthe modulating signal, since the threshold voltage and hencethe time delay is varied. Figure 11 shows the waveformsgenerated for a triangle wave modulation signal.

LINEAR RAMP

When the pullup resistor, RA, in the monostable circuit is re-placed by a constant current source, a linear ramp is gener-ated. Figure 12 shows a circuit configuration that will performthis function.

Figure 13 shows waveforms generated by the linear ramp.

The time interval is given by:

VBE . 0.6VDS007851-14

FIGURE 10. Pulse Position Modulator

DS007851-15

VCC = 5V Top Trace: Modulation Input 1V/Div.TIME = 0.1 ms/DIV. Bottom Trace: Output 2V/Div.RA = 3.9kΩRB = 3kΩC = 0.01µF

FIGURE 11. Pulse Position Modulator

DS007851-16

FIGURE 12.

DS007851-17

VCC = 5V Top Trace: Input 3V/Div.TIME = 20µs/DIV. Middle Trace: Output 5V/Div.R1 = 47kΩ Bottom Trace: Capacitor Voltage 1V/Div.R2 = 100kΩRE = 2.7 kΩC = 0.01 µF

FIGURE 13. Linear Ramp

LM555

www.national.com9

Page 15: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Applications Information (Continued)

50% DUTY CYCLE OSCILLATOR

For a 50% duty cycle, the resistors RA and RB may be con-nected as in Figure 14. The time period for the output high isthe same as previous, t1 = 0.693 RA C. For the output low itis t2 =

Thus the frequency of oscillation is

Note that this circuit will not oscillate if RB is greater than 1/2RA because the junction of RA and RB cannot bring pin 2down to 1/3 VCC and trigger the lower comparator.

ADDITIONAL INFORMATION

Adequate power supply bypassing is necessary to protectassociated circuitry. Minimum recommended is 0.1µF in par-allel with 1µF electrolytic.

Lower comparator storage time can be as long as 10µswhen pin 2 is driven fully to ground for triggering. This limitsthe monostable pulse width to 10µs minimum.

Delay time reset to output is 0.47µs typical. Minimum resetpulse width must be 0.3µs, typical.

Pin 7 current switches within 30ns of the output (pin 3) volt-age.

DS007851-18

FIGURE 14. 50% Duty Cycle Oscillator

LM55

5

www.national.com 10

Page 16: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Physical Dimensions inches (millimeters) unless otherwise noted

Small Outline Package (M)NS Package Number M08A

8-Lead (0.118” Wide) Molded Mini Small Outline PackageNS Package Number MUA08A

LM555

www.national.com11

Page 17: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

LIFE SUPPORT POLICY

NATIONAL’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORTDEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT AND GENERALCOUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices orsystems which, (a) are intended for surgical implantinto the body, or (b) support or sustain life, andwhose failure to perform when properly used inaccordance with instructions for use provided in thelabeling, can be reasonably expected to result in asignificant injury to the user.

2. A critical component is any component of a lifesupport device or system whose failure to performcan be reasonably expected to cause the failure ofthe life support device or system, or to affect itssafety or effectiveness.

National SemiconductorCorporationAmericasTel: 1-800-272-9959Fax: 1-800-737-7018Email: [email protected]

National SemiconductorEurope

Fax: +49 (0) 180-530 85 86Email: [email protected]

Deutsch Tel: +49 (0) 69 9508 6208English Tel: +44 (0) 870 24 0 2171Français Tel: +33 (0) 1 41 91 8790

National SemiconductorAsia Pacific CustomerResponse GroupTel: 65-2544466Fax: 65-2504466Email: [email protected]

National SemiconductorJapan Ltd.Tel: 81-3-5639-7560Fax: 81-3-5639-7507

www.national.com

Molded Dual-In-Line Package (N)NS Package Number N08E

LM55

5Ti

mer

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.

