a microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf ·...

48
A microlocal toolbox for hyperbolic dynamics Semyon Dyatlov (MIT) December 4, 2014 Semyon Dyatlov A microlocal toolbox December 4, 2014 1 / 19

Upload: others

Post on 27-Oct-2020

2 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

A microlocal toolbox for hyperbolic dynamics

Semyon Dyatlov (MIT)

December 4, 2014

Semyon Dyatlov A microlocal toolbox December 4, 2014 1 / 19

Page 2: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

Motivation: statistics for billiards

One billiard ball in a Sinai billiard with finite horizon

Semyon Dyatlov A microlocal toolbox December 4, 2014 2 / 19

Page 3: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

10000 billiard balls in a Sinai billiard with finite horizon#(balls in the box) → volume of the box

velocity angles distribution → uniform measure

Semyon Dyatlov A microlocal toolbox December 4, 2014 3 / 19

Page 4: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

10000 billiard balls in a three-disk system#(balls in the box) → 0 exponentially

velocity angles distribution → some fractal measure

Semyon Dyatlov A microlocal toolbox December 4, 2014 4 / 19

Page 5: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

10000 billiard balls in a rectangle

#(balls in the box), velocity angles distribution have no limit

Semyon Dyatlov A microlocal toolbox December 4, 2014 5 / 19

Page 6: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

Correlations (closed billiards)

M ⊂ R2 a closed billiardU = {(y , v) | y ∈ M, v ∈ S1}ϕt : U → U billiard flowf , g ∈ C∞(U)

ρf ,g (t) =

∫U

(f ◦ ϕ−t)g dxdv

yv

Mixing: ρf ,g (t) = c( ∫U f dxdv

)( ∫U g dxdv

)+ o(1) as t → +∞

Sinai ’70, Bunimovich ’74, Young ’98, Chernov ’99 . . .Climate models: Chekroun–Neelin–Kondrashov–McWilliams–Ghil ’14

Hard because of glancing rays – consider a model without boundary insteadSemyon Dyatlov A microlocal toolbox December 4, 2014 6 / 19

Page 7: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

Correlations (closed billiards)

M ⊂ R2 a closed billiardU = {(y , v) | y ∈ M, v ∈ S1}ϕt : U → U billiard flowf , g ∈ C∞(U)

ρf ,g (t) =

∫U

(f ◦ ϕ−t)g dxdv

yv

Mixing: ρf ,g (t) = c( ∫U f dxdv

)( ∫U g dxdv

)+ o(1) as t → +∞

Sinai ’70, Bunimovich ’74, Young ’98, Chernov ’99 . . .Climate models: Chekroun–Neelin–Kondrashov–McWilliams–Ghil ’14

Hard because of glancing rays – consider a model without boundary insteadSemyon Dyatlov A microlocal toolbox December 4, 2014 6 / 19

Page 8: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

Correlations (closed billiards)

M ⊂ R2 a closed billiardU = {(y , v) | y ∈ M, v ∈ S1}ϕt : U → U billiard flowf , g ∈ C∞(U)

ρf ,g (t) =

∫U

(f ◦ ϕ−t)g dxdv

yv

Mixing: ρf ,g (t) = c( ∫U f dxdv

)( ∫U g dxdv

)+ o(1) as t → +∞

Sinai ’70, Bunimovich ’74, Young ’98, Chernov ’99 . . .Climate models: Chekroun–Neelin–Kondrashov–McWilliams–Ghil ’14

Hard because of glancing rays – consider a model without boundary insteadSemyon Dyatlov A microlocal toolbox December 4, 2014 6 / 19

Page 9: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

Correlations (compact manifolds)

M compact manifoldg negatively curved metricU = {(y , v) ∈ TM : |v |g = 1}ϕt : U → U geodesic flowf , g ∈ C∞(U)

µ Liouville measure

ρf ,g (t) =

∫U

(f ◦ ϕ−t)g dµ

Exponential mixing: ρf ,g (t) = c( ∫U f dµ

)( ∫U g dµ

)+O(e−νt)

