(3) water (djm 14) (1)

Upload: patricktonne

Post on 01-Jun-2018

221 views

Category:

Documents


0 download

TRANSCRIPT

  • 8/9/2019 (3) Water (DJM 14) (1)

    1/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    2/61

    Molecular Structure of Liquid Water

    OH

    H

    δ+

    δ+

    δ−

    δ−

    •  Strong Attractive Forces (Hydrogen-bonds•  Highly !irectional ("etrahedral•  Abo#t $ Hydrogen-bonds per Molec#le System Organized to Maximize H!onds

    "etrahedral

    str#ct#re o% 

    water 

    Molec#lar &nteractions ' OrganiationHydrogen

     bonds

    "#ysicoc#emical

    "roperties• )oiling point* melting

     point* density* viscosity*

     polarity

    • Chemical +eactivity

    Oxygen has

     strongly positive

    nucleus

    (pulls electrons)

  • 8/9/2019 (3) Water (DJM 14) (1)

    3/61

    Water: PhysicochemicalProperties$nique "roperties of Water%•  High boiling•  High melting point•  High heat o% vaporiation

    H&O CH' (H)

    M, (gmol ./ .0 .1

    m2p2 (3C 4 -./5 -1/ b2p2 (3C .44 -.0. -55

    ∆H6 (78mol $421 /29 952$

    Properties related

    to strong hydrogen- bonding

  • 8/9/2019 (3) Water (DJM 14) (1)

    4/61

    ypes o a er nFoods

    Capillary water 

    MgSO$:1H

    9O

    )#l7 water 

    ,ater o% crystalliation

    "rapped water 

    Physically

     bo#nd water Chemically

     bo#nd water 

    ,ater in di%%erent environments has di%%erent molecular properties and there%ore di%%erent

    p#ysicoc#emical properties

    "#ysical States• Gas – vapor 

    •  Liquid – water 

    •  Solid – ice

  • 8/9/2019 (3) Water (DJM 14) (1)

    5/61

    Phase Behavior:Ice, Water and Steam

    Solid

    Liquid

    *as

    ,ater e;ists in di%%erent states (solid* li

  • 8/9/2019 (3) Water (DJM 14) (1)

    6/61

    Phase Behavior: IceCrystallization

    Liquid +atertosolid ice transition

    ,hy does it happen?

    ,hat %actors a%%ect it?

    Importance of ice formation%

    • "reser,ation•  Microbial, Chemical, Physical 

    •Quality•  Flavor, Texture, Appearance

  • 8/9/2019 (3) Water (DJM 14) (1)

    7/61

    Ice Crystallization% -#ermodynamics

    -#ermodynamics

    •  "he thermodynamically %avorable physical state o% water at a partic#lar temperat#re and press#re is

    governed by the %ree energies o% the states in 0 T < Tm

     T = Tm

     Melting 

    Crystallization

    Ice

    Water

    ∆G   ∆G < 0

     T > Tm

  • 8/9/2019 (3) Water (DJM 14) (1)

    8/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    9/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    10/61

    Solute-Water Interactions:

    Nature, Efects an I!"ortance

    Water acts as a sol,ent for many solutes

    • A solute is a s#bstance that can be dispersed in a

    solvent (in this case water

    • "he are many di%%erent 7inds o% sol#tes in %oods*

    incl#ding carbohydrates* proteins* salts* acids*

     bases* s#r%actants

    Importance%• Safety

    •  Microbial contamination

    • Quality

    •  Flavor, Texture, Appearance

    • Sta!ility

    • Chemical Physical 

    Molecular interactions%

    • ,ater acts with sol#tes di%%erently

    depending on their molec#lar

    characteristics* e!g!, polarity*

    charge* shape2

    7ffects%

    • ,ater-sol#te interactions

    determine many o% the physical

    and chemical properties o% %oods

  • 8/9/2019 (3) Water (DJM 14) (1)

    11/61

    8issolution% "hermodynamics

    7ntropy of Mixing

    9S : ; Always F3 ; F3 ; F3

  • 8/9/2019 (3) Water (DJM 14) (1)