Page 18: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

NTE123Silicon NPN Transistor

General Purpose Audio Amplifier, Switch

Absolute Maximum Ratings:Collector–Emitter Voltage, VCEO 40V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Collector–Base Voltage, VCBO 75V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Emitter–Base Voltage, VEBO 6V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Continuous Collector Current, IC 800mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total Device Dissipation (TA = +25°C), PD 800mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derate Above 25°C 5.33mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Total Device Dissipation (TC = +25°C), PD 3.0W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Derate Above 25°C 20mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Operating Junction Temperature Range, TJ –65° to +200°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Storage Temperature Range, Tstg –65° to +200°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Electrical Characteristics: (TA = +25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

OFF Characteristics

Collector–Emitter Breakdown Voltage V(BR)CEO IC = 10mA, IB = 0 40 – – V

Collector–Base Breakdown Voltage V(BR)CBO IC = 10µA, IE = 0 75 – – V

Emitter–Base Breakdown Voltage V(BR)EBO IE = 10µA, IC = 0 6 – – V

Collector Cutoff Current ICBO VCE = 60V, IE = 0 – – 0.01 µA

VCE = 60V, IE = 0, TA = +150°C – – 10 µA

ICEX VCE = 60V, VEB(off) = 3V – – 10 nA

Emitter Cutoff Current IEBO VEB = 3V, IC = 0 – – 10 nA

Base Cuttoff Current IBL VCE = 60V, VEB(off) = 3V – – 20 nA

Page 19: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Electrical Characteristics (Cont’d): (TA = +25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

ON Characteristics (Note 1)

DC Current Gain hFE IC = 0.1mA, VCE = 10V 35 – –

IC = 1mA, VCE = 10V 50 – –

IC = 10mA, VCE = 10V 75 – –

IC = 10mA, VCE = 10V, TA = –55°C 35 – –

IC = 150mA, VCE = 10V 100 – 300

IC = 150mA, VCE = 1.0V 50 – –

IC = 500mA, VCE = 10V 40 – –

Collector–Emitter Saturation Voltage VCE(sat) IC = 150mA, IB = 15mA – – 0.3 V

IC = 500mA, IB = 50mA – – 1.0 V

Base–Emitter Saturation Voltage VBE(sat) IC = 150mA, IB = 15mA 0.6 – 1.2 V

IC = 500mA, IB = 50mA – – 2.0 V

Small–Signal Characteristics

Current Gain–Bandwidth Product fT IC = 20mA, VCE = 20V,f = 100MHz, Note 2

300 – – MHz

Output Capacitance Cobo VCB = 10V, IE = 0, f = 100kHz – – 8 pF

Input Capacitance Cibo VEB = 0.5V, IC = 0, f = 100kHz – – 25 pF

Input Impedance hie IC = 1mA, VCE = 10V, f = 1kHz 2.0 – 8.0 kΩ

IC = 10mA, VCE = 10V, f = 1kHz 0.25 – 1.25 kΩ

Voltage Feedback Ratio hre IC = 1mA, VCE = 10V, f = 1kHz – – 8 x 10–4

IC = 10mA, VCE = 10V, f = 1kHz – – 4 x 10–4

Small–Signal Current Gain hfe IC = 1mA, VCE = 10V, f = 1kHz 50 – 300

IC = 10mA, VCE = 10V, f = 1kHz 75 – 375

Output Admittance hoe IC = 1mA, VCE = 10V, f = 1kHz 5.0 – 35 µmhos

IC = 10mA, VCE = 10V, f = 1kHz 25 – 200 µmhos

Collector–Base Time Constant rb′Cc IE = 20mA, VCB = 20V, f = 31.8MHz – – 150 ps

Noise Figure NF IC = 100µA, VCE = 10V,RS = 1kΩ, f = 1kHz

– – 4 dB

Real Part of Common–EmitterHigh Frequency Input Impedance

Re(hie) IC = 20mA, VCE = 20V, f = 300MHz – – 60 Ω

Switching Characteristics

Delay Time tq VCC = 30V, VBE(off) = 0.5V, – – 10 ns

Rise Time trIC = 150mA, IB1 = 15mA – – 25 ns

Storage Time ts VCC = 30V, IC = 150mA, – – 225 ns

Fall Time tfIB1 = IB2 = 15mA – – 60 ns

Active Region Time Constant TA IC = 150mA, VCE = 30V – – 2.5 ns

Note 1. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

Note 2. fT is defined as the frequency at which |hfe| extrapolates to unity.