Moore ’87, Ratner ’87, Chernov ’98, Dolgopyat ’98, Liverani ’04

Semyon Dyatlov A microlocal toolbox December 4, 2014 7 / 19

Page 10: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Motivation

Correlations (compact manifolds)

M compact manifoldg negatively curved metricU = {(y , v) ∈ TM : |v |g = 1}ϕt : U → U geodesic flowf , g ∈ C∞(U)

µ Liouville measure

ρf ,g (t) =

∫U

(f ◦ ϕ−t)g dµ

Exponential mixing: ρf ,g (t) = c( ∫U f dµ

)( ∫U g dµ

)+O(e−νt)

Moore ’87, Ratner ’87, Chernov ’98, Dolgopyat ’98, Liverani ’04

Semyon Dyatlov A microlocal toolbox December 4, 2014 7 / 19

Page 11: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

From correlations to resonances

Correlation:

ρf ,g (t) =

∫U

(f ◦ ϕ−t)g dµ, f , g ∈ C∞0 (U)

Fourier–Laplace transform:

ρ̂f ,g (λ) =

∫ ∞0

e−λtρf ,g (t) dt, Reλ > C0 � 1,

ρf ,g (t) =i2π

∫Reλ=C0

eλt ρ̂f ,g (λ) dλ

Goal: continue ρ̂f ,g (λ) meromorphically to λ ∈ C

Poles of ρ̂f ,g (λ): Pollicott–Ruelle resonances

Semyon Dyatlov A microlocal toolbox December 4, 2014 8 / 19

Page 12: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

From correlations to resonances

Correlation:

ρf ,g (t) =

∫U

(f ◦ ϕ−t)g dµ, f , g ∈ C∞0 (U)

Fourier–Laplace transform:

ρ̂f ,g (λ) =

∫ ∞0

e−λtρf ,g (t) dt, Reλ > C0 � 1,

ρf ,g (t) =i2π

∫Reλ=C0

eλt ρ̂f ,g (λ) dλ

Goal: continue ρ̂f ,g (λ) meromorphically to λ ∈ C

Poles of ρ̂f ,g (λ): Pollicott–Ruelle resonances

Semyon Dyatlov A microlocal toolbox December 4, 2014 8 / 19

Page 13: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Setup: hyperbolic flowsU compact manifold with boundaryϕt = etX : U → U a C∞ flow∂U strictly convex

K =⋂±t∈R

ϕt(U)

K

∂U

Γ− Γ+

K hyperbolic (θ > 0):

x ∈ K =⇒ TxU = RX (x)⊕ Eu(x)⊕ Es(x),

|dϕt(x) · w | ≤ Ce−θ|t||w |,

{w ∈ Es(x), t > 0;

w ∈ Eu(x), t < 0.

Anosov flow = closed hyperbolic system: ∂U = ∅, K = UGeneral case closely related to Axiom A basic sets [Smale ’67]

Semyon Dyatlov A microlocal toolbox December 4, 2014 9 / 19

Page 14: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Setup: hyperbolic flowsU compact manifold with boundaryϕt = etX : U → U a C∞ flow∂U strictly convex

K =⋂±t∈R

ϕt(U)

K

∂U

Γ− Γ+

K hyperbolic (θ > 0):

x ∈ K =⇒ TxU = RX (x)⊕ Eu(x)⊕ Es(x),

|dϕt(x) · w | ≤ Ce−θ|t||w |,

{w ∈ Es(x), t > 0;

w ∈ Eu(x), t < 0.

Anosov flow = closed hyperbolic system: ∂U = ∅, K = UGeneral case closely related to Axiom A basic sets [Smale ’67]

Semyon Dyatlov A microlocal toolbox December 4, 2014 9 / 19

Page 15: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Setup: hyperbolic flowsU compact manifold with boundaryϕt = etX : U → U a C∞ flow∂U strictly convex

K =⋂±t∈R

ϕt(U)

K

∂U

Γ− Γ+

K hyperbolic (θ > 0):

x ∈ K =⇒ TxU = RX (x)⊕ Eu(x)⊕ Es(x),

|dϕt(x) · w | ≤ Ce−θ|t||w |,

{w ∈ Es(x), t > 0;

w ∈ Eu(x), t < 0.

