2011-12 ota gm id.pdf

36
B. E. Boser 1 Analog Design Using g m /I d and f t Metrics Bernhard E. Boser [email protected] Copyright © 2011 Bernhard Boser Analog design using g m /I d and f t metrics

Upload: ledien

Post on 01-Jan-2017

262 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: 2011-12 OTA gm Id.pdf

B. E. Boser 1

Analog Design Using

gm/Id and ft Metrics

Bernhard E. Boser

[email protected]

Copyright © 2011 Bernhard Boser

Analog design using gm/Id and ft metrics

Page 2: 2011-12 OTA gm Id.pdf

B. E. Boser 2

Overview

• Traditional analog design methodologies typically require iteration

– “Square Law” design equations are inaccurate for submicron devices

– Depend on poorly defined parameters: mCox, Vth, Vdsat, …

– Difficult to achieve an “optimum” (e.g. minimum power)

• gm/Id-based design

– Links design variables (gm, ft, Id, …) to specification (bandwidth, power)

– Employs design charts to accurately size transistors

Analog design using gm/Id and ft metrics

Page 3: 2011-12 OTA gm Id.pdf

B. E. Boser 3

Motivation: A design example

Specifications:

• Small signal gain: av = vo/vi = 5

• Bandwidth: B ≥ 10MHz

• Source resistance: Rs = 1MW

• Load capacitance: CL = 5pF

• Minimum power dissipation

Analog design using gm/Id and ft metrics

Page 4: 2011-12 OTA gm Id.pdf

B. E. Boser 4

Design Approaches

Design equations (Square-Law model)

Difficulties

• Sub-micron transistors are not well

described by these equations

• Non-obvious relation of model

parameters to design specification

• Leads to many iterations

• What is the minimum power, anyway?

Analog design using gm/Id and ft metrics

212

. ...

Wd ox GS THL

Wm ox GS THL

GS ox

I C V V

g C V V

C C WL

etc

m

m

Page 5: 2011-12 OTA gm Id.pdf

B. E. Boser 5

Natural Variables for Analog Design

Id

VDSVGS

idvgs vdsCgs

• Transconductance gm

• Current Id

• Efficiency gm/Id

• Capacitance Cgs, …

• Transit frequency ft = gm/2pCgs

Analog design using gm/Id and ft metrics

Page 6: 2011-12 OTA gm Id.pdf

B. E. Boser 6

Example

Specifications:

• Small signal gain: av = vo/vi = 5

• Bandwidth: B ≥ 10MHz

• Source resistance: Rs = 1MW

• Load capacitance: CL = 5pF

• Minimum power dissipation

Design constraints

• Low frequency gain

• Pole at input

• Pole at output

Analog design using gm/Id and ft metrics

av LgmR

1 1

2s gs

pin CR Bp

1 1

2L L

pout BR C

p

2

1

2

minimize

m

GS

d

L

s

g

BRC

I

BCp

p

Page 7: 2011-12 OTA gm Id.pdf

B. E. Boser 7

Design Constraints and Objectives

Design constraints

Analog design using gm/Id and ft metrics

Design objectives

1. High current efficiency

to minimize power

2. Small Cgs high fT

to meet bandwidth

constraint

2 1.57 mS

116 fF

2

minimize

m

sGS

d

Lg

R

I

BC

BC

p

p

m

d

g

I

2m

tgs

gf

Cp

Page 8: 2011-12 OTA gm Id.pdf

B. E. Boser 8

Transit Frequency fT

Analog design using gm/Id and ft metrics

NMOS (simulation)

fT versus gm/Id tradeoff Compromise

• high gm/Id for low power

• high ft for low Cgs

Design choice

• Maximum Cgs to meet

specification at

minimum power: • minimum ft • minimum L

• maximum gm/Id

,min

,min

,max

15.7 GHz2

m

t

gs

gf

Cp

15.7 GHz

14 V-1

Page 9: 2011-12 OTA gm Id.pdf

B. E. Boser 9

Transistor Current Efficiency gm / Id

Analog design using gm/Id and ft metrics

• Weak Inversion

• Good current efficiency

• High output voltage range

• Low ft • Large transistors

(low )sat

dV

• Strong Inversion

• Poor current efficiency

• Low output voltage range

• High ft • Small transistor

5 10 15 20

400m 200m 133m 100m

1 [ V ]m dg I

2 [ V ]