Page 20: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

.260(6.6)Max

.500(12.7)Min

.370 (9.39) Dia Max

.355 (9.03) Dia Max

45°

.031 (.793)

Emitter

Base

Collector/Case

.018 (0.45)

Page 21: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

NTE123APSilicon NPN TransistorAudio Amplifier, Switch

(Compl to NTE159)

Absolute Maximum Ratings:Collector–Emitter Voltage, VCEO 40V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector–Base Voltage, VCB 60V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emitter–Base Voltage, VEB 6V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous Collector Current, IC 600mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Device Dissipation (TA = 25°C), PD 350mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Derate Above 25°C 2.8mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Device Dissipation (TC = 25°C), PD 1.0W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Derate Above 25°C 8.0mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Junction Temperature Range, TJ –55° to +150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage Temperature Range, Tstg –55° to +150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance, Junction to Case, RθJC 125°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance, Junction to Ambient, RθJA 357°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Electrical Characteristics: (TA = +25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

OFF Characteristics

Collector–Emitter Breakdown Voltage V(BR)CEO IC = 1mA, IB = 0, Note 1 40 – – V

Collector–Base Breakdown Voltage V(BR)CBO IC = 0.1mA, IE = 0 60 – – V

Emitter–Base Breakdown Voltage V(BR)EBO IE = 0.1mA, IC = 0 6 – – V

Collector Cutoff Current ICEV VCE = 35V, VEB(off) = 0.4V – – 0.1 µA

Base Cutoff Current IBEV VCE = 35V, VEB(off) = 0.4V – – 0.1 µA

ON Characteristics (Note 1)

DC Current Gain hFE VCE = 1V, IC = 0.1mA 20 – –

VCE = 1V, IC = 1mA 40 – –

VCE = 1V, IC = 10mA 80 – –

VCE = 1V, IC = 150mA 100 – 300

VCE = 1V, IC = 500mA 40 – –

Note 1. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

Page 22: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Electrical Characteristics (Cont’d): (TA = +25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

ON Characteristics (Note 1) (Cont’d)

Collector–Emitter Saturation Voltage VCE(sat) IC = 150mA, IB = 15mA – – 0.4 V

IC = 500mA, IB = 50mA – – 0.75 V

Base–Emitter Saturation Voltage VBE(sat) IC = 150mA, IB = 15mA 0.75 – 0.95 V

IC = 500mA, IB = 50mA – – 1.2 V

Small–Signal Characteristics

Current Gain–Bandwidth Product fT IC = 20mA, VCE = 10V, f = 100MHz 250 – – MHz

Collector–Base Capacitance Ccb VCB = 5V, IE = 0, f = 100kHz – – 6.5 pF

Emitter–Base Capacitance Ceb VCB = 0.5V, IC = 0, f = 100kHz – – 30 pF

Input Impedance hie IC = 1mA, VCE = 10V, f = 1kHz 1.0 – 15 kΩ

Voltage Feedback Ratio hre IC = 1mA, VCE = 10V, f = 1kHz 0.1 – 8.0 x 10–6

Small–Signal Current Gain hfe IC = 1mA, VCE = 10V, f = 1kHz 40 – 500

Output Admittance hoe IC = 1mA, VCE = 10V, f = 1kHz 1.0 – 30 µmhos

Switching Characteristics

Delay Time td VCC = 30V, VEB(off) = 2V, – – 15 ns

Rise Time trIC = 150mA, IB1 = 15mA

– – 20 ns

Storage Time ts VCC = 30V, IC = 150mA, – – 225 ns

Fall Time tfIB1 = IB2 = 15mA

– – 30 ns

Note 1. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

Page 23: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

.021 (.445) Dia Max

E B C

Seating Plane

.135 (3.45) Min

.100 (2.54)

.050 (1.27)

.105 (2.67) Max

.105 (2.67) Max

.205 (5.2) Max

.210(5.33)Max

.500(12.7)Min

.165(4.2)Max

Page 24: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

NTE159Silicon PNP TransistorAudio Amplifier, Switch(Compl to NTE123AP)

Absolute Maximum Ratings:Collector–Emitter Voltage, VCEO 80V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Collector–Base Voltage, VCBO 80V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Emitter–Base Voltage, VEBO 5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Continuous Collector Current, IC 1.0A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Device Dissipation (TA = 25°C), PD 625mW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Derate Above 25°C 5mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Total Device Dissipation (TC = 25°C), PD 1.5W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Derate Above 25°C 12mW/°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Operating Junction Temperature Range, TJ –55° to +150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Storage Temperature Range, Tstg –55° to +150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance, Junction to Case, RθJC 83.3°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Thermal Resistance, Junction to Ambient, RθJA 200°C/W. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Note 1. Matched complementary pairs are available upon request (NTE159MCP). Matched com-plementary pairs have their gain specification (hFE) matched to within 10% of each other.