    12/61

    Functional *roups@ Polar molec#les have regions thathave a partial charge* e!g!, alcohols (-OH* amines (-H9*

    ' thiols (-SH

    7xamples% ,ater* S#gars* Alcohols* Amino acids*Aldehydes* etones

    Molecular interactions% "he dominant interactions are@Fundamental@ !ipole-dipole

    Compound@ Hydrogen bonds

    8issolution in Water% Polar Sol#tes

    OH

    H

    δ+

    δ+

    δ−

    δ−

  • 8/9/2019 (3) Water (DJM 14) (1)

    13/61

    8issolution in Water% Polar Sol#tes

    •  "olar solutes normally have good solu!ility in water beca#se sol#te-

    water interactions are %airly similar in strength to water-water

    interactions2•  Sol#bility depends on strength o% interactions and sol#te compatibility

    with tetrahedral str#ct#re o% water •  Molecular dimensions

    •  ?ond orientations

    S#gar ,ater 

  • 8/9/2019 (3) Water (DJM 14) (1)

    14/61

    Solu!ilities @ Water acti,ities .aw/ of saturated sugar solutions at &ABC

    !"ssiere and Serpelloni, #$%&'

    #issolution in Water: Polar Sol"tes

    In$reient Solu%ility &'( aw 

    Sucrose 012$ 42/$$

    *lucose G.24 42/.

    Fructose /424 4205$

    Lactose ./21 425.

    Sor!itol 1524 4219G

    Mannitol ./24 4211•  S#gars can have

    di%%erent

    sol#bilities in water

     beca#se o% di%%erentstr#ct#res

  • 8/9/2019 (3) Water (DJM 14) (1)

    15/61

    #issolution in Water: Polar Sol"tes

    S#gar 

    ,ater 

    δI   δI

    δ-δ-

    Ca,ity in Water-etra#edral structure

    δI   δI

    δ-δ-

    δI

    δI   δ-

    δ-δI   δI

    δ-δ-

    Correct S#ape @

    C#arge 8istri!ution

    Correct S#ape Wrong

    C#arge 8istri!ution

    Wrong S#ape Correct

    C#arge 8istri!ution

    Hig# Solu!ility Lo+ Solu!ility Lo+ Solu!ility

    S#gar molec#les vary in

    their shape* dimensions '

     bond orientations

  • 8/9/2019 (3) Water (DJM 14) (1)

    16/61

    8issolution in Water% &onic Sol#tes

    Cl-

    δI

    2δ-δI

     aI

    •  Many ionic solutes #a,e good solu!ility in +ater

    •  Ions can form strong ion1 dipole !onds +it# +ater

    •  Water close to ion is 5!ound6 @ t#erefore #as different properties t#an !ulD

    +ater

     Ions%

    •  Sign

    • Magnit#de

    •  !imensions

  • 8/9/2019 (3) Water (DJM 14) (1)

    17/61

    &on

    &on-ordered

    region

    &ntermediate

    disordered region

    ,ater-ordered

    region

    Structure

    ?reaDer

    StructureMaDer

    8issolution in Water% &onic Sol#tes

  • 8/9/2019 (3) Water (DJM 14) (1)

    18/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    19/61

    •  "roteins precipitate at #ig# salt concentrations%

    "he amo#nt o% salt re

  • 8/9/2019 (3) Water (DJM 14) (1)

    20/61

     on-polar 

    sol#te

    ,ater molec#les

    highly organied in

    tetrahedral str#ct#re

    8issolution in Water% (on"olar Solutes

    -#e Hydrop#o!ic 7ffect

    •  Most non-polar sol#tes have poor sol#bility in water 

    •  Origin – water molec#les %orm strong hydrogen bonds with each

    other* b#t only wea7 6!, bonds with non-polar sol#tes

    ! $trong 

    ea# 

    ! ea# 

     &ipole*+ipole

    Magnitude -ype

  • 8/9/2019 (3) Water (DJM 14) (1)