m dg I

Low

gm/Id

High

gm/Id

Page 10: 2011-12 OTA gm Id.pdf

B. E. Boser 10

Completing the Design: Transistor Sizing

Analog design using gm/Id and ft metrics

114 V and 16 GHz

112 A

A12.4 (from chart)

m

9 m

mT

d

md

m d

d

d

d

gf

I

gI

g I

I

W

IW

I W

m

m

12.4 A/m

14 V-1

Page 11: 2011-12 OTA gm Id.pdf

B. E. Boser 11

Verification: (1) Bias

Analog design using gm/Id and ft metrics

Page 12: 2011-12 OTA gm Id.pdf

B. E. Boser 12

Verification: (2) Specification

• Bias is as designed

• Gain and bandwidth

slightly below spec

• Design ignored

transistor ro and self-

loading

• Adjust by choosing a

slightly higher ft

Analog design using gm/Id and ft metrics

Page 13: 2011-12 OTA gm Id.pdf

B. E. Boser 13

Summary

Analog design using gm/Id and ft metrics

Silicon “Square Law”

based design SPICE Model

gm/Id

based design

Simple

“Square Law”

Equations

Complicated

Equations

(BSIM, PSP, …)

Complicated

Physics

gm/Id & ft

Charts

(process specific)

• Accurate

• Good for verification

• Unsuitable for

design

• Popular (textbooks)

• Poor accuracy

• Requires iterations

• Difficult to achieve

optima

• Good accuracy

• Simple equations

• Transistor data

from charts

Page 14: 2011-12 OTA gm Id.pdf

B. E. Boser 14

NMOS Transit Frequency fT

Analog design using gm/Id and ft metrics

Page 15: 2011-12 OTA gm Id.pdf

B. E. Boser 15

PMOS Transit Frequency fT

Analog design using gm/Id and ft metrics

Page 16: 2011-12 OTA gm Id.pdf

B. E. Boser 16

Extrinsic Capacitances Cgd and Cdd

Analog design using gm/Id and ft metrics

NMOS PMOS

Page 17: 2011-12 OTA gm Id.pdf

B. E. Boser 17

NMOS Current Density

Analog design using gm/Id and ft metrics

Page 18: 2011-12 OTA gm Id.pdf

B. E. Boser 18

PMOS Current Density

Analog design using gm/Id and ft metrics

Page 19: 2011-12 OTA gm Id.pdf

B. E. Boser 19

NMOS Intrinsic Gain gm ro

Analog design using gm/Id and ft metrics

Page 20: 2011-12 OTA gm Id.pdf

B. E. Boser 20

PMOS Intrinsic Gain gm ro

Analog design using gm/Id and ft metrics

Page 21: 2011-12 OTA gm Id.pdf

B. E. Boser 21

Intrinsic Gain gm ro

Analog design using gm/Id and ft metrics

NMOS PMOS

Page 22: 2011-12 OTA gm Id.pdf

B. E. Boser 22

OTA Design Example

Specifications

• Voltage gain Av = 2

• Dynamic range DR ≥ 72dB

• Settling accuracy ed ≤ 100ppm

• Settling time ts ≤ 10ns

Analog design using gm/Id and ft metrics

+

vid

-

+

vod

-

Cs

Cs

Cf

Cf

CL

CL

• Switched capacitor gain stage

(switches not shown)

• Applications: A/D converters, filters, …

Page 23: 2011-12 OTA gm Id.pdf

B. E. Boser 23

Circuit Topology

Analog design using gm/Id and ft metrics

vid

vod

vi

Ro

Gmvx

CoCx

vo

CL

Cf

Csvx

VDD

Vip Vim

Vom - Vod + Vop

ITIT/2

MN1a MN1b

MP1a MP1bMPB

• Fully differential OTA

• Common mode and

• cascodes (for gain) not shown

• Differential mode half circuit

• Large & small signal models

Page 24: 2011-12 OTA gm Id.pdf

B. E. Boser 24

Design Flow

1. Determine feedback factor

2. Determine CL to meet dynamic range requirement

3. Determine gm to meet settling requirement

4. Pick transistor characteristics based on analysis

– Channel length L

– Current efficiency gm/ID (or ft)

5. Determine bias currents and transistor sizes

– ID (from gm and gm/ID)

– W (from ID/W, current density chart)

Analog design using gm/Id and ft metrics

Page 25: 2011-12 OTA gm Id.pdf

B. E. Boser 25

(1) Feedback Factor

• Open feedback loop

• Cx is amplifier input capacitance (Cgs + …)