Electrical Characteristics: (TA = +25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

OFF Characteristics

Collector–Emitter Breakdown Voltage V(BR)CEO IC = 10mA, IB = 0 80 – – V

Collector–Base Breakdown Voltage V(BR)CBO IC = 10µA, IE = 0 80 – – V

Emitter–Base Breakdown Voltage V(BR)EBO IE = 10µA, IC = 0 5 – – V

Collector Cutoff Current ICBO VCB = 50V, IE = 0 – – 50 nA

VCB = 50V, IE = 0, TA = +75°C – – 5 µA

Emitter Cutoff Current IEBO – – 100 nA

Page 25: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Electrical Characteristics (Cont’d): (TA = +25°C unless otherwise specified)

Parameter Symbol Test Conditions Min Typ Max Unit

ON Characteristics

DC Current Gain hFE VCE = 10V, IC = 0.1mA 25 – –

VCE = 10V, IC = 1mA 40 – –

VCE = 10V, IC = 10mA 50 – 250

VCE = 10V, IC = 100mA 40 – –

VCE = 10V, IC = 500mA 30 – –

Collector–Emitter Saturation Voltage VCE(sat) IC = 150mA, IB = 15mA, Note 2 – – 0.15 V

IC = 500mA, IB = 50mA, Note 2 – – 0.5 V

Base–Emitter Saturation Voltage VBE(sat) IC = 150mA, IB = 15mA, Note 2 – – 0.9 V

IC = 500mA, IB = 50mA, Note 2 – – 1.1 V

Base–Emitter ON Voltage VBE(on) IC = 500mA, VCE = 500mV – – 1.1 V

Small–Signal Characteristics

Current Gain–Bandwidth Product fT IC = 50mA, VCE = 10V, f = 100MHz 100 – 500 MHz

Output Capacitance Cob VCB = 10V, IE = 0, f = 100kHz – – 30 pF

Input Capacitance Cib VCB = 10V, IE = 0, f = 100kHz – – 110 pF

Input Impedance hie IC = 10mA, VCE = 10V, f = 1kHz – 550 – kΩ

Voltage Feedback Ratio hre IC = 10mA, VCE = 10V, f = 1kHz – 100 – x 10–6

Small–Signal Current Gain hfe IC = 10mA, VCE = 10V, f = 1kHz – 200 –

Output Admittance hoe IC = 10mA, VCE = 10V, f = 1kHz – 100 – µmhos

Noise Figure NF IC = 100µA, VCE = 10V, RS = 1kΩ,f = 1kHz

– – 3 dB

Switching Characteristics

Turn–On Time ton VCC = 30V, VBE(off) = 3.8V,IC = 500mA, IB1 = 50mA

– – 100 ns

Turn–Off Time toff VCC = 30V, IC = 500mA,IB1 = IB2 = 50mA

– – 400 ns

Note 2. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.

Page 26: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

.021 (.445) Dia Max

E B C

Seating Plane

.135 (3.45) Min

.100 (2.54)

.050 (1.27)

.105 (2.67) Max

.105 (2.67) Max

.205 (5.2) Max

.210(5.33)Max

.500(12.7)Min

.165(4.2)Max

Page 27: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

Semiconductor Components Industries, LLC, 1999

December, 1999 – Rev. 61 Publication Order Number:

SN74LS122/D

These dc triggered multivibrators feature pulse width control bythree methods. The basic pulse width is programmed by selection ofexternal resistance and capacitance values. The LS122 has an internaltiming resistor that allows the circuits to be used with only an externalcapacitor. Once triggered, the basic pulse width may be extended byretriggering the gated low-level-active (A) or high-level-active (B)inputs, or be reduced by use of the overriding clear.• Overriding Clear Terminates Output Pulse