Anosov flow = closed hyperbolic system: ∂U = ∅, K = UGeneral case closely related to Axiom A basic sets [Smale ’67]

Semyon Dyatlov A microlocal toolbox December 4, 2014 9 / 19

Page 16: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and correlations

ϕt = etX : U → U , f , g ∈ C∞0 (U). For Reλ� 1,

ρ̂f ,g (λ) =

∫ ∞0

e−λt∫U

(f ◦ ϕ−t)g dµdt

=

∫U

(R(λ)f )g dµ,

R(λ) =

∫ ∞0

e−t(X+λ) dt = (X + λ)−1 : L2(U)→ L2(U).

Theorem 1 [D–Guillarmou ’14]

The operator R(λ) : C∞0 (U)→ D′(U) continues meromorphically toλ ∈ C. Its poles are called Pollicott–Ruelle resonances.

Ruelle ’76, Rugh ’92, Fried ’95 (analytic),Pollicott ’85,’86, Ruelle ’86,’87, Parry–Pollicott ’90 (C∞ small strip),Liverani ’04, Butterley–Liverani ’07, Faure–Sjöstrand ’11 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 10 / 19

Page 17: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and correlations

ϕt = etX : U → U , f , g ∈ C∞0 (U). For Reλ� 1,

ρ̂f ,g (λ) =

∫ ∞0

e−λt∫U

(e−tX f )g dµdt

=

∫U

(R(λ)f )g dµ,

R(λ) =

∫ ∞0

e−t(X+λ) dt = (X + λ)−1 : L2(U)→ L2(U).

Theorem 1 [D–Guillarmou ’14]

The operator R(λ) : C∞0 (U)→ D′(U) continues meromorphically toλ ∈ C. Its poles are called Pollicott–Ruelle resonances.

Ruelle ’76, Rugh ’92, Fried ’95 (analytic),Pollicott ’85,’86, Ruelle ’86,’87, Parry–Pollicott ’90 (C∞ small strip),Liverani ’04, Butterley–Liverani ’07, Faure–Sjöstrand ’11 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 10 / 19

Page 18: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and correlations

ϕt = etX : U → U , f , g ∈ C∞0 (U). For Reλ� 1,

ρ̂f ,g (λ) =

∫ ∞0

e−λt∫U

(e−tX f )g dµdt =

∫U

(R(λ)f )g dµ,

R(λ) =

∫ ∞0

e−t(X+λ) dt = (X + λ)−1 : L2(U)→ L2(U).

Theorem 1 [D–Guillarmou ’14]

The operator R(λ) : C∞0 (U)→ D′(U) continues meromorphically toλ ∈ C. Its poles are called Pollicott–Ruelle resonances.

Ruelle ’76, Rugh ’92, Fried ’95 (analytic),Pollicott ’85,’86, Ruelle ’86,’87, Parry–Pollicott ’90 (C∞ small strip),Liverani ’04, Butterley–Liverani ’07, Faure–Sjöstrand ’11 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 10 / 19

Page 19: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and correlations

ϕt = etX : U → U , f , g ∈ C∞0 (U). For Reλ� 1,

ρ̂f ,g (λ) =

∫ ∞0

e−λt∫U

(e−tX f )g dµdt =

∫U

(R(λ)f )g dµ,

R(λ) =

∫ ∞0

e−t(X+λ) dt = (X + λ)−1 : L2(U)→ L2(U).

Theorem 1 [D–Guillarmou ’14]

The operator R(λ) : C∞0 (U)→ D′(U) continues meromorphically toλ ∈ C. Its poles are called Pollicott–Ruelle resonances.

Ruelle ’76, Rugh ’92, Fried ’95 (analytic),Pollicott ’85,’86, Ruelle ’86,’87, Parry–Pollicott ’90 (C∞ small strip),Liverani ’04, Butterley–Liverani ’07, Faure–Sjöstrand ’11 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 10 / 19

Page 20: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and correlations

ϕt = etX : U → U , f , g ∈ C∞0 (U). For Reλ� 1,

ρ̂f ,g (λ) =

∫ ∞0

e−λt∫U

(e−tX f )g dµdt =

∫U

(R(λ)f )g dµ,

R(λ) =

∫ ∞0

e−t(X+λ) dt = (X + λ)−1 : L2(U)→ L2(U).