– Small Cx large feedback factor b

– Large Cx low transistor ft requirement higher gm/Id reduced current

– Typically Cx = (⅓ … 1) x (Cs + Cf) (shallow optimum)

Analog design using gm/Id and ft metrics

1

1

x f

xo f s xv

f

v C

Cv C C CA

C

b

vi

Ro

Gmvx

CoCx

vo

CL

Cf

Csvx

Page 26: 2011-12 OTA gm Id.pdf

B. E. Boser 26

(2) Dynamic Range

Dynamic range:

Minimum load capacitance:

Analog design using gm/Id and ft metrics

CLtotbvo

vo

MP

MN

4kTgpgmp

4kTgngmn

R

1

mn

Rg

b

22,

4 11

mp do nmn

mn d Ltot

g Iv RkT g

f g I j RCg

2,

11

with 1

mpo n

mn

Ltot L f

Ltot

gk

C

C

Tv

g

C C

g

b

b

Output resistance:

Noise density:

Sampled noise:

2,max

2 1mp

Ltotmn o

g DRC kT

g V

g

b

21,max2

2,

o

o n

VDR

v

choose for low noisemp mn

d d

g g

I I

PMOS

Page 27: 2011-12 OTA gm Id.pdf

B. E. Boser 27

(3) Settling

Analog design using gm/Id and ft metrics

Gm

Vout

Cf

Cs

Cin

Vstep

CL

Vin(t)

0

0 2 4 6 8 100

0.2

0.4

0.6

0.8

1

t/

Vout/V

out,id

eal

Dynamic Error ed(t) Static Error e0

Settling time ts

/0

0

Step response: ( ) 1 with 1

ts Ltotout step

f mn

C T Cv t V e

C T g

b

/std e

e

for single pole

response

Solve for transconductance: lnLtot d

mns

Cg

t

e

b

ideal

response

static

error

dynamic

error

Page 28: 2011-12 OTA gm Id.pdf

B. E. Boser 28

(4) Transistor Channel Length, gm/Id and ft

Analog design using gm/Id and ft metrics

NMOS PMOS

L 180 nm 250 nm Ln,min reduces power

gm/Id 12 V-1 8 V-1 gmp/Id < gmn/Id (noise)

ft 19.7 GHz 3.78 GHz Cgsn < Cs + Cf

Id/W 18.7 A/m 7.06 A/m

• Reduce gm/Id of NMOS if Cgsn < Cs + Cf

• ft and Id/W obtained from charts

Page 29: 2011-12 OTA gm Id.pdf

B. E. Boser 29

(5) Bias Currents and Transistor Sizes

Analog design using gm/Id and ft metrics

ota1.mcd

Page 30: 2011-12 OTA gm Id.pdf

B. E. Boser 30

Verification: (1) Test Bed

Analog design using gm/Id and ft metrics

OTA OTA in Feedback Loop

Page 31: 2011-12 OTA gm Id.pdf

B. E. Boser 31

Verification: (2) Bias

Analog design using gm/Id and ft metrics

So far, so good …

Page 32: 2011-12 OTA gm Id.pdf

B. E. Boser 32

Verification: (3) Dynamic Range

Analog design using gm/Id and ft metrics

perfect!

Page 33: 2011-12 OTA gm Id.pdf

B. E. Boser 33

Verification: (4) Settling Time

Analog design using gm/Id and ft metrics

• Dynamic settling error target met

• Large static error ~10%

Page 34: 2011-12 OTA gm Id.pdf

B. E. Boser 34

Openloop Gain

Analog design using gm/Id and ft metrics

• Openloop gain only Avo ~ 50

• To = b Avo = 11

• Add cascodes to increase

low frequency gain

Page 35: 2011-12 OTA gm Id.pdf

B. E. Boser 35

Generic gm/Id-based Design Flow

1. Determine gm from design objectives (dynamic range, bandwidth, …)

2. Pick L

– Short channel high ft (high speed)

– Long channel high intrinsic gain, good matching, …

3. Pick gm/ID or ft

– Large gm/ID low power, large signal swing

– Small gm/ID high ft (high speed)

4. Determine ID (from gm and gm/ID)

5. Determine W (from ID/W, current density chart)

• Adapt to design specifics

Analog design using gm/Id and ft metrics

Page 36: 2011-12 OTA gm Id.pdf

B. E. Boser 36

Acknowledgements

• Prof. Boris Murmann

• Prof. Paul Gray

• Prof. Ali Niknejad

• Prof. Elad Alon

• Many generations of students

Analog design using gm/Id and ft metrics