• Compensated for VCC and Temperature Variations

• DC Triggered from Active-High or Active-Low Gated Logic Inputs

• Retriggerable for Very Long Output Pulses, up to 100% Duty Cycle

• Internal Timing Resistors on LS122

GUARANTEED OPERATING RANGES

Symbol Parameter Min Typ Max Unit

VCC Supply Voltage 4.75 5.0 5.25 V

TA Operating AmbientTemperature Range

0 25 70 °C

IOH Output Current – High –0.4 mA

IOL Output Current – Low 8.0 mA

Rext External Timing Resistance 5.0 260 k

Cext External Capacitance No Restriction

Rext/Cext Wiring Capacitance atRext/Cext Terminal

50 pF

LOW POWER SCHOTTKY

Device Package Shipping

ORDERING INFORMATION

SN74LS123N 16 Pin DIP

SN74LS123D 16 Pin

SOICD SUFFIX

CASE 751A

http://onsemi.com

PLASTICN SUFFIXCASE 646

14

1

14

1

SOICD SUFFIX

CASE 751B

PLASTICN SUFFIXCASE 648

16

1

16

1

SN74LS122N 14 Pin DIP 2000 Units/Box

SN74LS122D 14 Pin 2500/Tape & Reel

2000 Units/Box

2500/Tape & Reel

Page 28: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com2

SN74LS122 (TOP VIEW)(SEE NOTES 1 THRU 4)

SN74LS123 (TOP VIEW)(SEE NOTES 1 THRU 4)

NOTES:1. An external timing capacitor may be connected between Cext and Rext/Cext (positive).2. To use the internal timing resistor of the LS122, connect Rint to VCC.3. For improved pulse width accuracy connect an external resistor between Rext/Cext and VCC with Rint open-circuited.4. To obtain variable pulse widths, connect an external variable resistance between Rint/Cext and VCC.

14 13 12 11 10 9

1 2 3 4 5 6

8

7

VCC

Rext/Cext NC Cext NC Rint Q

A1 A2 B1 B2 CLR Q GND

CLR Q

Q

Rint

2Rext/Cext

1Cext

1 Rext/Cext

14 13 12 11 10 9

1 2 3 4 5 6 7

16 15

8

VCC

1A

1Q 2Q 2B2

CLR 2A

1B 1CLR

1Q 2Q 2Cext

GND

Q

Q Q

Q

CLR

CLR

NC — NO INTERNAL CONNECTION.

Page 29: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com3

LS122 FUNCTIONAL TABLE

INPUTS OUTPUTS

CLEAR A1 A2 B1 B2 Q Q

L X X X X L HX H H X X L HX X X L X L HX X X X L L HH L X ↑ HH L X H ↑H X L ↑ HH X L H ↑H H ↓ H HH ↓ ↓ H HH ↓ H H H↑ L X H H

↑ X L H H

LS123 FUNCTIONAL TABLE

INPUTS OUTPUTS

CLEAR A B Q Q

L X X L HX H X L HX X L L HH L ↑H ↓ H↑ L H

TYPICAL APPLICATION DATAThe output pulse tW is a function of the external

components, Cext and Rext or Cext and Rint on the LS122.For values of Cext ≥ 1000 pF, the output pulse at VCC = 5.0V and VRC = 5.0 V (see Figures 1, 2, and 3) is given by

tW = K Rext Cext where K is nominally 0.45

If Cext is on pF and Rext is in kΩ then tW is in nanoseconds.The Cext terminal of the LS122 and LS123 is an internal

connection to ground, however for the best systemperformance Cext should be hard-wired to ground.

Care should be taken to keep Rext and Cext as close to themonostable as possible with a minimum amount ofinductance between the Rext/Cext junction and the Rext/Cextpin. Good groundplane and adequate bypassing should bedesigned into the system for optimum performance to ensurethat no false triggering occurs.

It should be noted that the Cext pin is internally connectedto ground on the LS122 and LS123, but not on the LS221.Therefore, if Cext is hard-wired externally to ground,substitution of a LS221 onto a LS123 socket will cause theLS221 to become non-functional.

The switching diode is not needed for electrolyticcapacitance application and should not be used on the LS122and LS123.

To find the value of K for Cext ≥ 1000 pF, refer to Figure 4.Variations on VCC or VRC can cause the value of K tochange, as can the temperature of the LS123, LS122.

Figures 5 and 6 show the behavior of the circuit shown inFigures 1 and 2 if separate power supplies are used for VCCand VRC. If VCC is tied to VRC, Figure 7 shows how K willvary with VCC and temperature. Remember, the changes inRext and Cext with temperature are not calculated andincluded in the graph.

