本学期课堂演讲学生的照片

72
本本本本本本本本本本本本 1

Upload: graiden-guerrero

Post on 30-Dec-2015

37 views

Category:

Documents


1 download

DESCRIPTION

本学期课堂演讲学生的照片. 半开卷的期末考试. 时间: 12 月 22 日(周日)晚 7 : 00 ~ 8 : 40 地点: 数学学院一楼第一教室 半开卷的含义: 不可以带入书和笔记等,但是可以 ——. - PowerPoint PPT Presentation

TRANSCRIPT

Page 1: 本学期课堂演讲学生的照片

本学期课堂演讲学生的照片

1

Page 2: 本学期课堂演讲学生的照片

半开卷的期末考试

时间: 12 月 22 日(周日)晚 7 : 00 ~ 8 : 40

地点:数学学院一楼第一教室

半开卷的含义:

不可以带入书和笔记等,但是可以 ——

2

Page 3: 本学期课堂演讲学生的照片

3

“半开卷”的考试改革, 学生带入考场的一张 A4 纸的正反面(请写姓名,考后回收)

( “半开卷”: 只允许带入考场一张 A4 纸, 可预先手写上任何东西—— 避免死记硬背; 提倡学懂学会 )

Page 4: 本学期课堂演讲学生的照片

4

Page 5: 本学期课堂演讲学生的照片

两道公开题(共 30 分)

从素质教育的角度,具体谈谈你自己上“数学文化”课的体会。

结合具体例子来谈谈微积分学习中你印象最深刻的那种数学思想。

(每题的解答不少于 300 字。)

5

【请认真审题,独立完成。不要出现雷同答案。】

Page 6: 本学期课堂演讲学生的照片

数学的基本思想,主要可以有 数学抽象的思想、数学推理的思想、数学模型的思想、数

学审美的思想。

人类通过数学抽象,从客观世界中得到数学的概念和法则,建立了数学学科及其众多的分支;通过数学推理,进一步得到大量结论,数学科学得以丰富和发展;通过数学模型,把数学应用到客观世界中,产生了巨大的社会效益,又反过来促进了数学科学的发展;通过数学审美,看到数学“透过现象看本质”、“和谐统一众多事物”中美的成份,感受到数学“以简驭繁”、“天衣无缝”给我们带来的愉悦,并且从“美”的角度发现和创造新的数学。6

Page 7: 本学期课堂演讲学生的照片

当然,由上述数学的“基本思想”演变、派生、发展出来的数学思想还有很多。

例如由“数学抽象的思想”派生出来的可以有:分类的思想,集合的思想,“变中有不变”的思想,符号表示的思想,对应的思想,有限与无限的思想,等等。

例如由“数学推理的思想”派生出来的可以有:归纳的思想,演绎的思想,公理化思想,数形结合的思想,转换化归的思想,联想类比的思想,逐步逼近的思想,运筹的思想,算法的思想,代换的思想,特殊与一般的思想,等等。

例如由“数学建模的思想”派生出来的可以有:简化的思想,量化的思想,函数的思想,方程的思想,优化的思想,随机的思想,统计的思想,等等。

例如由“数学审美的思想”派生出来的可以有:简洁的思想,对称的思想,统一的思想,和谐的思想,以简驭繁的思想,“透过现象看本质”的思想,等等。7

Page 8: 本学期课堂演讲学生的照片

举例说,“分类的思想”和“集合的思想”可以是这样由“数学抽象的思想”派生出来的:

人们对客观世界进行观察时,常常从研究需要的某个角度分析联想,排除那些次要的、非本质的因素,保留那些主要的、本质的因素,一种有效的做法就是对事物按照其某种本质进行分类,分类的结果就产生了“集合”。把它们上升到思想的层面上,就形成了“分类的思想”和“集合的思想”。