    21/61

    Oil

    Water

    Hydrop#o!ic 7ffect%

    "rans%er o% Oil Molec#le to ,ater 

    Transer Oil Molecule

    to ater 

    O,erall% +eplace strong

    hydrogen bonds with wea7 van

    der ,aals bonds* which is

    thermodynamically #n%avorable

    ∆Gtransfer

    Cavity

     Formation

     -rea# strong  %y+rogen

    bon+s

     Form weak

    & bon+s

     Introduce non-polar

    molecule into water 

    Cavity

     Formation

     -rea#  weak

    bon+s

  • 8/9/2019 (3) Water (DJM 14) (1)

    22/61

    ?ulD Water•  Molecular Interactions%• .*.!/ %*bon+s

    •  7ntropy% $ome +isor+er 

    5?ound6 Water•  Molecular Interactions%• 0 %*bon+s

     7ntropy%  %ighly or+ere+ 

    Hydrop#o!ic 7ffect% Origin

    • >ntropy change always #n%avorable• >nthalpy change depends on temperat#re

    G is positi(e "nfa(ora)le' o(erall

    Change

    molecular

    interactions an+

    entropy

  • 8/9/2019 (3) Water (DJM 14) (1)

    23/61

    Hydrop#o!ic 7ffect% Origin o% Hydrophobic

    &nteractions

    •   ∆G = Free energy change d#e to hydrophobic e%%ect (8•   ∆* = Change in the contact area between non-polar gro#ps and water (m9•

      γ  = &nter%acial tension (8 m-9

     1e+uce+ contact area

    bet"een non*polar groups an+ "ater 

    * Thermo+ynamically

     avorable

     Association o

     2on*polar groups

    G )γ∆

    *

     2on*polar

     groups

    ater 

  • 8/9/2019 (3) Water (DJM 14) (1)

    24/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    25/61

    *ddin+ a sol"te to ater chan+es its phase )eha(ior

    8issolution in Water% Influence on "#ysicoc#emical"roperties of Water

    Freezing point depression ?oiling point ele,ation

    *reater possi!le disorder

    .entropy/ of molecules in

    solution4 t#an in pure liquid4

    t#erefore dri,ing force for

    solidification or ,aporazation

    is less

    ∆4  ∆ %  - T ∆$ 

    Lo+er

    disorder

    Hig#er

    disorder

    *as

    Solution

    S

    Water

    &nSol#tion@

    Lo+erdisorder

    Hig#erdisorder

  • 8/9/2019 (3) Water (DJM 14) (1)

    26/61

    One p#ase

    (a

  • 8/9/2019 (3) Water (DJM 14) (1)

    27/61

    P#re ice G4J s#crose

    sol#tion

    #issolution in Water: In+uenceo sucrose on ice or!ation

    Cool

    94J s#crose

    sol#tion

    One p#ase

    (a

  • 8/9/2019 (3) Water (DJM 14) (1)

    28/61

    se o Su$ars asCryo"rotectants:

    reezin$ . /ha0in$

    ; +tJ sucrose &; +tJ sucrose

    Hydrogenated palm oilin+ater emulsions sta!ilized !y W"I .';

    KC';KC/ 1 sucrose modifies ice crystal formation

  • 8/9/2019 (3) Water (DJM 14) (1)

    29/61

    Water *ctivity:* parameter to characterie in1"ence of ater on food sta)ility and properties

    "ro!lem%

    •  ,ater is 7nown to play an important role in determining %ood properties•  However* there is not a good correlation between total water content and

    %ood properties@•  Chemical reaction rates•  Microbial gro"th rates•

     Physical properties•  A new parameter was needed to describe waters behavior 

    •  Water 3cti,ity$M3SS "ilot "lant% 0G0GG;

    .54 million po#nds today

    Microbial stability@ aw N 4209' Moist#re migration control

  • 8/9/2019 (3) Water (DJM 14) (1)

