adjoint variable methods for design sensitivity

26
ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY ANALYSIS WITH THE METHOD OF MOMENTS N.K. Georgieva, S. Glavic, M.H. Bakr and J.W. Bandler McMaster University, CRL223, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada e-mail: [email protected] tel: (905) 525 9140 ext. 27141 fax: (905) 523 4407 McMaster University Department of Electrical and Computer Engineering Computational Electromagnetics Laboratory

Upload: vothu

Post on 29-Jan-2017

237 views

Category:

Documents


2 download

TRANSCRIPT

Page 1: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY ANALYSIS WITH THE METHOD OF

MOMENTS

N.K. Georgieva, S. Glavic, M.H. Bakr and J.W. Bandler

McMaster University, CRL223, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada

e-mail: [email protected]: (905) 525 9140 ext. 27141fax: (905) 523 4407

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 2: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Outline

Introduction and Objectives

design sensitivity analysis

The Adjoint Variable Method

the direct differentiation method

the adjoint variable method

computational efficiency, feasibility, accuracy

Applications with Frequency-Domain Solvers

Conclusions

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 3: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Introduction and Objectives

Design sensitivity analysis

sensitivity of the state variables

sensitivity of the response (or objective) function

Objectives

obtain the response and its gradient in the design variable space through a single full-wave analysis

applications with frequency-domain solvers

feasibility of the approach

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 4: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

The Adjoint Variable Method

the linear EM problem( )Z x I = V

1[ ]Tnx x=x - design parameters

1[ ]TmI I=I - state variables

define a scalar function (response function, objective function)

( ), ( )f x I xobjective

1 2 n

f f ffx x x

∂ ∂ ∂∇ = ∂ ∂ ∂

xsubject to ( )f∇x Z x I = V,

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 5: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

The Adjoint Variable Method

state variable sensitivity (direct differentiation method, DDM)E.J. Haug, K.K. Choi and V. Komkov, Design Sensitivity Analysis of Structural Systems, 1986J.W. Bandler, Optimization, vol. 1, Lecture Notes, 1994

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

1;

m

f ffI I

∂ ∂∇ = ∂ ∂

I

1 1

1

1

n

m m

n

I Ix x

I Ix x

∂ ∂ ∂ ∂

∇ = ∂ ∂ ∂ ∂

x I

1 ( )− ∇ = ∇ −∇ x x xI Z V ZI

ef f f∇ = ∇ +∇ ⋅∇x x I x I

1 , 1, ,i i i

i nx x x

− ∂ ∂ ∂= − = ∂ ∂ ∂

…I V ZZ I

Page 6: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

The Adjoint Variable Method

response function sensitivity(adjoint variable method, AVM)

1 ( )ef f f − ∇ = ∇ +∇ ⋅ ∇ −∇ x x I x xZ V ZI

[ ]11ˆ T TTf f−− = ∇ ⋅ = ∇ I II Z Z

[ ]ˆ TT f= ∇ IZ I

ˆ ( )e Tf f ∇ = ∇ + ∇ −∇ x x x xI V ZI

ˆ , 1,2, ,Te

i i i i

ff i nx x x x

∂∂ ∂ ∂= + − = ∂ ∂ ∂ ∂

…V ZI I

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 7: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

The Adjoint Variable Method

computational efficiency (single excitation mode)

FDA 1n +

DDM

AVM

LU-decompositions Back-substitutions

1n +

1

1 1

n

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 8: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

The Adjoint Variable Method

feasibility and accuracy of the AVMfinite-difference approximations within the AVM

ˆ , 1, ,Te

i i i i

ff i nx x x x

∂∂ ∂ ∂= + − = ∂ ∂ ∂ ∂

…V ZI I

the matrix sensitivity

[ ]ˆ Tf= ∇IV

, 1, ,i i

i nx x∂

=∂

…Z Z

[ ]ˆ TT f= ∇ IZ I

1

ˆ , ,m

f fI I

…V

the adjoint excitation

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 9: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