8

Page 9: 本学期课堂演讲学生的照片

在用数学思想解决具体问题时,对某一类问题反复推敲,会逐渐形成某一类程序化的操作,就构成了“数学方法”。数学方法也是具有层次的。

处于较高层次的,例如有:逻辑推理的方法,合情推理的方法,变量替换的方法,等价变形的方法,分情况讨论的方法,等等。

低一些层次的数学方法,还有很多。例如有:分析法,综合法,穷举法,反证法,抽样法,构造法,待定系数法,数学归纳法,递推法,消元法,降幂法,换元法,坐标法,配方法,列表法,图像法,等等。

9

Page 10: 本学期课堂演讲学生的照片

数学方法不同于数学思想 “ 数学思想”往往是观念的、全面的、普遍的、深刻的、

一般的、内在的、概括的;

而“数学方法”往往是操作的、局部的、特殊的、表象的、具体的、程序的、技巧的。

数学思想常常通过数学方法去体现;数学方法又常常反映了某种数学思想。

数学思想是数学教学的核心和精髓,教师在讲授数学方法时应该努力反映和体现数学思想,让学生体会和领悟数学思想,提高学生的数学素养。10

Page 11: 本学期课堂演讲学生的照片

11

Page 12: 本学期课堂演讲学生的照片

12

数学文化第四章 第二节

“ 类比”的观点

Page 13: 本学期课堂演讲学生的照片

13

一、什么是类比

类比,是根据两个(或两类)对象之间在某些方面的相似或相同,从而推出它们在其它方面也可能相似或相同的一种推理方法,也是一种观点。

它是获得新思路,新发现的一种方法、一种手段、一种途径。

Page 14: 本学期课堂演讲学生的照片

14

合情推理不是证明

但是,类比的推理是一种“合情推理”,不是证明,因为它无法保证已知相同的属性与推出的属性之间有必然的联系。

合情推理包括分类、归纳、类比、联想、猜测、直觉等,它们常常是得到新结论的方法和途径。合情推理对于探索规律和发现结论不可或缺;但是合情推理的结论可能正确,也可能错误,还需要依靠逻辑推理去证明或者证否。

Page 15: 本学期课堂演讲学生的照片

15

“类比”举例

“脑袋大、脖子粗,不是大款就是伙夫” 把“分式”类比“分数”;把 “有理式的运算”类

比“有理数的运算” 把“多项式因式分解定理”类比“整数分解定理” 一个固定的正四面体内任一点到 4 个面的距离之

和 , 是否为一个定值?

Page 16: 本学期课堂演讲学生的照片

16

类比:正三角形中任一点到三边的距离之和是一定值。

证明:可通过三角形面积去完成证明。如图: 三个距离 之和是一定值, ,l m n

1 1 1

2 2 21

( )2

2

ABC ACP ABP BCP

ABC

S S S S

AC m BC l AB n

AC l m n

Sl m n

AC

为定值

A B

C

Pm

nl

Page 17: 本学期课堂演讲学生的照片

17

二、分割问题中的类比

1 . 问题:

5 个平面最多把空间分为几个部分? 平面互相尽可能多地相交,才能分割最多。如

果 5个平面全都平行,那末空间分成的是 6部分,就较少。但 5个平面如何相交最多以致分割最多,一时也想不清楚,我们想起从“抓堆”和“抓三堆”趣味问题中学到的数学思想,先把问题一般化,再把问题特殊化,逐渐找规律。

Page 18: 本学期课堂演讲学生的照片

18

2 .问题一般化: n 个平面最多把空间分为几个部分?

记 : 分为 个部分 ;再令

把问题特殊化。

( )F n 1, 2, 3,n

Page 19: 本学期课堂演讲学生的照片

19

3 .问题特殊化: 从简单的情况做起,以便“类比”

4个平面的情况 , 如果类比得 16 ,是错误

的(合情推理);不易想清楚了。但想到要使平面相交最多、最复杂,才能把空间分割最多。平面相交最复杂,有两个含义,一是每个平面都与其它所有平面相交,且任意三个平面都只交于一点;二是每个平面都不过它以外任意三个平面的交点。

(1) 2, (2) 4, (3) 8, (4) ?F F F F

Page 20: 本学期课堂演讲学生的照片

20

由此我们想到了空间的四面体,这似乎是四个平面

相交最多(从而分割最多)的情况,把四面体的四个面延展

成四个平面,是否就能把空间分为最多的部分呢?