    30/61

    1oisture content versus 0ater activity

    Ca7e@ MC 54JMC $4J

     ill "ater move rom the ca#e to the icing 5

    "he answer is not s#re

    54

    - beca#se the moist#re content does not predict

    water movement

    &cing@ MC .GJ

    =ili He

     sample

    "ater 

    m

    m MC    ×=.44

  • 8/9/2019 (3) Water (DJM 14) (1)

    31/61

    Water *cti(ity2 Thermodynamic 3e.nition

    P4P

    -#ermodynamic 8efinition%•   &deal Sit#ation (>

  • 8/9/2019 (3) Water (DJM 14) (1)

    32/61

    Water *cti(ity2 Practical

    3e.nition

    PoP

    "ractical 8efinition%•  +eal Sit#ation (on->

  • 8/9/2019 (3) Water (DJM 14) (1)

    33/61

    Water *cti(ity2 4ao"lt5s 6a

    "arameters  X +ater  Mole fraction of +ater

    n+ater  (um!er of moles of +ater

    nsolute (um!er of moles of solute

    3ssumptions

    Ideal Mixture 1 All molec#lar interactions are e

  • 8/9/2019 (3) Water (DJM 14) (1)

    34/61

    Water *ctivity: 7oist"re SorptionIsotherm

    * !oisture sor"tion isother! pro(idesinformation a)o"t ho ater interacts ith amaterial, and ho m"ch a(aila)le ater is present

    Moisture Sorption Isot#erm

  • 8/9/2019 (3) Water (DJM 14) (1)

    35/61

    Water *ctivity: 1oisture Sor"tion Isother! 2In1"ence of Sol"te 7olec"lar Wei+ht

    "he above graph shows the relationship between +ao#lts law approach and themoist#re sorption isotherm approach (i!e! it ignores molec#lar interaction e%%ects

    "he moisture sorption isot#erm depends on the molec#lar weight o% the sol#tesinvolved (since there are di%%erent moles o% sol#te per .44 g o% material

    • Same mass

    •More moles

    • Same mass

    • =ess moles

  • 8/9/2019 (3) Water (DJM 14) (1)

    36/61

    Water *ctivity: 1oisture Sor"tionIsother! 8 In1"ence of 7olec"lar Interactions

    * !oisture sor"tion isother! is hi+hly dependent on the material)ein+ tested d"e to di/erences in the molec"lar ei+hts of sol"tes, asell molec"lar interactions )eteen ater and the sol"te components9

    If it is ass"med that the *, ! : ; ha(e similar molec"lar ei+hts, then theater 8 sol"te interactions o"ld )e2 * > ! > ; since at the same atercontent, the ater acti(ity is m"ch loer for *, hich means the ater is)o"nd more ti+htly'

    Moisture Sorption Isot#erms

  • 8/9/2019 (3) Water (DJM 14) (1)

    37/61

    Water *ctivity: 7oist"re SorptionIsotherm Shapes

    1oisture sor"tion isother!s can "s"ally )e di(ided into three re+ions2I3 4o0 0ater activity2 7onolayer )indin+ of ater to molec"lar s"rfaces, e9+9,

    potato chips, cracers, cooiesII3 Inter!eiate 0ater activity2 7"ltilayer )indin+ of ater to molec"lar

    s"rfaces, e9+9, )reafast cereals, rice, pasta, hard candy, chein+ +"m, raisons

    III3 5i$h 0ater activity2 Free ater d"e to sat"ration of molec"lar s"rfaces, e.g., ams and ellies, )read, mil, meat, yo+"rt, fr"its

  • 8/9/2019 (3) Water (DJM 14) (1)

    38/61

    Water *ctivity: 7oist"re Sorption

    Isotherm Hysteresis

    * !oisture sor"tion isother! often depends onhether ater is added to a material adsorption'or remo(ed desorption' leadin+ to hysteresis Thermodynamics2 The to c"r(es sho"ld )e the same9 Kinetics2 Hysteresis occ"rs d"e to inetic phenomenon

    s"ch as s"per sat"ration, cr"st formation or capillaryformation

    Water 3cti,ity

       M  o   i  s   t  u  r  e

       C  o  n   t  e  n   t

  • 8/9/2019 (3) Water (DJM 14) (1)

    39/61

    ,ater Activity@ Approaches to controlling

    water migration+aisin aw  42GG

    Cereal aw  42.