1. Input impedance of a dipole (Pocklington’s eqn., complex code)sensitivity with respect to the normalized length

/nL L λ=/in nR L∂ ∂ /in nX L∂ ∂ subject to =ZI V

(1) finite-difference approach (FDA):

( ) ( ) ( ) ( )

( )( ) ( ) ( )k k k k

in n in n n in nk

n n

Z L Z L L Z LL L

∂ + −∂

( ) ( )0.01k kn nL L=

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 10: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

adjoint variable method (AVM):the matrix sensitivity

( ) ( ) ( )

( ) ( )

( ) ( )k k kij ij n n ij nk k

n n

Z Z L L Z LL L

+ − ( ) ( )0.01k kn nL L=

(2) complete re-meshing: full ∆Z matrix(3,4) boundary layer: sparse ∆Z matrix

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

( )kL

( ) ( )k kL L+

δ

δ δ+Fig. 1. The dipole and the boundary layer concept (S. Amari, 2001).

0.005a λ=

Page 11: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

the adjoint excitation (analytical)

2(1/ ) 1ˆ ˆ, 0 forin b

b jb b b

Z IV V j bI I I

∂ ∂= = = − = ≠∂ ∂

Fig. 2. Derivative of the input resistance of the dipole with respect to .nL

-4000

-3000

-2000

-1000

0

1000

2000

3000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2/nL L λ=

/(

)in

nR

L∂

∂Ω

AVM, BL ( 0.5 )n nL δ=AVM, BL ( 0.1 )n nL δ=AVM, no BL ( 0.01 )n nL L=FDA ( 0.01 )n nL L=

Page 12: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Fig. 3. Derivative of the input reactance of the dipole with respect to .nL

-5000

-4000

-3000

-2000

-1000

0

1000

2000

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2

/(

)in

nX

L∂

∂Ω

/nL L λ=

AVM, BL ( 0.5 )n nL δ=AVM, BL ( 0.1 )n nL δ=AVM, no BL ( 0.01 )n nL L=FDA ( 0.01 )n nL L=

Page 13: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

2. Input impedance of a Yagi-Uda array

sensitivity with respect to the normalized separation distance driver-reflector and the normalized reflector length

1 1[ ]Tn nl s=x

1s2s

3s4s

5s

1l2l

3l4l

5l6l

2a

z y

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

0.0030.340.26070.4060.450.5243

2 /l λ /dl λ 1 /s λ /ds λ1 /l λ /a λ

3 4 5 6 2 3 4 5;d dl l l l l s s s s s= = = = = = = =

Fig. 4. The geometry of the Yagi-Uda array (initial design).

Page 14: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

1/

()

inn

Rs

∂∂

Ω( )inR Ω

-150

-100

-50

0

50

100

150

200

250

300

350

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.540

45

50

55

60

65

70

75

80

85

1 1 /ns s λ=

inR

1/in nR s∂ ∂

FDA central FD 1%1AVM analytical / nZ s∂ ∂

1AVM / 1%nZ s1AVM / 5%nZ s

Fig. 5. Input resistance sensitivity with respect to s1n .

Page 15: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

-250

-200

-150

-100

-50

0

50

100

150

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5-33

-28

-23

-18

-13

-8

-3

2

7inX

1/in nX s∂ ∂

FDA central FD 1%1AVM analytical / nZ s∂ ∂

1AVM / 1%nZ s1AVM / 5%nZ s

1 1 /ns s λ=

1/

()

inn

Xs

∂∂

Ω( )inX Ω

Fig. 6. Input reactance sensitivity with respect to s1n .