到底现在把空间分成了几个部分呢?

暂难想象。曾经的实验……

由此我们想到去类比

“直线分割平面”的情形。

Page 21: 本学期课堂演讲学生的照片

21

4 . 类比 3 条直线分割平面的情形 这也可以看成是把三角形的三条边均延长为直线,看这 3条直线把平面分为几部分。数一数,是 7部分。这对我们有什么启示?

Page 22: 本学期课堂演讲学生的照片

22

③ ④

Page 23: 本学期课堂演讲学生的照片

23

我们观察并分析一下这 7个部分的特点:

一个是有限的部分,在三角形内部,即① ;其余六个是无限的部分,其中②,③,④与三角形有公共顶点,⑤,⑥,⑦与三角形有公共边。

把它们加起来,于是 1+3+3=7 。

所以 3条直线分割平面,最多分为 7个部分。 这对我们有什么启示?能否由此运用“类比”的观

点,思考“四个平面分空间”的问题?

Page 24: 本学期课堂演讲学生的照片

24

③ ④

Page 25: 本学期课堂演讲学生的照片

25

5 .

类比考虑四面体的四个面延展成 4个平面,把空间分为几个部分:有限部分(四面体内部)数为 1 ;无限部分与原四面体或有一个公共顶点(有 4个部分),或有一条公共棱(有 6个部分),或有一个公共面(有 4个部分),于是所分空间总的部分数为 1+4+6+4 = 15 。

但是头脑要清醒:用的是类比;类比是合情推理,结论可能正确,也可能错误。

以下仍要考虑

这就是一开始提出的问题: 5个平面最多把空间分为几个部分?

(4) 1 4 6 4 15, (5) ?F F

(5) ?F

Page 26: 本学期课堂演讲学生的照片

26

这一问题在平面上的类似问题是什么?是 5条还是 4

条直线分割平面?又如何类比?想不清楚了。对我们来说,不如在“一般情形”下考虑问题: 个平面分割空间和 条直线分割平面。

条直线“处于一般位置”的要求也可以说是:任何两条直线都相交;任何三条直线都不共点。

个平面“处于一般位置”的要求是:任两平面都相交,且任意三个平面都只交于一点;每个平面都不过它以外任意三个平面的交点。

n

n

n

n

Page 27: 本学期课堂演讲学生的照片

27

进而,我们再类比直线上的问题: 个一般位置的点分

割直线的问题。 这一问题的结论比较清楚:

个点最多把直线分为 个部分。

这对我们会有启发。

如果我们把极端情况——有零个分割元素的情况——也考虑在内,那么被“分割”成的部分数是 1 。

下图综合列出点分直线、直线分平面、平面分空间的已取得的结果。

n

n 1n

Page 28: 本学期课堂演讲学生的照片

28

6 . 类比一般化 (解释记号 ,然后看图表)

( ), ( ), ( )L n f n F n

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4 3 4 7 8

4 5 15

5 6

1n n

( 1)L n n ( ) 1L n n

( 1)f n ( )f n

( 1)F n

( )F n

Page 29: 本学期课堂演讲学生的照片

29

于是,我们得到了一系列待解决的问

题。弧立的问题有时难于理解,而解决系

列问题有时比解决弧立问题好入手。

现在,原问题 “ ” 已处在系列问题之

中,比之原来的情形,求解已有进展。

(5) ?F

Page 30: 本学期课堂演讲学生的照片

30

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4 3 4 7 8

4 5 15

5 6

1n n

( 1)L n n ( ) 1L n n

( 1)f n ( )f n

( 1)F n

( )F n

Page 31: 本学期课堂演讲学生的照片

31

7 .(用类比的观点)猜想 观察上表中已得到的结果,看看表中的数字间有什么联系?其中有什么规律性?