    Water +ill tend to flo+ from raisins to

    cerealE -o pre,ent%

    (i Change driving %orce@ e!g!, add

    glycerol to lower aw o% raisin2

    (ii Create 7inetic energy barrier@ e!g!,

    coat raisins with a material that prevents

    water %low (e!g 2* %at2

    5

    ∆G*

    ∆G

    Thermo+ynamically

     Favorable $tate

    -o pre,ent +atermigration%

    (i -#ermodynamic approac#% Change

    driving %orce by e

  • 8/9/2019 (3) Water (DJM 14) (1)

    40/61

    Water *ctivity: In1"ence on ;hemical,

    !iochemical and 7icro)ial 4eaction 4ates

    /he 0ater activity o a oo in+uences !anyi!"ortant 6inetic "rocesses in oos: ;hemical 4eaction 4ates7icroor+anism +roth nyme *cti(ity

    Water 3cti,ity

  • 8/9/2019 (3) Water (DJM 14) (1)

    41/61

    Water *ctivity: In1"ence on;hemical 4eaction 4ates

    /he che!ical reactivity o 0ater-solu%le reactantse"ens on the 0ater activity: ;oncentration 8 decreases distance )eteen reactants

    Hi+h sol"te concentrations ca"ses restricted molec"lardi/"sion

    Concentration

     – closer together 

     1estricte+ mobility

     – slower movement

  • 8/9/2019 (3) Water (DJM 14) (1)

    42/61

    Water *cti(ity2In1"ence on Physical Properties

    Candy Floss CooDies @ CracDers

    "otato @ -ortilla

    C#ips

    Cereals

    Water acti,ity plays a maPor role in determining t#eir

    p#ysical properties4 suc# as texture .crispiness4

    crunc#iness/

    1oisture Gain

    Elastic 1oulus

    *lassyState

    .Crispy/

    7u%%er

    y

    State

    &So$$y(

  • 8/9/2019 (3) Water (DJM 14) (1)

    43/61

    Crystalline an *!or"hous

    Solis: S!all 1olecules

    *lassy state•

    Metastable• =ow molec#lar mobility

    • !isordered pac7ing

    • 8ammedQ

    • Highly )rittle

    Crystalline state•

    "hermodynamically stable• =ow molec#lar mobility

    • Highly ordered pac7ing

    • >lastic* strong

  • 8/9/2019 (3) Water (DJM 14) (1)

    44/61

    Crystalline an *!or"hous

    Solis: Poly!ers

    2u!!ery state• Higher molec#lar mobility

    • !isordered pac7ing

    • Pliable (+#bberyQ

    *lassy state• =ow molec#lar mobility

    • !isordered pac7ing

    • 8ammedQ

    • )rittle (DlassyQ

    Crystalline state• =ow molec#lar mobility

    • Highly ordered pac7ing

    • >lastic* strong

  • 8/9/2019 (3) Water (DJM 14) (1)

    45/61

    Glass-7u%%ery /ransitions:

    /e!"erature an Water

    2u!!ery

    state

    *lassy

    state

    2u!!ery

    state

    WaterHeat

  • 8/9/2019 (3) Water (DJM 14) (1)

    46/61

    Water *cti(ity2 Glass Transitions

    1oisture Gain

    /e!"erature Increase

    *lassy

    State.Crispy/

    2u!!ery state

    .Soggy/

  • 8/9/2019 (3) Water (DJM 14) (1)

    47/61

    Water *cti(ity2 Glass Transitions

    VVglassy state VVr#bbery state

  • 8/9/2019 (3) Water (DJM 14) (1)

    48/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    49/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    50/61

    *ci %ase e8uili%ria:

  • 8/9/2019 (3) Water (DJM 14) (1)

    51/61

    *ci-%ase e8uili%ria:pH

    H9O HI I OH-

    "5 95; 9

  • 8/9/2019 (3) Water (DJM 14) (1)

