abelardo m. zerda iii michael o. suarez jm dawn c. rivas leslie kate diane berte

17
Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

Upload: dominic-mitchell

Post on 18-Jan-2016

216 views

Category:

Documents


0 download

TRANSCRIPT

Page 1: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

Abelardo M. Zerda IIIMichael O. SuarezJm Dawn C. RivasLeslie Kate Diane Berte

Page 2: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Momentum and Impulse• Conservation of Momentum• Collisions in One Dimensions• Collisions in Two Dimensions

Page 3: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Measure of one’s motion, equivalent to the product of one’s mass and velocity.

• Momentum involves motion and mass.• Expressing the definition mathematically, p = mvwhere:p = momentum in kg-m/s unitsm = mass in kg unitsv = velocity of the object in m/s units

Page 4: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Calculate the momentum of a 100-kg missile traveling at 100 m/s eastward.

• A 100 kg car strikes a tree at 50 km/h. Find its momentum.

Page 5: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Impulse – force (F) applied by one object to another object within a given time interval Δt

• The formula to get impulse is: F Δt = Δp

where: F Δt = impulse in N-s (newton-second) units Δp = change in momentum in kg-m/s units

Page 6: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• A person in a sled with a total mass of 125 kg, slides down a grassy hill and reach a speed of 8 m/s at the bottom. If a pile of grass can exert a constant force of 250 newtons, how fast will the sled stop?

• A 100 kg car strikes a tree at 20 km/h and comes to a stop in 0.5 seconds. Find its initial momentum and the force on the car while it is being stopped.

Page 7: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• In a collision, energy is not always conserved but all collisions have to conserve momentum if there is no net applied force.

∑ p before collision = ∑ p after collision

Page 8: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

There are three types of collisions:

1.Elastic collisions – conserve kinetic energy2.Inelastic collisions – do not conserve kinetic energy3.Completely inelastic collision

Page 9: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Let us assume that for the two balls, one is running on a straight track toward the second one, which is stationary.

Assume the following items are given:

m1 – mass of object 1m2 – mass of object 2v1 – velocity of object 1 before collisionv2 – velocity of object 2 before collisionv1’ – velocity of object 1 after collisionv2’ – velocity of object 2 after collision

Page 10: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Solving for the velocity of mass 1 after collision v1’:

v1’ = [(m1 – m2) / (m1 + m2)] v1

• Solving for the velocity of mass 2 after collision v2’:

v2’ = [2m1 / (m1 + m2)] v1

Page 11: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

v1’ = [(m1 – m2) / (m1 + m2)] v1

= [(m-m) / (m+m)] v1

= 0After colliding with m2, m1 stops.

v2’ = [2m1 / (m1 + m2)] v1

= (2m / 2m) v1

= v1

Total energy transfer occurred between m1 and m2.

Page 12: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Since m1 > m2, the term (m1 – m2) is positive.

v1’ = [(m1 – m2) / (m1 + m2)] v1

m1 still moves and v1’ has the same direction as v1.

• Since all the terms are nonzero then,v2’ = [2m1 / (m1 + m2)] v1

m2 also moves and v2’ has the same direction as v1

Page 13: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Since m1 < m2, the term (m1 – m2) is negative.

v1’ = [(m1 – m2) / (m1 + m2)] v1

m1 still moves but in the opposite direction.

v2’ = [2m1 / (m1 + m2)] v1

Since all the terms are nonzero, then m2 also moves and v2 has the same direction as v1.

Page 14: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

Total Inelastic Collisions in One Dimension• Inelastic collisions produce a combined

mass after collision.• The equation for this type of collision is:

m1 v1 + m2 v2 = (m1 + m2) vf

where:

m1 + m2 is the combined mass of the object

Vf is the final velocity value for the combined mass

If m2 v2 = 0, vf = v1 m1/ (m1 + m2)

Page 15: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Balanced momentum in the x-direction and y-direction

• Angles are arbitrary

Page 16: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• Along the x-axis:

px before collision = px after collision

p1 cos 1 + p2 cos 2 = p1 cos 1 + p2 cos 2

• Along the y-axis:

py before collision = py after collision

p1 sin 1 + p2 sin 2 = p1 sin 1 + p2 sin 2

Page 17: Abelardo M. Zerda III Michael O. Suarez Jm Dawn C. Rivas Leslie Kate Diane Berte

• A pool ball weighing 2 kg is traveling at 30 at 0.8 m/s hits another ball moving at 0.5 m/s at 180. If the second ball leaves the collision at 0 and the first moves away at 150, find the final velocity vectors of the balls.