从最右一列,先以为有“ 2 的方幂”的规律,但 8 后边的

表明这个猜想不对。

反复求索的结果,我们可能忽然看到表中有

3 4 ; 7 8

7 15 ,

以及联想到 3 + 4 = 7 , 7 + 8 = 15 。

这是一个独特的联系:表中已出现的每个数都可由它“头上”的数与“左肩”上的数相加而得到。

415 2 16,

Page 32: 本学期课堂演讲学生的照片

32

表中已出现的每个数都可由它“头上”的数与“左肩”上的数相加而得到。

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4 3 4 7 8

4 5 15

5 6

1n n

( 1)L n n ( ) 1L n n

( 1)f n ( )f n

( 1)F n

( )F n

Page 33: 本学期课堂演讲学生的照片

33

这是我们解决原问题的钥匙吗?我们

猜想它确是规律。那我们把该表按此规律,

顺沿到 ,原问题的解就是 ?

5n (5) 26F

Page 34: 本学期课堂演讲学生的照片

34

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 35: 本学期课堂演讲学生的照片

35

类比不是证明

但这种类比不是证明,只是合理的猜测,

是合情推理;它无法保证已知相同的属性与推出的属性之间有必然的联系;还需要用逻辑推理分析这一猜测,去认定这一猜测,或者否定这一猜测。这才是用类比、归纳的方法去研究问题的决定性步骤。

Page 36: 本学期课堂演讲学生的照片

36

8 .分析、推理 我们的分析从 “ 时直线分平面”入手。

2条直线最多把平面划分为 4个部分。

3条直线分平面最多把平面分为 7个部分,是我们数出来的,应该是对的,但它为什么是对的呢?我们再作分析,增加一些理性认识,也许还能从中找到理解一般情形的线索。

在 2条直线分平面 为 4个部分的基础上,再添加一条直线(用红色),要想把平面分得部分数最多,这条直线就要与原来的每条直线都相交,但又不过原来两条直线的交点。

3n

Page 37: 本学期课堂演讲学生的照片

37

Page 38: 本学期课堂演讲学生的照片

38

Page 39: 本学期课堂演讲学生的照片

39

Page 40: 本学期课堂演讲学生的照片

40

3 + 4 = 7

Page 41: 本学期课堂演讲学生的照片

41

2条直线分平面为 4个部分; 3条直线就分平面为 7个部分了,

即增加了 3部分;从 2条直线添一条直线,为什么分割平面正好多出

3部分?分析一下:新添的直线与原来 2条直线每条都相交,而且交

在与原交点不同的点,这就交出了 2个新交点,这 2 点把新添的直线

分为 3段,每一段把它穿过的(由前 2条直线分成的)那个区域一分

为二,因此“平面分割”增加了 3个部分,这就是“ 3” 的来历,而

且这个分析表明,这个“ 3”也正是 2 点把直线分为 3部分的“ 3” ,

也就是“ 7”左肩上的“ 3” 。 7=3+4原来是这样产生的。这种分析已

经是逻辑推理了,令人信服,极大地增强了我们对所发现的规律的信

心。

下面对照表格,再说一遍。

Page 42: 本学期课堂演讲学生的照片

42

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 43: 本学期课堂演讲学生的照片

43

我们再分析 “ 时直线分平面”的情况,我们已经通过“顺沿上表”猜想: 4条直线最多把平面划分为11个部分。它是正确的吗?我们在 3条直线分平面 为 7

个部分的基础上,再添加一条直线(用红色),这条直线与原来的每条直线都相交,但又不过任意两条直线的交点。如下图。我们数一下,现在确实把平面分成了 11个部分。所以这猜测是对的,但它为什么是对的呢?我们再作分析,增加一些理性认识,也许还能从中找到理解一般情形的线索。