Theorem 1 [D–Guillarmou ’14]

The operator R(λ) : C∞0 (U)→ D′(U) continues meromorphically toλ ∈ C. Its poles are called Pollicott–Ruelle resonances.

Ruelle ’76, Rugh ’92, Fried ’95 (analytic),Pollicott ’85,’86, Ruelle ’86,’87, Parry–Pollicott ’90 (C∞ small strip),Liverani ’04, Butterley–Liverani ’07, Faure–Sjöstrand ’11 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 10 / 19

Page 21: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and zeta functions

Ruelle zeta function: Tγ] periods of primitive closed trajectories

ζR(λ) =∏γ]

(1− e−λTγ] ), Reλ� 1

Theorem 2 [D–Guillarmou ’14]

ζR(λ) extends meromorphically to λ ∈ C.

Poles are Pollicott–Ruelle resonances on certain vector bundlesClassical application: counting primitive closed trajectories

#{Tγ] ≤ T} =ehtopT

htopT(1 + o(1))

where htop is the topological entropy (first pole of ζR).First proved by Margulis

Smale ’67 (conjectured),Giulietti–Liverani–Pollicott ’12, D–Zworski ’13 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 11 / 19

Page 22: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and zeta functions

Ruelle zeta function: Tγ] periods of primitive closed trajectories

ζR(λ) =∏γ]

(1− e−λTγ] ), Reλ� 1

Theorem 2 [D–Guillarmou ’14]

ζR(λ) extends meromorphically to λ ∈ C.

Poles are Pollicott–Ruelle resonances on certain vector bundlesClassical application: counting primitive closed trajectories

#{Tγ] ≤ T} =ehtopT

htopT(1 + o(1))

where htop is the topological entropy (first pole of ζR).First proved by Margulis

Smale ’67 (conjectured),Giulietti–Liverani–Pollicott ’12, D–Zworski ’13 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 11 / 19

Page 23: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Results

Resonances and zeta functions

Ruelle zeta function: Tγ] periods of primitive closed trajectories

ζR(λ) =∏γ]

(1− e−λTγ] ), Reλ� 1

Theorem 2 [D–Guillarmou ’14]

ζR(λ) extends meromorphically to λ ∈ C.

Poles are Pollicott–Ruelle resonances on certain vector bundlesClassical application: counting primitive closed trajectories

#{Tγ] ≤ T} =ehtopT

htopT(1 + o(1))

where htop is the topological entropy (first pole of ζR).First proved by Margulis

Smale ’67 (conjectured),Giulietti–Liverani–Pollicott ’12, D–Zworski ’13 (Anosov)

Semyon Dyatlov A microlocal toolbox December 4, 2014 11 / 19

Page 24: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Three stages of Pollicott–Ruelle resonances

Ruelle ’76,’86,’87, Pollicott ’85,’86, Parry–Pollicott ’90, Fried ’95,Dolgopyat ’98, Naud ’05, Stoyanov ’11,’13 (spectral gaps). . .symbolic dynamics and transfer operatorsRugh ’92, Kitaev ’99, Blank–Keller–Liverani ’02, Liverani ’04,’05,Gouëzel–Liverani ’06, Baladi–Tsujii ’07 Butterley–Liverani ’07,Giulietti–Liverani–Pollicott ’12. . .resonances = spectrum of −X , ϕt = etX , on an anisotropic space:

X + λ : Hr → Hr Fredholm, r � max(1,−Reλ)

Faure–Roy–Sjöstrand ’08, Faure–Sjöstrand ’11, Tsujii ’12,Faure–Tsujii ’11,’13, Datchev–D–Zworski ’12, D–Zworski ’13,’14,D–Faure–Guillarmou ’14, D–Guillarmou ’14, Guillarmou ’14,Jin–Zworski ’14 (various applications). . .(X + λ)u = f is a scattering problem in the phase space and u ∈ Hr

is the outgoing/radiation condition. Relies on microlocal analysis.