    52/61

    *ci-%ase e8uili%ria2 !"/ers

    AH I H9O A-  I H5O

    I

    ) I HI)HI

    Acid@

    )ase@

    ,hat %raction o% a wea7 acid or base dissociates in water?•  A 9strong: aci+;base ully +issociates (e!g!, %Cl or 2aO%)

    •  A 9"ea#: aci+;base partially +issociates (e!g!, *COO% or *2% 

  • 8/9/2019 (3) Water (DJM 14) (1)

    53/61

    Ho does char+e chan+e ithpHD

    AH A-  I HI

    !eprotonated %orm

    Protonated %ormProperty o% the

    molec#le

    Property o% the

    sol#tion

    Henderson

    Hassel!alc#

    &n%ormation o% %raction o% molec#le

     protonated or deprotonated

    LKLK

    LK

    LK

    LLKK   +−+−

    ×=

    =  %  A%  A

     A% 

     %  A

     8 

    LKLKlog.4

     A%  A p%  p8 

    −=

  • 8/9/2019 (3) Water (DJM 14) (1)

    54/61

    AH A-  I HI

    . 9 5 $ G 0 1 / 4

    94

    $4

    04

    /4

    .44

    Charged

    pH

    Concentration of Species

    AH

     pK a = 5

    Ho does char+e chan+e ith

    pHD

  • 8/9/2019 (3) Water (DJM 14) (1)

    55/61

  • 8/9/2019 (3) Water (DJM 14) (1)

    56/61

    *ci-%ase e8uili%ria2

    !"/er ;apacity

    • "he buer capacity (in the al7ali direction is de%ined as the n#mber o% moles o% OH- that m#st be added to one

    liter o% b#%%er in order to increase the pH by . #nit2

    • A b#%%er wor7s best at pH val#es close to its p a val#e2

    [ ]( )( ) 9.4.

    .4529

     p%  p8a

     p%  p8aC 

    +=β 

  • 8/9/2019 (3) Water (DJM 14) (1)

    57/61

    Food *cids, !ases : !"/ers3cid Step pa 3cid Step pa

    Organic Aci+s 3norganic Aci+s

    3cetic . $21G Car!onic . 0251

    Citric . 52.$ 9 .429G

    9 $211 o"#osp#oric . 92.9

    5 025 9 129.

    Fumeric . 5245 5 .9201

    9 $2$$ "yrop#osp#oric . 42/G

    Lactic . 524/ 9 .2$

    Malic . 52$4 5 G211

    9 G2.4 $ /299

    "ropionic . $2/1 Sulfuric . -524

    Succinic . $2.0 9 .29

    9 G20. ?ase Step pa

  • 8/9/2019 (3) Water (DJM 14) (1)

    58/61

    7lectrostatic

    2epulsion

    .Solu!le/

    *ci-%ase e8uili%ria: /ect on F"nctionality

    Protein sol#bility

    E

    E

    -

    -

  • 8/9/2019 (3) Water (DJM 14) (1)

    59/61

    *ci-%ase e8uili%ria: /ecton F"nctionality

    Filamento#s•  High ,HC•  "ransparent•  >lastic

    Partic#late

    •  =ow ,HC•  Opalectron Microscopy

     pH NN p&

    −−− −− −

    ati(eProteins

    Heat

     pH p&

    • ,HC water holding capacity Protein Del "ype

  • 8/9/2019 (3) Water (DJM 14) (1)

    60/61

    *ci-%ase e8uili%ria: /ect onF"nctionality

    !enoic acid is only "sed as a preser(ati(ein acid foods e9+9, fr"it "ices, pH A-?')eca"se it )ecomes non-ionied at lo pH

    and can enter the lipid mem)ranes of cells p a $29

    Antimicrobial Activity

  • 8/9/2019 (3) Water (DJM 14) (1)

    61/61

    *ci-%ase e8uili%ria: /ect onF"nctionality

    ;itral is a 1a(or molec"le in many)e(era+es9 Its de+radation rate is hi+hlydependent on pH