As long as Cext ≥ 1000 pF and 5K ≤ Rext ≤ 260K, thechange in K with respect to Rext is negligible.

If Cext ≤ 1000 pF the graph shown on Figure 8 can be usedto determine the output pulse width. Figure 9 shows how Kwill change for Cext ≤ 1000 pF if VCC and VRC are connectedto the same power supply. The pulse width tW innanoseconds is approximated by

tW = 6 + 0.05 Cext (pF) + 0.45 Rext (kΩ) Cext + 11.6 Rext

In order to trim the output pulse width, it is necessary toinclude a variable resistor between VCC and the Rext/Cext pinor between VCC and the Rext pin of the LS122. Figure 10, 11,and 12 show how this can be done. Rext remote should bekept as close to the monostable as possible.

Retriggering of the part, as shown in Figure 3, must notoccur before Cext is discharged or the retrigger pulse will nothave any effect. The discharge time of Cext in nanosecondsis guaranteed to be less than 0.22 Cext (pF) and is typically0.05 Cext (pF).

For the smallest possible deviation in output pulse widthsfrom various devices, it is suggested that Cext be kept≥ 1000 pF.

Page 30: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com4

WAVEFORMS

EXTENDING PULSE WIDTH

OVERRIDING THE OUTPUT PULSE

B INPUT

Q OUTPUT

B INPUT

CLEAR INPUT CLEAR PULSE

Q OUTPUTOUTPUT WITHOUT CLEAR PULSE

RETRIGGERPULSE (See Application Data)

OUTPUT WITHOUT RETRIGGERtW

Page 31: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com5

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

VIH Input HIGH Voltage 2.0 VGuaranteed Input HIGH Voltage forAll Inputs

VIL Input LOW Voltage0.8

VGuaranteed Input LOW Voltage forAll Inputs

VIK Input Clamp Diode Voltage –0.65 –1.5 V VCC = MIN, IIN = –18 mA

VOH Output HIGH Voltage2.7 3.5 V VCC = MIN, IOH = MAX, VIN = VIH

or VIL per Truth Table

VO Output LOW Voltage0.25 0.4 V IOL = 4.0 mA VCC = VCC MIN,

VIN = VIL or VIHVOL Output LOW Voltage0.35 0.5 V IOL = 8.0 mA

VIN = VIL or VIHper Truth Table

I Input HIGH Current20 µA VCC = MAX, VIN = 2.7 V

IIH Input HIGH Current0.1 mA VCC = MAX, VIN = 7.0 V

IIL Input LOW Current –0.4 mA VCC = MAX, VIN = 0.4 V

IOS Short Circuit Current (Note 1) –20 –100 mA VCC = MAX

ICC Power Supply CurrentLS122 11

mA VCC = MAXICC Power Supply CurrentLS123 20

mA VCC = MAX

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS (TA = 25°C, VCC = 5.0 V)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

tPLH Propagation Delay, A to Q 23 33nsPLH

tPHL

g yPropagation Delay, A to Q 32 45

nsCext = 0

tPLH Propagation Delay, B to Q 23 44ns

extCL = 15 pF

PLHtPHL

g yPropagation Delay, B to Q 34 56

nsRext = 5.0 kΩ

tPLH Propagation Delay, Clear to Q 28 45ns

extRL = 2.0 kΩ

PLHtPHL

g yPropagation Delay, Clear to Q 20 27

ns

tW min A or B to Q 116 200 ns Cext = 1000 pF, Rext = 10 kΩ,

tWQ A to B to Q 4.0 4.5 5.0 µs

ext extCL = 15 pF, RL = 2.0 kΩ

AC SETUP REQUIREMENTS (TA = 25°C, VCC = 5.0 V)

Limits

Symbol Parameter Min Typ Max Unit Test Conditions

tW Pulse Width 40 ns

Page 32: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com6

Figure 1. Figure 2.

Figure 3.

Figure 4.