Semyon Dyatlov A microlocal toolbox December 4, 2014 12 / 19

Page 25: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Microlocal analysis (semiclassical version)

Phase space: T ∗U 3 (x , ξ)

Semiclassical parameter: h→ 0, the effective wavelengthClassical observables: a(x , ξ) ∈ C∞(T ∗U)

Quantization: Oph(a) = a(x , h

i ∂x)

: C∞(U)→ C∞(U),semiclassical pseudodifferential operator

Basic examples

a(x , ξ) = xj =⇒ Oph(a) = xj multiplication operatora(x , ξ) = ξj =⇒ Oph(a) = h

i ∂xj

Classical-quantum correspondence

[Oph(a),Oph(b)] = hi Oph({a, b}) +O(h2)

{a, b} = ∂ξa · ∂xb − ∂xa · ∂ξb = Hab, etHa Hamiltonian flowExample: [Oph(ξk),Oph(xj)] = h

i δjk

Semyon Dyatlov A microlocal toolbox December 4, 2014 13 / 19

Page 26: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Microlocal analysis (semiclassical version)

Phase space: T ∗U 3 (x , ξ)

Semiclassical parameter: h→ 0, the effective wavelengthClassical observables: a(x , ξ) ∈ C∞(T ∗U)

Quantization: Oph(a) = a(x , h

i ∂x)

: C∞(U)→ C∞(U),semiclassical pseudodifferential operator

Basic examples

a(x , ξ) = xj =⇒ Oph(a) = xj multiplication operatora(x , ξ) = ξj =⇒ Oph(a) = h

i ∂xj

Classical-quantum correspondence

[Oph(a),Oph(b)] = hi Oph({a, b}) +O(h2)

{a, b} = ∂ξa · ∂xb − ∂xa · ∂ξb = Hab, etHa Hamiltonian flowExample: [Oph(ξk),Oph(xj)] = h

i δjk

Semyon Dyatlov A microlocal toolbox December 4, 2014 13 / 19

Page 27: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Microlocal analysis (semiclassical version)

Phase space: T ∗U 3 (x , ξ)

Semiclassical parameter: h→ 0, the effective wavelengthClassical observables: a(x , ξ) ∈ C∞(T ∗U)

Quantization: Oph(a) = a(x , h

i ∂x)

: C∞(U)→ C∞(U),semiclassical pseudodifferential operator

Basic examples

a(x , ξ) = xj =⇒ Oph(a) = xj multiplication operatora(x , ξ) = ξj =⇒ Oph(a) = h

i ∂xj

Classical-quantum correspondence

[Oph(a),Oph(b)] = hi Oph({a, b}) +O(h2)

{a, b} = ∂ξa · ∂xb − ∂xa · ∂ξb = Hab, etHa Hamiltonian flowExample: [Oph(ξk),Oph(xj)] = h

i δjk

Semyon Dyatlov A microlocal toolbox December 4, 2014 13 / 19

Page 28: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Standard semiclassical estimates

General question

P = Oph(p), Pu = f =⇒ ‖u‖ . ‖f ‖ ?

Control u microlocally: ‖Oph(a)u‖ .

‖Oph(b)u‖+ h−1

‖f ‖+O(h∞)‖u‖

Elliptic estimate

{p = 0} supp a

Propagation of singularities

supp a{b 6= 0}etHp

Semyon Dyatlov A microlocal toolbox December 4, 2014 14 / 19

Page 29: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Standard semiclassical estimates

General question

P = Oph(p), Pu = f =⇒ ‖u‖ . ‖f ‖ ?

Control u microlocally: ‖Oph(a)u‖ .

‖Oph(b)u‖+ h−1

‖f ‖+O(h∞)‖u‖

Elliptic estimate

{p = 0} supp a

Propagation of singularities

supp a{b 6= 0}etHp

Semyon Dyatlov A microlocal toolbox December 4, 2014 14 / 19

Page 30: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Standard semiclassical estimates

General question

P = Oph(p), Pu = f =⇒ ‖u‖ . ‖f ‖ ?

Control u microlocally: ‖Oph(a)u‖ .