Page 16: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

3. Gain of a Yagi-Uda array (Pocklington’s eqn., real code)

sensitivity with respect to the normalized separation distances

/ , 1, ,5ks s kλ= = …

/ kG s∂ ∂ subject to =ZI V,Re Im =

II

I

ˆ , 1, ,5Te

nn ni ii

G is s

Gs

∂ ∂= = ∂ ∂

∂∂

…Z- I I

the gain sensitivity depends on explicitlynis

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 17: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

Vthe adjoint excitation is a full vector

analytical

ˆRe( )

ˆIm( )

kk

k mk

GVIGV

I+

∂=∂

∂=∂

1, ,k m= …

ˆRe( )

ˆIm( )

kk

k mk

GVIGV

I+

finite differences

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 18: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

Fig. 7. Gain and gain sensitivity of the Yagi-Uda array with respect to .4ns

-10

-8

-6

-4

-2

0

2

4

6

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65

12.5

12.75

13

13.25

13.5

3/

nG

s∂

∂ Gain

3 3 /ns s λ=

ˆ(analytical )VAVM 1%

GainFDA 1%

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 19: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

Fig. 8. Gain sensitivity of the Yagi-Uda array with respect to ; finite-difference approximation of .

4nsV

-12

-10

-8

-6

-4

-2

0

2

4

6

8

10

0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.653 3 /ns s λ=

3/

nG

s∂

AVM 1%

ˆanalytical Vˆfinite-difference 1%Vˆfinite-difference 5%V

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 20: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

4. Optimization of the Yagi-Uda array for maximum gain and an input impedance of 73 Ω

design parameters

1 2 3 4 5[ ]Tn n n n ns s s s s=x

objective function

( ) ( )2 2 2( ) 0.5 Re 73 Im 0.5in inf Z Z G = − + − x

we start from a design already optimized for gain only

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 21: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

iteration

-100

-50

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13

obje

ctiv

e fu

nctio

n

Fig. 9. The progress of the objective function during the optimization of the input impedance and the gain of the Yagi-Uda array.

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 22: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications TABLE I

DESIGN PARAMETERS, INPUT IMPEDANCE AND GAIN OF THE YAGI-UDA ARRAY DESIGN

1ns 2ns 3ns 4ns 5ns inR inX

13.750.3871.800.39660.40460.37710.41680.290613

13.770.9271.510.39370.40640.37490.41750.288412

13.59-1.2772.260.38250.40570.36850.41930.287411

13.45-1.0072.990.36270.42050.37770.40610.299910

13.250.9775.630.36450.36070.37940.43570.25319

13.415.4672.850.33620.48220.38440.39230.30628

12.91-5.7772.360.34320.46530.35350.39860.32147

12.87-5.9970.230.39090.42040.39530.37440.34506

13.9211.1865.850.40230.45190.42320.36130.30865

13.0813.2573.330.41580.45910.42290.37200.31584

11.19-16.2681.020.35440.41220.36390.42940.35443

11.08-23.5277.770.37650.38530.33010.40500.34552

15.08-4.1547.100.43530.44710.37350.34000.26071

G

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 23: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

5. Optimization of a patch antenna for an input impedance of 50 Ω

design parameters

objective function

W

L

Tw

2.321.59 mm5 mm2.5 mm15 mm90 mm

14 mm

rhwTLWS

ε =======

S[ ]TL W S=x

( ) ( )2 2( ) Re 50 Im in inf Z Z= − +x

Page 24: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Applications (0) [50 90 14] (mm)T=x (4) [51.51 96.39 15.004] (mm)T=x

1 2 3 4--10

0

10

20

30

40

50

60

0

500

1000

1500

2000

2500

iteration

Re inZIm inZobjective function

resi

stan

ce/re

acta

nce

()

Ω objective function

Fig. 10. The progress of the objective function during the optimization of the input impedance of the patch antenna.

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 25: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Conclusions

The AVM is implemented into a feasible technique for the frequency-domain DSA of HF structures

reduction of the CPU time requirements for the DSA by a factor of n to (n+1)

improved accuracy and convergence

feasibility: does not require significant modification of existing codes

Factors affecting the accuracyfinite differences with the matrix: insignificantix∂ Zfinite differences with : significantkI f∂

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory

Page 26: ADJOINT VARIABLE METHODS FOR DESIGN SENSITIVITY

Conclusions

Applications of the DSA based on the AVMoptimizationmodelingstatistical and yield analysis

Limitations

linear frequency-domain analysisextension to nonlinear frequency-domain analysis is straightforward

McMasterUniversity

Department of Electrical and Computer EngineeringComputational Electromagnetics Laboratory