4n

Page 44: 本学期课堂演讲学生的照片

44

Page 45: 本学期课堂演讲学生的照片

45

Page 46: 本学期课堂演讲学生的照片

46

Page 47: 本学期课堂演讲学生的照片

474 + 7 = 11

Page 48: 本学期课堂演讲学生的照片

48

3条直线分平面为 7个部分; 4条直线就分平面为 11个部分了,

即增加了 4部分;从 3条直线添一条直线,为什么分割平面正好多出

4部分?分析一下:新添的直线与原来 3条直线每条都相交,而且交

在与原交点不同的点,这就交出了 3个新交点,这 3 点把新添的直线

分为 4段,每一段把它穿过的(由前 3条直线分成的)那个区域一分

为二,因此“平面分割”增加了 4个部分,这就是“ 4” 的来历,而

且这个分析表明,这个“ 4”也正是 3 点把直线分为 4部分的“ 4” ,

也就是“ 11”左肩上的“ 4” 。 11=4+7原来是这样产生的。这种分析

已经是逻辑推理了,令人信服,极大地增强了我们对所发现的规律的

信心。

下面对照表格,再说一遍。

Page 49: 本学期课堂演讲学生的照片

49

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 50: 本学期课堂演讲学生的照片

50

9 .再类比得一般情形的公式

我们再类比分析 时平面分空间的情

况。这时我们不容易在平面的黑板或者 PPT 上作立体图

了,只能借助于刚才四面体延展的那个图来想

像。但是我们可以从思维上、语言上类比刚才

的情形。

( ) ( 1) ( 1)f n L n f n ( ) ( 1) ( 1)F n f n F n

4n

Page 51: 本学期课堂演讲学生的照片

51

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 52: 本学期课堂演讲学生的照片

52

我们在 3个平面分空间为 8个部分的基础上,再

添加一个平面,这个平面与原来的 3个平面都相交,并且又不过原来 3平面的交点,从而不过原来任两平面的交线,这就交出了 3条新直线,这 3条直线把新添加的平面分为7个部分(就是上面“类比一般化”的大表格中的“ 7” ),每一部分把它穿过的(由前 3个平面分成的)空间区域一分为二,因此“空间分割”增加了 7个部分,而原有 8个部分,这就是 15=7+8 的来历。

Page 53: 本学期课堂演讲学生的照片

53

Page 54: 本学期课堂演讲学生的照片

54

我们在 3个平面分空间为 8个部分的基础上,再

添加一个平面,这个平面与原来的 3个平面都相交,并且又不过原来 3平面的交点,从而不过原来任两平面的交线,这就交出了 3条新直线,这 3条直线把新添加的平面分为7个部分(就是上面“类比一般化”的大表格中的“ 7” ),每一部分把它穿过的(由前 3个平面分成的)空间区域一分为二,因此“空间分割”增加了 7个部分,而原有 8个部分,这就是 15=7+8 的来历。

下面对照表格,再说一遍。

Page 55: 本学期课堂演讲学生的照片

55

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 56: 本学期课堂演讲学生的照片

问题: 5个平面分空间,最多把空间分为多少个部分?

56

谁能对照表格,说一遍?

Page 57: 本学期课堂演讲学生的照片

57

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 58: 本学期课堂演讲学生的照片

584 + 7 = 11

Page 59: 本学期课堂演讲学生的照片

59

这里的 到 的过渡,并没有任何特殊

的地方,我们可以完全类似地分析由 向 过渡时

发生的情况,得到一般的表达式。

与段落 “ 8” 类似地可以得到公式:

与段落 “ 9” 类似地可以得到公式:

这两个公式都是递推公式。这种递推公式与斐波

那契数列的递推公式有区别,但思想精神是相通的。

3n 4 5n 、1n

( ) ( 1) ( 1)f n L n f n

( ) ( 1) ( 1)F n f n F n

n

Page 60: 本学期课堂演讲学生的照片

60

我们只再叙述一遍较为复杂的公式

得到的过程。它实际上只要在上面的叙述中,

把“ 3个平面”换为“ 个平面”,把“ 8个部分”换为“ 个部分”, 把“ 3条新直线”换为“ 条新直线”,把“ 7个部分”换为“ 个

部分”,把“ 15” 换为“ ”就完成了。

简单说,是在“往前数三屏”的叙述中,做下边的

代换: ,

( ) ( 1) ( 1)F n f n F n

1n ( 1)F n

1n ( 1)f n

( )F n

3 1n 8 ( 1)F n 7 ( 1)f n

15 ( )F n

Page 61: 本学期课堂演讲学生的照片

61

我们对照表格来叙述一遍较为复杂的公式

得到的过程。( ) ( 1) ( 1)F n f n F n

Page 62: 本学期课堂演讲学生的照片

62

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 63: 本学期课堂演讲学生的照片

63

个平面把空间最多分为 个部分,求 ,不厌其繁地详细说一遍,就是:

我们在 个平面分空间为 个部分的基础上,再添加一个平面,这个平面与原来的 个平面都相交,并且又不过原来任 3个平面的交点,从而不过原来任两平面的交线,这就交出了 条新直线,这 条直线把新添的平面分为 个部分,每一部分把它穿过的(由前 个平面分成的)空间区域一分为二,因此,“空间分割”增加了 个部分,而原有 个部分,所以现在,空间共被分割成的“部分数”是 。

这就是推出这一公式的逻辑推理过程。

另一公式 的逻辑推理过程,请同学自己 对照表格 完成。

n ( )F n ( )F n

1n ( 1)F n

1n 1n

1n ( 1)f n 1n ( 1)f n ( 1)F n

( ) ( 1) ( 1)F n f n F n

( ) ( 1) ( 1)f n L n f n

Page 64: 本学期课堂演讲学生的照片

64

分割元素 个 数

被分成的部分数 点分直线 直线分平面 平面分空间

0 1 1 1 1 2 2 2 2 3 4 4

3 4 7 8

4 5 ( 11 ) 15

5 6 ( 16 ) ( 26 )

1n n

( 1)L n n

( ) 1L n n

( 1)f n

( )f n

( 1)F n

( )F n

Page 65: 本学期课堂演讲学生的照片

65

10 . 推出显公式 及 上边得到的还只是递推公式、关系公式,我

们希望进一步得到像 那样的、关于 及

的显公式,即直接用 的解析式来

表达 及 。

下边的技巧是常用的。

利用 及递推公式

得到下面一系列等式,然后等号两边分别相加

( ) ( 1) ( 1)f n L n f n

( 1)( ) 1

2

n nf n

31( ) ( 5 6)

6F n n n

( ) 1L n n ( )f n

n

( )f n ( )F n

( )F n

(0) 1f

Page 66: 本学期课堂演讲学生的照片

66

 

1 ) 直线分平面的情形 2 ) 平面分空间的情形

(0) 1f (0) 1F

(1) (0) (0)f L f (1) (0) (0)F f F

(2) (1) (1)f L f (2) (1) (1)F f F

(3) (2) (2)f L f (3) (2) (2)F f F

( 1) ( 2) ( 2)f n L n f n ( 1) ( 1) ( 2)F n f n F n

) ( ) ( 1) ( 1)f n L n f n ) ( ) ( 1) ( 1)F n f n F n

Page 67: 本学期课堂演讲学生的照片

67

1

0

( ) 1 ( )n

i

f n L i

1

0

1 ( 1)n

i

i

1

1n

i

i

( 1)

12

n n

1

0

( ) 1 ( )n

i

F n f i

1

0

( 1)1 1

2

n

i

i i

31

( 5 6)6n n

Page 68: 本学期课堂演讲学生的照片

68

11 . 另法:用数学归纳法证明显公式

另一种方法是:用不完全归纳法总结出(或者说

“猜出”)显公式,再用数学归纳法去证明该显公式。

1 ) 直线分平面的情形 (略)

2 ) 平面分空间的情形 (略)

Page 69: 本学期课堂演讲学生的照片

【思】:

“类比”很有用,为了巩固它,请回忆:自己什么地方曾经用过“类比”?今后,可以更加有意识地用“类比”。

69

Page 70: 本学期课堂演讲学生的照片

70

Page 71: 本学期课堂演讲学生的照片

71

本节结束

谢谢!

Page 72: 本学期课堂演讲学生的照片

72