VCC VRC VCC

Cext0.1 µF

Pout

Cext Rext/Cext

VCC

QCLR

B

CLRB2B1

A2A1

1/2 LS123 LS122

Rext

QGNDA

51 ΩPin

Pin

Pout tW

RETRIGGER

5K ≤ Rext ≤ 260K

10

1

0.1

0.01

0.0010.3 0.35 0.4 0.45 0.5 0.55

K

EXTE

RN

AL C

APAC

ITAN

CE,

C

(

F)

µex

t

VCC VRC VCC

Cext0.1 µF

Pout

Cext Rext/Cext

VCC

Q

Rext

QGND

51 Ω

Pin

Page 33: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com7

Figure 5. K versus V CC Figure 6. K versus V RC Figure 7. K versus V CC and VRC

VCC

VCC = 5 VCext = 1000 pF

VRC

Cext = 1000 pF

0.55

0.5

K

0.45

0.4

0.354.5 5 5.5

VCC = VRC

125°C

70°C

25°C

0°C

– 55°C

VRC = 5 VCext = 1000 pF

125°C

70°C

0°C– 55°C

125°C

25°C

0°C

– 55°C

70°C

25°C

100000

10000

1000

100

101 10 100 1000

t W

Cext, EXTERNAL TIMING CAPACITANCE (pF)

Rext = 80 kΩRext = 40 kΩRext = 20 kΩRext = 10 kΩRext = 5 kΩ

, OU

TP

UT

PU

LSE

WID

TH

(ns

)

Rext = 260 kΩRext = 160 kΩ

4.5 5 5.54.5 5 5.5

0.55

0.5

K

0.45

0.4

0.35

0.55

0.5

K

0.45

0.4

0.35

Figure 8.

Page 34: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com8

Figure 9.

Figure 10. LS123 Remote Trimming Circuit

Cext = 200 pF

0.65

0.6

K 0.55

0.5

4.5 4.75 5 5.25 5.5VCC VOLTS

125°C

70°C

25°C

0°C

– 55°C

VCC

RextREMOTERext

Cext

PIN 7OR 15

PIN 6OR 14

Page 35: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com9

Figure 11. LS122 Remote Trimming Circuit Without R ext

Figure 12. LS122 Remote Trimming Circuit with R int

OPEN

VCC

RextREMOTERext

Cext

PIN 13

PIN 11

PIN 9

VCC

RextREMOTE

PIN 13

PIN 11

PIN 9

Page 36: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com10

PACKAGE DIMENSIONS

1 7

14 8

B

A DIM MIN MAX MIN MAXMILLIMETERSINCHES

A 0.715 0.770 18.16 18.80B 0.240 0.260 6.10 6.60C 0.145 0.185 3.69 4.69D 0.015 0.021 0.38 0.53F 0.040 0.070 1.02 1.78G 0.100 BSC 2.54 BSCH 0.052 0.095 1.32 2.41J 0.008 0.015 0.20 0.38K 0.115 0.135 2.92 3.43LM ––– 10 ––– 10 N 0.015 0.039 0.38 1.01

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.3. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALLEL.4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.5. ROUNDED CORNERS OPTIONAL.

F

H G DK

C

SEATINGPLANE

N

–T–

14 PL

M0.13 (0.005)

L

MJ

0.290 0.310 7.37 7.87

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.

–A–

–B–

G

P 7 PL

14 8

71M0.25 (0.010) B M

SBM0.25 (0.010) A ST

–T–

FR X 45

SEATINGPLANE

D 14 PL K

C

JM

DIM MIN MAX MIN MAX

INCHESMILLIMETERS

A 8.55 8.75 0.337 0.344B 3.80 4.00 0.150 0.157C 1.35 1.75 0.054 0.068D 0.35 0.49 0.014 0.019F 0.40 1.25 0.016 0.049G 1.27 BSC 0.050 BSCJ 0.19 0.25 0.008 0.009K 0.10 0.25 0.004 0.009M 0 7 0 7 P 5.80 6.20 0.228 0.244R 0.25 0.50 0.010 0.019

D SUFFIXPLASTIC SOIC PACKAGE

CASE 751A–03ISSUE F

N SUFFIXPLASTIC PACKAGE

CASE 646–06ISSUE M

Page 37: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com11

PACKAGE DIMENSIONS

N SUFFIXPLASTIC PACKAGE

CASE 648–08ISSUE R

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: INCH.3. DIMENSION L TO CENTER OF LEADS WHEN

FORMED PARALLEL.4. DIMENSION B DOES NOT INCLUDE MOLD FLASH.5. ROUNDED CORNERS OPTIONAL.