‖Oph(b)u‖+ h−1

‖f ‖+O(h∞)‖u‖

Elliptic estimate

{p = 0} supp a

Propagation of singularities

supp a{b 6= 0}etHp

Semyon Dyatlov A microlocal toolbox December 4, 2014 14 / 19

Page 31: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

Standard semiclassical estimates

General question

P = Oph(p), Pu = f =⇒ ‖u‖ . ‖f ‖ ?

Control u microlocally: ‖Oph(a)u‖ . ‖Oph(b)u‖+ h−1‖f ‖+O(h∞)‖u‖

Elliptic estimate

{p = 0} supp a

Propagation of singularities

supp a{b 6= 0}etHp

Semyon Dyatlov A microlocal toolbox December 4, 2014 14 / 19

Page 32: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, Anosov case

P(λ) := hi (X + λ) = Oph(p),

p(x , ξ) = 〈ξ,X (x)〉etHp : (x , ξ) 7→ (ϕt(x), (dϕt(x))−T ξ)

T ∗U = E ∗0 ⊕ E ∗s ⊕ E ∗u ,{p = 0} = E ∗s ⊕ E ∗u

0

Q

∂T∗U

E∗u

E∗s

Theorem 1

P(λ)−1 : Hr → Hr continues meromorphically to λ ∈ C.

By Fredholm theory, enough to prove for Q = Oph(q), q ∈ C∞0 (T ∗U)

‖u‖Hr ≤ Ch−1‖Pu‖Hr + C‖Qu‖Hr

where Hr is an anisotropic Sobolev spaceSemyon Dyatlov A microlocal toolbox December 4, 2014 15 / 19

Page 33: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, Anosov case

P(λ) := hi (X + λ) = Oph(p),

p(x , ξ) = 〈ξ,X (x)〉etHp : (x , ξ) 7→ (ϕt(x), (dϕt(x))−T ξ)

T ∗U = E ∗0 ⊕ E ∗s ⊕ E ∗u ,{p = 0} = E ∗s ⊕ E ∗u

0

Q

∂T∗U

E∗u

E∗s

Theorem 1

P(λ)−1 : Hr → Hr continues meromorphically to λ ∈ C.

By Fredholm theory, enough to prove for Q = Oph(q), q ∈ C∞0 (T ∗U)

‖u‖Hr ≤ Ch−1‖Pu‖Hr + C‖Qu‖Hr

where Hr is an anisotropic Sobolev spaceSemyon Dyatlov A microlocal toolbox December 4, 2014 15 / 19

Page 34: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, Anosov case

P(λ) := hi (X + λ) = Oph(p),

p(x , ξ) = 〈ξ,X (x)〉etHp : (x , ξ) 7→ (ϕt(x), (dϕt(x))−T ξ)

‖u‖Hr ≤ Ch−1‖Pu‖Hr + C‖Qu‖Hr

0

Q

∂T∗U

E∗u

E∗s

Radial estimate [Melrose ’94], Hr ∼ H r near E ∗sPropagation of singularitiesDual radial estimate, Hr ∼ H−r near E ∗u

Semyon Dyatlov A microlocal toolbox December 4, 2014 15 / 19

Page 35: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, Anosov case

P(λ) := hi (X + λ) = Oph(p),

p(x , ξ) = 〈ξ,X (x)〉etHp : (x , ξ) 7→ (ϕt(x), (dϕt(x))−T ξ)

‖Oph(a)u‖Hr ≤ Ch−1‖Pu‖Hr + C‖Qu‖Hr

0

Q

∂T∗U

E∗u

E∗s

Radial estimate [Melrose ’94], Hr ∼ H r near E ∗sPropagation of singularitiesDual radial estimate, Hr ∼ H−r near E ∗u

Semyon Dyatlov A microlocal toolbox December 4, 2014 15 / 19

Page 36: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, Anosov case

P(λ) := hi (X + λ) = Oph(p),

p(x , ξ) = 〈ξ,X (x)〉etHp : (x , ξ) 7→ (ϕt(x), (dϕt(x))−T ξ)

‖Oph(a)u‖Hr ≤ Ch−1‖Pu‖Hr + C‖Qu‖Hr

0

Q

∂T∗U

E∗u

E∗s

Radial estimate [Melrose ’94], Hr ∼ H r near E ∗sPropagation of singularitiesDual radial estimate, Hr ∼ H−r near E ∗u