–A–

B

F C

S

HG

D

J

L

M

16 PL

SEATING

1 8

916

K

PLANE–T–

MAM0.25 (0.010) T

DIM MIN MAX MIN MAXMILLIMETERSINCHES

A 0.740 0.770 18.80 19.55B 0.250 0.270 6.35 6.85C 0.145 0.175 3.69 4.44D 0.015 0.021 0.39 0.53F 0.040 0.70 1.02 1.77G 0.100 BSC 2.54 BSCH 0.050 BSC 1.27 BSCJ 0.008 0.015 0.21 0.38K 0.110 0.130 2.80 3.30L 0.295 0.305 7.50 7.74M 0 10 0 10 S 0.020 0.040 0.51 1.01

D SUFFIXPLASTIC SOIC PACKAGE

CASE 751B–05ISSUE J

NOTES:1. DIMENSIONING AND TOLERANCING PER ANSI

Y14.5M, 1982.2. CONTROLLING DIMENSION: MILLIMETER.3. DIMENSIONS A AND B DO NOT INCLUDE

MOLD PROTRUSION.4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)

PER SIDE.5. DIMENSION D DOES NOT INCLUDE DAMBAR

PROTRUSION. ALLOWABLE DAMBARPROTRUSION SHALL BE 0.127 (0.005) TOTALIN EXCESS OF THE D DIMENSION ATMAXIMUM MATERIAL CONDITION.

1 8

16 9

SEATINGPLANE

F

JM

R X 45

G

8 PLP–B–

–A–

M0.25 (0.010) B S

–T–

D

K

C

16 PL

SBM0.25 (0.010) A ST

DIM MIN MAX MIN MAXINCHESMILLIMETERS

A 9.80 10.00 0.386 0.393B 3.80 4.00 0.150 0.157C 1.35 1.75 0.054 0.068D 0.35 0.49 0.014 0.019F 0.40 1.25 0.016 0.049G 1.27 BSC 0.050 BSCJ 0.19 0.25 0.008 0.009K 0.10 0.25 0.004 0.009M 0 7 0 7 P 5.80 6.20 0.229 0.244R 0.25 0.50 0.010 0.019

Page 38: 1N4001 - 1N4007 - prof.usb.veprof.usb.ve/bueno/E_Potencia/Laboratorio/Hojas de Datos.pdf · Figure 2. Forward Voltage Characteristics ... This datasheet contains final specifications

SN74LS122 SN74LS123

http://onsemi.com12

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changeswithout further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particularpurpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability,including without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/orspecifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must bevalidated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights nor the rights of others.SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applicationsintended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury ordeath may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and holdSCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonableattorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claimalleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.

PUBLICATION ORDERING INFORMATIONASIA/PACIFIC : LDC for ON Semiconductor – Asia SupportPhone : 303–675–2121 (Tue–Fri 9:00am to 1:00pm, Hong Kong Time)

Toll Free from Hong Kong 800–4422–3781Email : ONlit–[email protected]

JAPAN : ON Semiconductor, Japan Customer Focus Center4–32–1 Nishi–Gotanda, Shinagawa–ku, Tokyo, Japan 141–8549Phone : 81–3–5487–8345Email : [email protected]

Fax Response Line : 303–675–2167800–344–3810 Toll Free USA/Canada

ON Semiconductor Website: http://onsemi.com

For additional information, please contact your localSales Representative.

SN74LS122/D

North America Literature Fulfillment :Literature Distribution Center for ON SemiconductorP.O. Box 5163, Denver, Colorado 80217 USAPhone : 303–675–2175 or 800–344–3860 Toll Free USA/CanadaFax: 303–675–2176 or 800–344–3867 Toll Free USA/CanadaEmail : [email protected]

N. American Technical Support : 800–282–9855 Toll Free USA/Canada

EUROPE: LDC for ON Semiconductor – European SupportGerman Phone: (+1) 303–308–7140 (M–F 2:30pm to 5:00pm Munich Time)

Email: ONlit–[email protected] Phone: (+1) 303–308–7141 (M–F 2:30pm to 5:00pm Toulouse Time)

Email: ONlit–[email protected] Phone: (+1) 303–308–7142 (M–F 1:30pm to 5:00pm UK Time)

Email: [email protected]