Semyon Dyatlov A microlocal toolbox December 4, 2014 15 / 19

Page 37: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, Anosov case

P(λ) := hi (X + λ) = Oph(p),

p(x , ξ) = 〈ξ,X (x)〉etHp : (x , ξ) 7→ (ϕt(x), (dϕt(x))−T ξ)

‖Oph(a)u‖Hr ≤ Ch−1‖Pu‖Hr + C‖Qu‖Hr

0

Q

∂T∗U

E∗u

E∗s

Radial estimate [Melrose ’94], Hr ∼ H r near E ∗sPropagation of singularitiesDual radial estimate, Hr ∼ H−r near E ∗u

Semyon Dyatlov A microlocal toolbox December 4, 2014 15 / 19

Page 38: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, general case

Problem: singularities escape both to infinite frequencies and through thespatial boundary

E∗u

E∗s

E∗+

E∗+

E∗−

E∗−

S∗Γ−

S∗Γ+

S∗∂U

S∗∂U

U+

U−

K

Γ+

Γ−

Q∞

More general propagation estimates needed. . .

Semyon Dyatlov A microlocal toolbox December 4, 2014 16 / 19

Page 39: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, general case

Problem: singularities escape both to infinite frequencies and through thespatial boundary

E∗u

E∗s

E∗+

E∗+

E∗−

E∗−

S∗Γ−

S∗Γ+

S∗∂U

S∗∂U

U+

U−

K

Γ+

Γ−

Q∞

More general propagation estimates needed. . .

Semyon Dyatlov A microlocal toolbox December 4, 2014 16 / 19

Page 40: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, general case

Problem: singularities escape both to infinite frequencies and through thespatial boundary

E∗u

E∗s

E∗+

E∗+

E∗−

E∗−

S∗Γ−

S∗Γ+

S∗∂U

S∗∂U

U+

U−

K

Γ+

Γ−

Q∞

More general propagation estimates needed. . .

Semyon Dyatlov A microlocal toolbox December 4, 2014 16 / 19

Page 41: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The microlocal picture, general case

Problem: singularities escape both to infinite frequencies and through thespatial boundary

E∗u

E∗s

E∗+

E∗+

E∗−

E∗−

S∗Γ−

S∗Γ+

S∗∂U

S∗∂U

U+

U−

K

Γ+

Γ−

Q∞

More general propagation estimates needed. . .

Semyon Dyatlov A microlocal toolbox December 4, 2014 16 / 19

Page 42: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The zeta function

ζR(λ) =∏γ]

(1− e−λTγ] ), R(λ) =

∫ ∞0

e−λt(ϕ−t)∗ dt

Theorem 2ζR(λ) extends meromorphically to λ ∈ C.

ζ ′R(λ)

ζR(λ)∼∑γ

T ]γe−λTγ

| det(I − Pγ)|, tr[(ϕ−t)∗ =

∑γ

T ]γδ(t − Tγ)

| det(I − Pγ)|[Ruelle, Atiyah–Bott–Guillemin]ζ ′R(λ)/ζR(λ) ∼ tr[(R(λ)(ϕ−t0)∗), but what is tr[?The proof of Theorem 1 gives a wavefront set condition, which makesit possible to take the flat trace

Semyon Dyatlov A microlocal toolbox December 4, 2014 17 / 19

Page 43: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The zeta function

ζR(λ) =∏γ]

(1− e−λTγ] ), R(λ) =

∫ ∞0

e−λt(ϕ−t)∗ dt

Theorem 2ζR(λ) extends meromorphically to λ ∈ C.

ζ ′R(λ)

ζR(λ)∼∑γ

T ]γe−λTγ

| det(I − Pγ)|, tr[(ϕ−t)∗ =

∑γ

T ]γδ(t − Tγ)

| det(I − Pγ)|[Ruelle, Atiyah–Bott–Guillemin]ζ ′R(λ)/ζR(λ) ∼ tr[(R(λ)(ϕ−t0)∗), but what is tr[?The proof of Theorem 1 gives a wavefront set condition, which makesit possible to take the flat trace

Semyon Dyatlov A microlocal toolbox December 4, 2014 17 / 19

Page 44: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The zeta function

ζR(λ) =∏γ]

(1− e−λTγ] ), R(λ) =

∫ ∞0

e−λt(ϕ−t)∗ dt

Theorem 2ζR(λ) extends meromorphically to λ ∈ C.

ζ ′R(λ)

ζR(λ)∼∑γ

T ]γe−λTγ

| det(I − Pγ)|, tr[(ϕ−t)∗ =

∑γ

T ]γδ(t − Tγ)

| det(I − Pγ)|[Ruelle, Atiyah–Bott–Guillemin]ζ ′R(λ)/ζR(λ) ∼ tr[(R(λ)(ϕ−t0)∗), but what is tr[?The proof of Theorem 1 gives a wavefront set condition, which makesit possible to take the flat trace

Semyon Dyatlov A microlocal toolbox December 4, 2014 17 / 19

Page 45: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The zeta function

ζR(λ) =∏γ]

(1− e−λTγ] ), R(λ) =

∫ ∞0

e−λt(ϕ−t)∗ dt

Theorem 2ζR(λ) extends meromorphically to λ ∈ C.

ζ ′R(λ)

ζR(λ)∼∑γ

T ]γe−λTγ

| det(I − Pγ)|, tr[(ϕ−t)∗ =

∑γ

T ]γδ(t − Tγ)

| det(I − Pγ)|[Ruelle, Atiyah–Bott–Guillemin]ζ ′R(λ)/ζR(λ) ∼ tr[(R(λ)(ϕ−t0)∗), but what is tr[?The proof of Theorem 1 gives a wavefront set condition, which makesit possible to take the flat trace

Semyon Dyatlov A microlocal toolbox December 4, 2014 17 / 19

Page 46: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Methods

The zeta function

ζR(λ) =∏γ]

(1− e−λTγ] ), R(λ) =

∫ ∞0

e−λt(ϕ−t)∗ dt

Theorem 2ζR(λ) extends meromorphically to λ ∈ C.

ζ ′R(λ)

ζR(λ)∼∑γ

T ]γe−λTγ

| det(I − Pγ)|, tr[(ϕ−t)∗ =

∑γ

T ]γδ(t − Tγ)

| det(I − Pγ)|[Ruelle, Atiyah–Bott–Guillemin]ζ ′R(λ)/ζR(λ) ∼ tr[(R(λ)(ϕ−t0)∗), but what is tr[?The proof of Theorem 1 gives a wavefront set condition, which makesit possible to take the flat trace

Semyon Dyatlov A microlocal toolbox December 4, 2014 17 / 19

Page 47: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Further results

Further results

[Faure–Tsujii ’13, D–Faure–Guillarmou ’14] Bands of resonances forcertain contact Anosov flows and the constant curvature case[Tsujii ’12, Nonnenmacher–Zworski ’13] Essential spectral gaps ofoptimal size (Anosov)[Faure–Sjöstrand ’11, Datchev–D–Zworski ’12] Upper bounds on thenumber of resonances in strips (Anosov)[D–Zworski ’14] Stochastic definition and stability of resonances: theeigenvalues of −X + ε∆ converge to resonances as ε→ 0+ (Anosov)[Guillarmou ’14] Lens rigidity: a negatively curved metric on a domainwith boundary is (locally) uniquely determined by its exit times andscattering relation. (A surprising application of [D–G ’14]; unlikeprevious results in the field it handles trapping situations)[Jin–Zworski ’14] There exists a strip with infinitely many resonancesfor any Anosov flow

Semyon Dyatlov A microlocal toolbox December 4, 2014 18 / 19

Page 48: A microlocal toolbox for hyperbolic dynamicsmath.mit.edu/~dyatlov/files/2014/rnctalk.pdf · Amicrolocaltoolboxforhyperbolicdynamics SemyonDyatlov(MIT) December4,2014 Semyon Dyatlov

Thank you for your attention!

Semyon Dyatlov A microlocal toolbox December 4, 2014 19 / 19